Download citation
Download citation
link to html
A new triclinic polymorph of the title compound, [PdCl2(C18H15P)2], has two independent mol­ecules in the unit cell, with the Pd atoms located on inversion centres. One mol­ecule has an eclipsed conformation, whereas the second mol­ecule adopts a gauche conformation. The mol­ecules with a gauche conformation are involved in weak inter­molecular C—H...Cl—Pd inter­actions with symmetry-related mol­ecules. It is suggested that C—H...Cl—Pd inter­actions are mainly responsible for the existence of conformational differences, which contribute to the polymorph formation. In the crystal, there are layers of eclipsed and gauche mol­ecules separated by normal van der Waals inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111033051/fg3223sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270111033051/fg3223Isup2.hkl
Contains datablock I

CCDC reference: 846630

Comment top

We have previously investigated polymorphism in molecular compounds and in active pharmaceutical ingredients (APIs) (Landre et al., 2010; Martins et al., 2009; Corrêa et al., 2006). Accordingly, as part of our ongoing effort to investigate this phenomenon in molecular crystals, we have also studied polymorphism in transition metal complexes. The complex studied here, trans-[PdCl2(PPh3)2], is commonly used as a palladium precursor in inorganic synthesis in order to obtain new derivatives presenting catalytic (Dileep & Bhat, 2010) and biological activities (Shaheen et al., 2010).

This complex has previously been reported in two polymorphic forms: form (I), space group P1 (Ferguson et al., 1982) [with unit-cell parameters a = 9.69 (2), b = 10.325 (2), c = 9.194 (1) Å, α = 91.38 (1), β = 111.94 (1), γ = 72.51 (1)°]; and form (II), space group P21/c (Pons et al., 2008) [with unit-cell parameters a = 9.296 (5), b = 19.889 (8), c = 10.621 (6) Å, β = 121.71 (4)°]. In addition, four solvate forms are also known with p-dichlorobenzene (Kitano et al., 1983), chloroform (Stark & Whitmire, 1997), dichloromethane (Oilunkaniemi et al., 2003) and dichloroethane (Steyl, 2006). In the chloroform, dichloromethane and dichloroethane solvates the Pd atom lies on an inversion centre.

We report here a new polymorphic form [form (III)] of the title compound, with two independent molecules (hereafter called molecule 1 and molecule 2, Fig. 1) of the complex in the triclinic cell; in each case the palladium atom is located on a crystallographic inversion centre. With the Pd atom of each molecule lying on independent inversion centres, a square-planar coordination of the PdII metal centre is observed, with principal geometry details given in Table 1. These dimensions are in accord with those found for related complexes, including forms (I) and (II) (Ferguson et al., 1982; Pons et al. 2008) and their solvate forms previously reported (Kitano et al., 1983; Stark & Whitmire, 1997; Oilunkaniemi et al., 2003; Steyl, 2006).

In molecule 1, trans-chloride ligands are in an eclipsed conformation relative to the triphenylphosphane ligands, with the Cl1—Pd1—P1—C121 torsion angle near zero [1.09 (19)°], whereas in molecule 2, a gauche conformation is present with a Cl2—Pd2—P2—C221 torsion angle of -32.25 (17)° and this is the main difference between them (Fig. 1).

In the crystal structure there are C—H···Cl non-classical intermolecular interactions (see Table 2) involving the chlorine atoms of molecule 2 and adjacent symmetry-related aromatic C—H groups, giving rise to an extended chain in the [100] direction (Fig. 2). In other crystal structures of trans-[PdCl2(PPh3)2], the chlorine atoms are involved in hydrogen bonding and as a consequence twisted conformations are observed with non-zero Cl—Pd—P—C torsion angles in the range of 12.77 (10) to 17.00 (23)° (Ferguson et al., 1982; Kitano et al., 1983; Stark & Whitmire, 1997; Oilunkaniemi et al., 2003; Steyl, 2006; Pons et al., 2008). Comparisons among these crystalline forms of trans-[PdCl2(PPh3)2] and the respective molecular conformations of each structure suggest that the C—H···Cl—Pd intermolecular interactions are important in establishing the conformation and crystalline form. The absence of C—H···Cl—Pd intermolecular interactions in molecule 1 and their presence in molecule 2 contribute to the existence of two conformations giving rise to this new polymorphic form. Further C—H···π interactions (see Table 2) and van der Waals contacts play a role in the crystal assembly of the new form (III), and give rise to the two independent layers formed by molecules 1 and 2 in form (III) (Fig. 3).

Related literature top

For related literature, see: Corrêa et al. (2006); Dileep & Bhat (2010); Ferguson et al. (1982); Kitano et al. (1983); Landre et al. (2010); Martins et al. (2009); Oilunkaniemi et al. (2003); Pons et al. (2008); Shaheen et al. (2010); Stark & Whitmire (1997); Steyl (2006).

Experimental top

The complex trans-[PdCl2(PPh3)2] was dissolved in warm ethanol by vigorous shaking. The newly prepared solution was left standing for 1 week at room temperature. After solvent evaporation, yellow prismatic crystals were formed on the bottom of the glass crystallizer. A well shaped clear crystal was selected for the single-crystal X-ray diffraction experiment.

Refinement top

Non-hydrogen atoms were refined anisotropically and the H atoms were placed at their calculated positions using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Views of the two independent molecules in the unit cell of the new polymorph of trans-[PdCl2(PPh3)2], with the displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z.]
[Figure 2] Fig. 2. C—H···Cl intermolecular interactions forming an infinite chain along the a axis in form (III) of trans-[PdCl2(PPh3)2]. [Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+2, -y, -z; (iii) x-1, y, z; (iv) x-2, y, z; (v) -x, -y, -z.]
[Figure 3] Fig. 3. The crystal assembly of form (III) along the a axis, showing two independent layers formed by molecules 1 (black) and molecules 2 (grey).
trans-dichloridobis(triphenylphosphane)palladium(II) top
Crystal data top
[PdCl2(C18H15P)2]Z = 2
Mr = 701.84F(000) = 712
Triclinic, P1Dx = 1.474 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9830 (3) ÅCell parameters from 14503 reflections
b = 11.3023 (3) Åθ = 2.9–27.5°
c = 15.6037 (5) ŵ = 0.88 mm1
α = 89.947 (2)°T = 294 K
β = 89.539 (1)°Prism, orange
γ = 63.926 (1)°0.12 × 0.09 × 0.04 mm
V = 1581.34 (8) Å3
Data collection top
Nonius KappaCCD
diffractometer
7114 independent reflections
Radiation source: Enraf–Nonius FR5904370 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.073
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 3.3°
CCD rotation images, thick slices scansh = 1212
Absorption correction: gaussian
(Coppens et al., 1965)
k = 1414
Tmin = 0.891, Tmax = 0.962l = 1920
27320 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0644P)2]
where P = (Fo2 + 2Fc2)/3
7114 reflections(Δ/σ)max < 0.001
373 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
[PdCl2(C18H15P)2]γ = 63.926 (1)°
Mr = 701.84V = 1581.34 (8) Å3
Triclinic, P1Z = 2
a = 9.9830 (3) ÅMo Kα radiation
b = 11.3023 (3) ŵ = 0.88 mm1
c = 15.6037 (5) ÅT = 294 K
α = 89.947 (2)°0.12 × 0.09 × 0.04 mm
β = 89.539 (1)°
Data collection top
Nonius KappaCCD
diffractometer
7114 independent reflections
Absorption correction: gaussian
(Coppens et al., 1965)
4370 reflections with I > 2σ(I)
Tmin = 0.891, Tmax = 0.962Rint = 0.073
27320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 1.01Δρmax = 0.92 e Å3
7114 reflectionsΔρmin = 0.92 e Å3
373 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd100.50.50.03699 (13)
Pd21000.03937 (14)
P20.79269 (11)0.20663 (10)0.01572 (7)0.0398 (3)
Cl10.15336 (13)0.46347 (10)0.38230 (7)0.0533 (3)
P10.03696 (12)0.28211 (10)0.50286 (7)0.0375 (2)
Cl21.14525 (12)0.10835 (10)0.02149 (8)0.0577 (3)
C1210.1617 (5)0.1683 (4)0.4229 (3)0.0410 (9)
C2120.8272 (5)0.2546 (4)0.1545 (3)0.0561 (12)
H2120.92810.21830.14120.067*
C2210.8403 (4)0.3298 (4)0.0632 (3)0.0442 (10)
C1120.1540 (5)0.2493 (4)0.6680 (3)0.0502 (11)
H1120.14060.33580.66340.06*
C2260.9207 (5)0.2987 (5)0.1390 (3)0.0581 (12)
H2260.9480.21660.16390.07*
C2310.6302 (4)0.2204 (4)0.0766 (3)0.0419 (9)
C2110.7242 (5)0.2653 (4)0.0912 (3)0.0449 (10)
C1130.2170 (5)0.1779 (5)0.7414 (3)0.0604 (13)
H1130.24740.21620.78510.072*
C2360.5472 (5)0.1551 (4)0.0504 (3)0.0537 (11)
H2360.57580.10270.00140.064*
C2220.8013 (5)0.4527 (4)0.0264 (3)0.0554 (12)
H2220.74570.47620.02360.066*
C1140.2346 (5)0.0505 (5)0.7498 (3)0.0624 (13)
H1140.27260.00420.80010.075*
C1110.1110 (4)0.1929 (4)0.6016 (3)0.0402 (9)
C2130.7819 (6)0.2972 (5)0.2370 (3)0.0683 (14)
H2130.85150.29310.27830.082*
C2320.5824 (5)0.2986 (4)0.1506 (3)0.0566 (12)
H2320.63460.34420.16980.068*
C2340.3788 (5)0.2438 (5)0.1681 (4)0.0698 (15)
H2340.29460.25160.19840.084*
C1340.4287 (6)0.3179 (5)0.4456 (4)0.0743 (16)
H1340.52470.32910.43350.089*
C1150.1960 (5)0.0075 (4)0.6836 (3)0.0580 (12)
H1150.21070.09440.68850.07*
C2150.5311 (6)0.3580 (5)0.1960 (3)0.0738 (16)
H2150.43080.39230.21040.089*
C1360.2106 (5)0.2259 (4)0.5327 (3)0.0502 (11)
H1360.15950.17350.57870.06*
C1230.4137 (6)0.0452 (5)0.3726 (4)0.0762 (16)
H1230.5150.02120.37840.091*
C2230.8466 (6)0.5409 (5)0.0653 (4)0.0737 (16)
H2230.82390.6220.04010.088*
C1320.2229 (5)0.3637 (4)0.4133 (3)0.0607 (13)
H1320.17960.4050.3790.073*
C1240.3648 (7)0.0049 (5)0.3065 (4)0.0739 (15)
H1240.43290.06340.26770.089*
C1310.1442 (4)0.2882 (4)0.4830 (3)0.0401 (9)
C1350.3536 (6)0.2422 (5)0.5135 (4)0.0683 (14)
H1350.39830.20130.54720.082*
C2250.9603 (5)0.3879 (5)0.1777 (4)0.0703 (15)
H2251.01170.36710.22920.084*
C2160.5736 (5)0.3205 (4)0.1130 (3)0.0585 (12)
H2160.50190.33180.07120.07*
C1220.3136 (5)0.1309 (4)0.4304 (3)0.0586 (12)
H1220.34790.16440.47510.07*
C2240.9236 (6)0.5078 (6)0.1399 (4)0.0779 (17)
H2240.95190.56730.16580.094*
C1260.1133 (5)0.1181 (4)0.3561 (3)0.0528 (11)
H1260.01210.1420.34990.063*
C1250.2164 (7)0.0309 (5)0.2977 (3)0.0703 (15)
H1250.18340.00280.25250.084*
C2140.6342 (6)0.3456 (5)0.2575 (3)0.0738 (16)
H2140.6040.37020.31360.089*
C1330.3629 (6)0.3776 (5)0.3950 (4)0.0764 (17)
H1330.41380.42760.34820.092*
C2350.4235 (5)0.1672 (5)0.0960 (4)0.0653 (14)
H2350.36960.12270.07760.078*
C2330.4575 (6)0.3083 (5)0.1953 (4)0.0733 (15)
H2330.42720.35980.24470.088*
C1160.1356 (5)0.0617 (4)0.6100 (3)0.0493 (11)
H1160.11080.02090.56530.059*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0399 (2)0.0330 (2)0.0400 (3)0.01772 (19)0.00110 (19)0.00115 (18)
Pd20.0376 (2)0.0363 (2)0.0421 (3)0.01432 (19)0.00205 (19)0.00206 (18)
P20.0387 (6)0.0353 (5)0.0427 (6)0.0136 (5)0.0013 (5)0.0023 (4)
Cl10.0589 (7)0.0469 (6)0.0531 (7)0.0227 (5)0.0149 (5)0.0006 (5)
P10.0423 (6)0.0334 (5)0.0391 (6)0.0188 (4)0.0006 (5)0.0006 (4)
Cl20.0463 (6)0.0473 (6)0.0822 (9)0.0231 (5)0.0043 (6)0.0053 (6)
C1210.049 (2)0.034 (2)0.042 (2)0.0204 (18)0.0053 (19)0.0007 (17)
C2120.047 (3)0.062 (3)0.054 (3)0.019 (2)0.005 (2)0.002 (2)
C2210.040 (2)0.043 (2)0.050 (3)0.0191 (19)0.0079 (19)0.0073 (19)
C1120.050 (3)0.040 (2)0.053 (3)0.0123 (19)0.005 (2)0.005 (2)
C2260.056 (3)0.062 (3)0.055 (3)0.024 (2)0.007 (2)0.007 (2)
C2310.041 (2)0.037 (2)0.045 (2)0.0154 (18)0.0044 (19)0.0014 (18)
C2110.046 (2)0.035 (2)0.045 (3)0.0101 (18)0.001 (2)0.0020 (18)
C1130.057 (3)0.063 (3)0.042 (3)0.008 (2)0.012 (2)0.008 (2)
C2360.043 (2)0.052 (3)0.066 (3)0.020 (2)0.007 (2)0.003 (2)
C2220.054 (3)0.044 (2)0.067 (3)0.020 (2)0.008 (2)0.008 (2)
C1140.057 (3)0.063 (3)0.049 (3)0.010 (2)0.005 (2)0.010 (2)
C1110.037 (2)0.036 (2)0.042 (2)0.0099 (17)0.0007 (18)0.0018 (17)
C2130.075 (4)0.068 (3)0.046 (3)0.017 (3)0.006 (3)0.008 (2)
C2320.056 (3)0.062 (3)0.059 (3)0.034 (2)0.011 (2)0.013 (2)
C2340.046 (3)0.072 (3)0.091 (4)0.026 (3)0.008 (3)0.013 (3)
C1340.042 (3)0.072 (4)0.104 (5)0.020 (3)0.012 (3)0.010 (3)
C1150.063 (3)0.046 (3)0.060 (3)0.020 (2)0.007 (2)0.014 (2)
C2150.062 (3)0.073 (3)0.062 (4)0.007 (3)0.015 (3)0.015 (3)
C1360.048 (3)0.056 (3)0.052 (3)0.027 (2)0.000 (2)0.001 (2)
C1230.057 (3)0.080 (4)0.082 (4)0.021 (3)0.018 (3)0.000 (3)
C2230.072 (4)0.046 (3)0.106 (5)0.029 (3)0.022 (3)0.019 (3)
C1320.060 (3)0.056 (3)0.070 (3)0.029 (2)0.017 (3)0.015 (2)
C1240.081 (4)0.061 (3)0.070 (4)0.023 (3)0.029 (3)0.011 (3)
C1310.042 (2)0.036 (2)0.044 (2)0.0179 (18)0.0034 (18)0.0000 (17)
C1350.057 (3)0.086 (4)0.076 (4)0.045 (3)0.006 (3)0.005 (3)
C2250.051 (3)0.082 (4)0.078 (4)0.030 (3)0.003 (3)0.030 (3)
C2160.047 (3)0.061 (3)0.051 (3)0.009 (2)0.001 (2)0.005 (2)
C1220.050 (3)0.064 (3)0.060 (3)0.024 (2)0.009 (2)0.005 (2)
C2240.066 (3)0.080 (4)0.099 (5)0.042 (3)0.021 (3)0.047 (4)
C1260.059 (3)0.046 (3)0.052 (3)0.021 (2)0.007 (2)0.006 (2)
C1250.097 (4)0.061 (3)0.055 (3)0.036 (3)0.005 (3)0.011 (2)
C2140.083 (4)0.063 (3)0.047 (3)0.005 (3)0.008 (3)0.012 (2)
C1330.067 (3)0.063 (3)0.096 (5)0.025 (3)0.036 (3)0.021 (3)
C2350.043 (3)0.062 (3)0.095 (4)0.027 (2)0.005 (3)0.001 (3)
C2330.064 (3)0.086 (4)0.070 (4)0.034 (3)0.024 (3)0.016 (3)
C1160.056 (3)0.040 (2)0.051 (3)0.020 (2)0.009 (2)0.0063 (19)
Geometric parameters (Å, º) top
Pd1—Cl12.2996 (11)C232—C2331.385 (6)
Pd1—Cl1i2.2996 (11)C232—H2320.93
Pd1—P12.3247 (10)C234—C2331.357 (7)
Pd1—P1i2.3247 (10)C234—C2351.366 (7)
Pd2—Cl22.2950 (11)C234—H2340.93
Pd2—Cl2ii2.2950 (11)C134—C1351.365 (7)
Pd2—P2ii2.3540 (10)C134—C1331.375 (8)
Pd2—P22.3540 (10)C134—H1340.93
P2—C2211.817 (4)C115—C1161.375 (6)
P2—C2111.818 (4)C115—H1150.93
P2—C2311.819 (4)C215—C2141.362 (8)
P1—C1311.809 (4)C215—C2161.374 (6)
P1—C1111.815 (4)C215—H2150.93
P1—C1211.825 (4)C136—C1311.391 (6)
C121—C1261.376 (6)C136—C1351.392 (6)
C121—C1221.390 (6)C136—H1360.93
C212—C2131.382 (6)C123—C1241.371 (8)
C212—C2111.386 (6)C123—C1221.373 (7)
C212—H2120.93C123—H1230.93
C221—C2261.390 (6)C223—C2241.359 (8)
C221—C2221.392 (6)C223—H2230.93
C112—C1111.383 (5)C132—C1331.369 (7)
C112—C1131.386 (6)C132—C1311.397 (6)
C112—H1120.93C132—H1320.93
C226—C2251.376 (6)C124—C1251.361 (8)
C226—H2260.93C124—H1240.93
C231—C2361.394 (6)C135—H1350.93
C231—C2321.402 (6)C225—C2241.372 (8)
C211—C2161.396 (6)C225—H2250.93
C113—C1141.378 (7)C216—H2160.93
C113—H1130.93C122—H1220.93
C236—C2351.374 (7)C224—H2240.93
C236—H2360.93C126—C1251.400 (7)
C222—C2231.403 (6)C126—H1260.93
C222—H2220.93C125—H1250.93
C114—C1151.370 (6)C214—H2140.93
C114—H1140.93C133—H1330.93
C111—C1161.399 (5)C235—H2350.93
C213—C2141.370 (7)C233—H2330.93
C213—H2130.93C116—H1160.93
Cl1—Pd1—Cl1i180C233—C234—C235119.8 (5)
Cl1—Pd1—P192.41 (4)C233—C234—H234120.1
Cl1i—Pd1—P187.59 (4)C235—C234—H234120.1
Cl1—Pd1—P1i87.59 (4)C135—C134—C133120.2 (5)
Cl1i—Pd1—P1i92.41 (4)C135—C134—H134119.9
P1—Pd1—P1i180C133—C134—H134119.9
Cl2—Pd2—Cl2ii180C114—C115—C116120.5 (4)
Cl2—Pd2—P2ii91.69 (4)C114—C115—H115119.8
Cl2ii—Pd2—P2ii88.31 (4)C116—C115—H115119.8
Cl2—Pd2—P288.31 (4)C214—C215—C216120.7 (5)
Cl2ii—Pd2—P291.69 (4)C214—C215—H215119.6
P2ii—Pd2—P2180C216—C215—H215119.6
C221—P2—C211106.3 (2)C131—C136—C135119.9 (4)
C221—P2—C231104.29 (19)C131—C136—H136120
C211—P2—C231105.32 (19)C135—C136—H136120
C221—P2—Pd2112.85 (14)C124—C123—C122120.2 (5)
C211—P2—Pd2107.30 (13)C124—C123—H123119.9
C231—P2—Pd2119.82 (13)C122—C123—H123119.9
C131—P1—C111109.25 (19)C224—C223—C222120.0 (5)
C131—P1—C121105.45 (19)C224—C223—H223120
C111—P1—C121101.61 (18)C222—C223—H223120
C131—P1—Pd1105.42 (12)C133—C132—C131120.7 (5)
C111—P1—Pd1116.18 (13)C133—C132—H132119.6
C121—P1—Pd1118.35 (13)C131—C132—H132119.6
C126—C121—C122118.6 (4)C125—C124—C123119.9 (5)
C126—C121—P1123.6 (3)C125—C124—H124120
C122—C121—P1117.8 (3)C123—C124—H124120
C213—C212—C211120.9 (5)C136—C131—C132118.5 (4)
C213—C212—H212119.6C136—C131—P1124.9 (3)
C211—C212—H212119.6C132—C131—P1116.6 (3)
C226—C221—C222118.9 (4)C134—C135—C136120.4 (5)
C226—C221—P2118.2 (3)C134—C135—H135119.8
C222—C221—P2122.8 (3)C136—C135—H135119.8
C111—C112—C113120.6 (4)C224—C225—C226119.7 (5)
C111—C112—H112119.7C224—C225—H225120.1
C113—C112—H112119.7C226—C225—H225120.1
C225—C226—C221120.8 (5)C215—C216—C211120.1 (5)
C225—C226—H226119.6C215—C216—H216119.9
C221—C226—H226119.6C211—C216—H216119.9
C236—C231—C232117.5 (4)C123—C122—C121120.9 (5)
C236—C231—P2121.1 (3)C123—C122—H122119.6
C232—C231—P2121.4 (3)C121—C122—H122119.6
C212—C211—C216118.2 (4)C223—C224—C225121.0 (5)
C212—C211—P2118.2 (3)C223—C224—H224119.5
C216—C211—P2123.6 (4)C225—C224—H224119.5
C114—C113—C112120.3 (4)C121—C126—C125120.0 (5)
C114—C113—H113119.9C121—C126—H126120
C112—C113—H113119.9C125—C126—H126120
C235—C236—C231120.8 (5)C124—C125—C126120.4 (5)
C235—C236—H236119.6C124—C125—H125119.8
C231—C236—H236119.6C126—C125—H125119.8
C221—C222—C223119.5 (5)C215—C214—C213120.3 (5)
C221—C222—H222120.3C215—C214—H214119.8
C223—C222—H222120.3C213—C214—H214119.8
C115—C114—C113119.7 (4)C132—C133—C134120.3 (5)
C115—C114—H114120.2C132—C133—H133119.9
C113—C114—H114120.2C134—C133—H133119.9
C112—C111—C116118.1 (4)C234—C235—C236120.8 (5)
C112—C111—P1121.2 (3)C234—C235—H235119.6
C116—C111—P1120.5 (3)C236—C235—H235119.6
C214—C213—C212119.6 (5)C234—C233—C232120.9 (5)
C214—C213—H213120.2C234—C233—H233119.6
C212—C213—H213120.2C232—C233—H233119.6
C233—C232—C231120.2 (4)C115—C116—C111120.8 (4)
C233—C232—H232119.9C115—C116—H116119.6
C231—C232—H232119.9C111—C116—H116119.6
C131—P1—C121—C1268.5 (4)C211—C212—C213—C2142.7 (8)
C111—P1—C121—C126122.5 (4)C236—C231—C232—C2330.5 (7)
Pd1—P1—C121—C126109.0 (3)P2—C231—C232—C233179.4 (4)
C131—P1—C121—C122171.5 (3)C113—C114—C115—C1162.0 (8)
C111—P1—C121—C12257.5 (4)C221—C222—C223—C2242.2 (7)
Pd1—P1—C121—C12271.0 (4)C122—C123—C124—C1250.4 (9)
C211—P2—C221—C226168.6 (3)C135—C136—C131—C1321.4 (7)
C231—P2—C221—C22680.4 (4)C135—C136—C131—P1177.2 (4)
Pd2—P2—C221—C22651.2 (4)C133—C132—C131—C1360.9 (7)
C211—P2—C221—C22210.7 (4)C133—C132—C131—P1177.9 (4)
C231—P2—C221—C222100.3 (4)C111—P1—C131—C1364.2 (4)
Pd2—P2—C221—C222128.1 (3)C121—P1—C131—C136104.3 (4)
C222—C221—C226—C2250.5 (7)Pd1—P1—C131—C136129.7 (3)
P2—C221—C226—C225179.8 (4)C111—P1—C131—C132174.4 (3)
C221—P2—C231—C236170.1 (3)C121—P1—C131—C13277.0 (4)
C211—P2—C231—C23658.3 (4)Pd1—P1—C131—C13248.9 (4)
Pd2—P2—C231—C23662.5 (4)C133—C134—C135—C1360.7 (9)
C221—P2—C231—C2328.8 (4)C131—C136—C135—C1340.7 (8)
C211—P2—C231—C232120.6 (4)C221—C226—C225—C2241.7 (7)
Pd2—P2—C231—C232118.6 (3)C214—C215—C216—C2111.9 (8)
C213—C212—C211—C2160.1 (7)C212—C211—C216—C2152.4 (7)
C213—C212—C211—P2179.9 (4)P2—C211—C216—C215177.6 (4)
C221—P2—C211—C21275.6 (4)C124—C123—C122—C1210.1 (8)
C231—P2—C211—C212174.1 (3)C126—C121—C122—C1230.2 (7)
Pd2—P2—C211—C21245.4 (4)P1—C121—C122—C123179.8 (4)
C221—P2—C211—C216104.4 (4)C222—C223—C224—C2251.0 (8)
C231—P2—C211—C2165.9 (4)C226—C225—C224—C2231.0 (8)
Pd2—P2—C211—C216134.6 (3)C122—C121—C126—C1250.2 (6)
C111—C112—C113—C1141.4 (7)P1—C121—C126—C125179.8 (4)
C232—C231—C236—C2350.2 (6)C123—C124—C125—C1260.5 (8)
P2—C231—C236—C235179.2 (4)C121—C126—C125—C1240.2 (7)
C226—C221—C222—C2231.4 (7)C216—C215—C214—C2131.0 (9)
P2—C221—C222—C223177.8 (3)C212—C213—C214—C2153.3 (8)
C112—C113—C114—C1153.0 (7)C131—C132—C133—C1340.5 (9)
C113—C112—C111—C1161.3 (7)C135—C134—C133—C1321.3 (9)
C113—C112—C111—P1176.9 (4)C233—C234—C235—C2360.3 (8)
C131—P1—C111—C112124.2 (4)C231—C236—C235—C2340.1 (7)
C121—P1—C111—C112124.7 (4)C235—C234—C233—C2320.5 (8)
Pd1—P1—C111—C1125.2 (4)C231—C232—C233—C2340.6 (8)
C131—P1—C111—C11660.3 (4)C114—C115—C116—C1110.7 (7)
C121—P1—C111—C11650.8 (4)C112—C111—C116—C1152.3 (6)
Pd1—P1—C111—C116179.3 (3)P1—C111—C116—C115178.0 (4)
Symmetry codes: (i) x, y+1, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C235—H235···Cl2iii0.932.803.637 (6)151
C123—H123···Cg1iv0.932.913.762 (7)153
C114—H114···Cg2iv0.932.893.705 (5)147
Symmetry codes: (iii) x1, y, z; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[PdCl2(C18H15P)2]
Mr701.84
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.9830 (3), 11.3023 (3), 15.6037 (5)
α, β, γ (°)89.947 (2), 89.539 (1), 63.926 (1)
V3)1581.34 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.12 × 0.09 × 0.04
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionGaussian
(Coppens et al., 1965)
Tmin, Tmax0.891, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
27320, 7114, 4370
Rint0.073
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.01
No. of reflections7114
No. of parameters373
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.92, 0.92

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Pd1—Cl12.2996 (11)Pd2—Cl22.2950 (11)
Pd1—P12.3247 (10)Pd2—P22.3540 (10)
Cl1—Pd1—P192.41 (4)Cl2—Pd2—P288.31 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C235—H235···Cl2i0.932.803.637 (6)151
C123—H123···Cg1ii0.932.913.762 (7)153
C114—H114···Cg2ii0.932.893.705 (5)147
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds