Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title salt, (C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2O, the MnII atom lies on an inversion centre and is coordinated by four N atoms from two 2,2′-biimidazole (biim) ligands and two O atoms from two biphenyl-2,4′-dicarboxyl­ate (bpdc) anions to give a slightly distorted octa­hedral coordination, while the cation lies about another inversion centre. Adjacent [Mn(bpdc)2(biim)2]2− anions are linked via two pairs of N—H...O hydrogen bonds, leading to an infinite chain along the [100] direction. The protonated [H2biim]2+ moiety acts as a charge-compensating cation and space-filling structural subunit. It bridges two [Mn(bpdc)2(biim)2]2− anions through two pairs of N—H...O hydrogen bonds, constructing two R22(9) rings, leading to a zigzag chain in the [2\overline{1}\overline{1}] direction, which gives rise to a ruffled set of [H2biim]2+[Mn(bpdc)2(biim)2]2− moieties in the [01\overline{1}] plane. The water mol­ecules give rise to a chain structure in which O—H...O hydrogen bonds generate a chain of alternating four- and six-membered water–oxygen R42(8) and R66(12) rings, each lying about independent inversion centres giving rise to a chain along the [100] direction. Within the water chain, the (H2O)6 water rings are hydrogen bonded to two O atoms from two [Mn(bpdc)2(biim)2]2− anions, giving rise to a three-dimensional framework.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110046743/fg3201sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046743/fg3201Isup2.hkl
Contains datablock I

CCDC reference: 810004

Comment top

The design and synthesis of coordination polymers is an attractive area of research owing to the fascinating structures and potential applications in the catalysis and gas storage fields (Desiraju, 1995; Yaghi et al., 1998; Belof et al., 2007). In the case of coordination complexes, the resulting structures will be affected by factors such as metal-to-ligand ratios, metal coordination modes, the type and flexibility of organic ligand and guest molecules. [With respect to]In these factors, not only can the organic components be introduced as ligands, bonded directly to a secondary metal site, but they can also serve as a charge-compensating ion or space-filling structural subunits. During the past decade, many coordination polymers have been successfully synthesized and reported, in which polycarboxylic acids combining with N-ligands have been used to assemble coordination polymers because of their multiple coordination sites and versatile coordination modes (Wang et al., 2004, 2010; Duan et al., 2007; Liu et al., 2008; Ghosh et al., 2009; Duan et al., 2010). Coordination polymers associated with the biphenyl-2,4'-dicarboxylic acid (Liu et al., 2010) and the 2,2'-biimidazole ligand have not often been reported (Larsson & Öhrström, 2003; Ye et al.., 2004; Fang et al., 2009). We report here on the structure of the title compound, C6H8N42+.[Mn(C14H8O4)2(C6H6N4)2]2-.6H2O, (I), [H2biim]2+.[Mn(bpdc)2(biim)2]2-.6H2O [[H2biim]2+ is 2,2'-biimidazolium and H2bpdc is biphenyl-2,4'-dicarboxylic acid].

As shown in Fig. 1, the structural unit consists of a [Mn(bpdc)2(biim)2]2- anion with the Mn atom chosen to lie on the inversion centre at (0.5,0.5,0.5) and one doubly protonated H2biim2+ cation lying about an inversion centre at (-0.5,1,1); the asymmetric unit also has three water molecules. In the [Mn(bpdc)2(biim)2]2- anion, the Mn2+ ion is coordinated by four N atoms from two biim ligands and two O atoms from two bpdc anions in a slightly distorted octahedral configuration. The unique Mn—O distance is 2.2880 (14) Å, while Mn—N lengths are 2.1965 (17) and 2.2338 (18) Å. The (bpdc)2- moiety is monodentate with a dihedral angle of 31.99 (10)° between its two phenyl rings.

In the [Mn(bpdc)2(biim)2]2- anion, the four NH donors form N—H···O hydrogen bonds with the carboxyl-group O atoms of adjacent anions, giving rise to a chain along the [100] direction as shown in Fig. 2 with geometric details in Table 1. The doubly protonated H2biim2+ cation lying about an inversion centre (at -0.5,1,1) forms four N—H···O hydrogen bonds with two non-coordinative carboxyl groups in two [Mn(bpdc)2(biim)2]2- anions through two pairs of N—H···O (N5—H5A···O4 and N6—H6A···O3iv) hydrogen bonds (Table 1), forming two R22(9) rings (Bernstein et al., 1995). Alternate [Mn(bpdc)2(biim)2]2- anion and H2biim2+ cations give rise to a one-dimensional zigzag chain along the [211] direction (Fig. 3). The combination of this chain with that of the [Mn(bpdc)2(biim)2]2- anions gives rise to a ruffled layer in the [011] plane.

The three water molecules give rise to a water chain as shown in Fig. 4 which extends in the a direction (geometric details in Table 1). The chain is composed of six-membered and four-membered water oxygen rings lying about inversion centres at (0,0,1/2)and (1/2,0,1/2), etc., with graph-set notations R66(12) and R42(8) for the six- and four-membered rings, respectively. The four oxygen atoms of the R42(8) ring are exactly coplanar because of the inversion symmetry while the six oxygen atoms within the hexamer are almost coplanar with a mean deviation 0.1383 (2) Å and construct an essentially equilateral hexagon. The O5 water molecules in each water chain are hydrogen bonded to O2 atoms from [Mn(bpdc)2(biim)2]2- anions so that the two-dimensional zigzag layers are arranged into a three-dimensional framework.

Related literature top

For related literature, see: Belof et al. (2007); Bernstein et al. (1995); Desiraju (1995); Duan et al. (2007, 2010); Fang et al. (2009); Ghosh et al. (2009); Larsson & Öhrström (2003); Liu et al. (2010); Wang et al. (2004, 2010); Yaghi et al. (1998); Ye et al. (2004).

Experimental top

A mixture of MnSO4.H2O (0.5 mmol, 0.085 g), bpdc (0.5 mmol, 0.17 g), biim (0.2 mmol, 0.04 g) and H2O (15 ml) was placed in a Parr Teflon-lined stainless steel vessel (23 ml), which was sealed and heated at 403 K for 5 d. After the mixture slowly cooled to room temperature, colourless block crystals of (I) were obtained.

Refinement top

Water and nitrogen-bound H atoms were located in difference Fourier maps and refined with restraints [O—H = 0.85 (3) Å, H···H =1.34 (3) Å and N—H = 0.89 (3) Å] and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). The remaining H atoms were positioned geometrically and allowed for using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Dashed lines indicate hydrogen bonds [Symmetry codes: (a) -x + 1, -y + 1, -z + 1; (b) -x - 1, -y + 2, -z + 2.]
[Figure 2] Fig. 2. View of the [Mn(bpdc)2(biim)2]2- chain in the [100] direction [Symmetry codes: (a) -x + 1, -y + 1, -z + 1; (d) x + 1, y, z; (e) -x, -y + 1, -z + 1.]
[Figure 3] Fig. 3. View of the chain along the [211] direction [Symmetry codes: (a) -x + 1, -y + 1, -z + 1; (b) -x - 1, -y + 2, -z + 2; (c) x + 2, y - 1, z - 1.]
[Figure 4] Fig. 4. View of the water chain along the [100] direction [Symmetry codes: (*) -x + 1, -y, -z + 1; (#) -x, -y, -z + 1; ($) x - 1, y, z.]
2,2'-biimidazolium bis(2,2'-biimidazole-κ2N,N')bis(biphenyl- 2,4'-dicarboxylato-κO)manganese(II) hexahydrate top
Crystal data top
(C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2OZ = 1
Mr = 1047.90F(000) = 545
Triclinic, P1Dx = 1.458 Mg m3
Hall symbol: -p 1Mo Kα radiation, λ = 0.71073 Å
a = 7.278 (1) ÅCell parameters from 3188 reflections
b = 11.977 (2) Åθ = 2.9–26.8°
c = 14.268 (1) ŵ = 0.36 mm1
α = 81.310 (2)°T = 296 K
β = 76.269 (1)°Block, colorless
γ = 85.793 (1)°0.30 × 0.20 × 0.20 mm
V = 1193.4 (3) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4629 independent reflections
Radiation source: fine-focus sealed tube3821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
0.3° wide ω exposures scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.900, Tmax = 0.932k = 1214
8661 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0565P)2 + 0.1622P]
where P = (Fo2 + 2Fc2)/3
4629 reflections(Δ/σ)max = 0.007
361 parametersΔρmax = 0.39 e Å3
13 restraintsΔρmin = 0.30 e Å3
Crystal data top
(C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2Oγ = 85.793 (1)°
Mr = 1047.90V = 1193.4 (3) Å3
Triclinic, P1Z = 1
a = 7.278 (1) ÅMo Kα radiation
b = 11.977 (2) ŵ = 0.36 mm1
c = 14.268 (1) ÅT = 296 K
α = 81.310 (2)°0.30 × 0.20 × 0.20 mm
β = 76.269 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4629 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3821 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.932Rint = 0.025
8661 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04713 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.39 e Å3
4629 reflectionsΔρmin = 0.30 e Å3
361 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.03364 (16)
C10.4427 (3)0.29449 (18)0.75308 (14)0.0292 (5)
C20.5717 (3)0.20347 (19)0.74058 (16)0.0352 (5)
H20.56820.15750.69410.042*
C30.7053 (3)0.1801 (2)0.79630 (17)0.0406 (6)
H30.79280.12010.78590.049*
C40.7084 (3)0.2456 (2)0.86688 (17)0.0425 (6)
H40.79810.23040.90440.051*
C50.5772 (3)0.3344 (2)0.88177 (17)0.0397 (6)
H50.57840.37740.93080.048*
C60.4431 (3)0.36170 (18)0.82558 (15)0.0308 (5)
C70.3037 (3)0.45626 (19)0.84833 (14)0.0316 (5)
C80.1115 (3)0.44612 (19)0.85409 (15)0.0336 (5)
H80.06940.37920.84240.040*
C90.0172 (3)0.5340 (2)0.87693 (15)0.0364 (5)
H90.14410.52670.87820.044*
C100.0410 (3)0.6330 (2)0.89794 (15)0.0367 (5)
C110.2315 (3)0.6426 (2)0.89566 (17)0.0423 (6)
H110.27180.70770.91160.051*
C120.3607 (3)0.5561 (2)0.86996 (17)0.0413 (6)
H120.48800.56450.86700.050*
C130.3122 (3)0.31918 (19)0.68379 (15)0.0310 (5)
C140.0952 (4)0.7290 (2)0.92210 (17)0.0438 (6)
C150.1806 (3)0.52812 (18)0.40259 (14)0.0286 (5)
C160.1258 (3)0.3878 (2)0.33330 (16)0.0389 (5)
H160.07110.34210.30100.047*
C170.2846 (3)0.3637 (2)0.36640 (16)0.0387 (5)
H170.35940.29760.36030.046*
C180.1729 (3)0.63278 (18)0.44231 (14)0.0295 (5)
C190.1060 (3)0.8022 (2)0.48165 (17)0.0411 (6)
H190.04960.87370.48810.049*
C200.2565 (3)0.7564 (2)0.51653 (17)0.0398 (6)
H200.32110.79210.55180.048*
N10.3193 (2)0.45164 (15)0.41056 (13)0.0330 (4)
N20.0607 (3)0.49215 (17)0.35628 (13)0.0345 (4)
H2A0.047 (3)0.525 (2)0.3532 (17)0.041*
N30.2994 (2)0.64961 (15)0.49209 (13)0.0331 (4)
N40.0535 (3)0.72228 (16)0.43500 (13)0.0343 (4)
H4A0.041 (3)0.730 (2)0.4037 (16)0.041*
O10.3027 (2)0.41793 (13)0.63916 (10)0.0361 (4)
O20.2191 (3)0.23966 (14)0.67405 (13)0.0503 (5)
O30.2451 (3)0.73693 (19)0.89000 (15)0.0751 (7)
O40.0595 (3)0.79671 (16)0.97303 (16)0.0659 (6)
O50.2590 (3)0.02831 (18)0.61516 (15)0.0621 (5)
H5WA0.158 (4)0.005 (3)0.645 (2)0.093*
H5WB0.254 (5)0.089 (2)0.637 (2)0.093*
O60.3681 (3)0.0717 (2)0.40715 (17)0.0725 (6)
H6WA0.470 (4)0.042 (3)0.391 (3)0.109*
H6WB0.326 (5)0.064 (3)0.4655 (18)0.109*
O70.0874 (4)0.0748 (2)0.69952 (18)0.0794 (7)
H7WA0.095 (6)0.125 (3)0.743 (3)0.119*
H7WB0.176 (5)0.075 (4)0.671 (3)0.119*
N50.2979 (3)0.95417 (19)1.05509 (16)0.0478 (5)
H5A0.225 (4)0.902 (2)1.0233 (19)0.057*
N60.5122 (3)1.08372 (18)1.09946 (14)0.0474 (5)
H6A0.601 (3)1.137 (2)1.100 (2)0.057*
C210.4536 (3)1.0093 (2)1.03718 (16)0.0394 (5)
C220.2575 (4)0.9935 (2)1.1320 (2)0.0580 (7)
H220.15640.96951.16040.070*
C230.3897 (4)1.0733 (2)1.15938 (19)0.0563 (7)
H230.39671.11451.21050.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0289 (3)0.0328 (3)0.0428 (3)0.0028 (2)0.0173 (2)0.0040 (2)
C10.0252 (11)0.0287 (12)0.0324 (11)0.0018 (9)0.0067 (8)0.0000 (9)
C20.0354 (12)0.0331 (13)0.0368 (12)0.0026 (10)0.0083 (10)0.0057 (9)
C30.0313 (12)0.0372 (14)0.0500 (14)0.0088 (10)0.0099 (10)0.0004 (11)
C40.0348 (13)0.0472 (15)0.0492 (14)0.0020 (11)0.0211 (11)0.0017 (11)
C50.0397 (13)0.0425 (14)0.0415 (13)0.0006 (11)0.0176 (10)0.0076 (10)
C60.0275 (11)0.0300 (12)0.0346 (11)0.0001 (9)0.0077 (9)0.0026 (9)
C70.0327 (12)0.0330 (12)0.0305 (11)0.0023 (10)0.0094 (9)0.0071 (9)
C80.0357 (12)0.0340 (13)0.0325 (11)0.0002 (10)0.0084 (9)0.0082 (9)
C90.0312 (12)0.0462 (15)0.0323 (11)0.0027 (11)0.0076 (9)0.0085 (10)
C100.0414 (13)0.0386 (14)0.0282 (11)0.0085 (11)0.0059 (9)0.0072 (9)
C110.0468 (14)0.0346 (14)0.0475 (14)0.0002 (11)0.0112 (11)0.0129 (11)
C120.0352 (13)0.0433 (15)0.0485 (14)0.0002 (11)0.0114 (11)0.0137 (11)
C130.0269 (11)0.0357 (13)0.0308 (11)0.0061 (9)0.0077 (9)0.0078 (9)
C140.0471 (15)0.0435 (15)0.0376 (13)0.0089 (12)0.0045 (11)0.0093 (11)
C150.0261 (11)0.0320 (12)0.0274 (10)0.0003 (9)0.0080 (8)0.0005 (9)
C160.0461 (14)0.0365 (14)0.0390 (12)0.0026 (11)0.0159 (10)0.0104 (10)
C170.0458 (14)0.0322 (13)0.0399 (12)0.0052 (11)0.0134 (10)0.0082 (10)
C180.0258 (11)0.0311 (12)0.0303 (10)0.0002 (9)0.0065 (8)0.0010 (9)
C190.0444 (14)0.0289 (13)0.0531 (14)0.0071 (11)0.0159 (11)0.0119 (11)
C200.0403 (13)0.0355 (14)0.0482 (13)0.0005 (11)0.0162 (11)0.0118 (11)
N10.0312 (10)0.0320 (10)0.0378 (10)0.0038 (8)0.0127 (8)0.0058 (8)
N20.0305 (10)0.0386 (11)0.0373 (10)0.0018 (9)0.0138 (8)0.0061 (8)
N30.0309 (10)0.0317 (11)0.0384 (10)0.0003 (8)0.0114 (8)0.0057 (8)
N40.0311 (10)0.0338 (11)0.0404 (10)0.0069 (8)0.0144 (8)0.0071 (8)
O10.0331 (8)0.0357 (9)0.0383 (8)0.0045 (7)0.0108 (7)0.0003 (7)
O20.0554 (11)0.0363 (10)0.0725 (12)0.0003 (8)0.0392 (9)0.0108 (8)
O30.0744 (14)0.0890 (17)0.0790 (14)0.0460 (12)0.0431 (12)0.0484 (12)
O40.0537 (12)0.0519 (12)0.0996 (16)0.0137 (10)0.0199 (11)0.0376 (12)
O50.0658 (13)0.0545 (13)0.0696 (14)0.0069 (11)0.0170 (11)0.0224 (11)
O60.0737 (16)0.0703 (16)0.0713 (14)0.0191 (12)0.0182 (12)0.0106 (12)
O70.0814 (17)0.0829 (18)0.0743 (16)0.0044 (14)0.0163 (13)0.0135 (12)
N50.0463 (13)0.0429 (13)0.0512 (13)0.0096 (10)0.0083 (10)0.0070 (10)
N60.0610 (15)0.0371 (13)0.0402 (11)0.0090 (10)0.0056 (10)0.0074 (10)
C210.0440 (14)0.0328 (13)0.0357 (12)0.0041 (11)0.0018 (10)0.0019 (10)
C220.0630 (19)0.0538 (18)0.0602 (17)0.0018 (15)0.0241 (14)0.0015 (14)
C230.078 (2)0.0498 (18)0.0430 (14)0.0079 (16)0.0156 (14)0.0083 (12)
Geometric parameters (Å, º) top
Mn1—N1i2.1966 (17)C15—N11.326 (3)
Mn1—N12.1966 (17)C15—N21.341 (3)
Mn1—N32.2334 (18)C15—C181.444 (3)
Mn1—N3i2.2334 (18)C16—C171.346 (3)
Mn1—O12.2879 (15)C16—N21.363 (3)
Mn1—O1i2.2879 (15)C16—H160.9300
C1—C21.390 (3)C17—N11.373 (3)
C1—C61.404 (3)C17—H170.9300
C1—C131.511 (3)C18—N31.332 (3)
C2—C31.384 (3)C18—N41.337 (3)
C2—H20.9300C19—C201.355 (3)
C3—C41.372 (3)C19—N41.368 (3)
C3—H30.9300C19—H190.9300
C4—C51.383 (3)C20—N31.371 (3)
C4—H40.9300C20—H200.9300
C5—C61.395 (3)N2—H2A0.862 (19)
C5—H50.9300N4—H4A0.901 (19)
C6—C71.484 (3)O5—H5WA0.85 (2)
C7—C121.393 (3)O5—H5WB0.83 (2)
C7—C81.395 (3)O6—H6WA0.79 (2)
C8—C91.381 (3)O6—H6WB0.81 (2)
C8—H80.9300O7—H7WA0.79 (2)
C9—C101.384 (3)O7—H7WB0.84 (2)
C9—H90.9300N5—C211.327 (3)
C10—C111.392 (3)N5—C221.357 (3)
C10—C141.489 (3)N5—H5A0.89 (2)
C11—C121.379 (3)N6—C211.330 (3)
C11—H110.9300N6—C231.362 (3)
C12—H120.9300N6—H6A0.87 (2)
C13—O21.251 (3)C21—C21ii1.437 (5)
C13—O11.261 (3)C22—C231.338 (4)
C14—O41.246 (3)C22—H220.9300
C14—O31.272 (3)C23—H230.9300
N1i—Mn1—N1180.000 (1)O1—C13—C1118.71 (19)
N1i—Mn1—N3102.44 (6)O4—C14—O3123.1 (2)
N1—Mn1—N377.56 (6)O4—C14—C10119.3 (2)
N1i—Mn1—N3i77.56 (6)O3—C14—C10117.6 (2)
N1—Mn1—N3i102.44 (6)N1—C15—N2110.84 (19)
N3—Mn1—N3i180.0N1—C15—C18120.31 (18)
N1i—Mn1—O188.98 (6)N2—C15—C18128.84 (19)
N1—Mn1—O191.02 (6)C17—C16—N2106.68 (19)
N3—Mn1—O190.76 (6)C17—C16—H16126.7
N3i—Mn1—O189.24 (6)N2—C16—H16126.7
N1i—Mn1—O1i91.02 (6)C16—C17—N1109.5 (2)
N1—Mn1—O1i88.98 (6)C16—C17—H17125.2
N3—Mn1—O1i89.24 (6)N1—C17—H17125.2
N3i—Mn1—O1i90.76 (6)N3—C18—N4111.61 (19)
O1—Mn1—O1i180.0N3—C18—C15119.72 (19)
C2—C1—C6119.65 (18)N4—C18—C15128.65 (18)
C2—C1—C13117.41 (18)C20—C19—N4106.3 (2)
C6—C1—C13122.89 (19)C20—C19—H19126.9
C3—C2—C1121.0 (2)N4—C19—H19126.9
C3—C2—H2119.5C19—C20—N3110.0 (2)
C1—C2—H2119.5C19—C20—H20125.0
C4—C3—C2119.9 (2)N3—C20—H20125.0
C4—C3—H3120.0C15—N1—C17105.58 (17)
C2—C3—H3120.0C15—N1—Mn1111.58 (14)
C3—C4—C5119.5 (2)C17—N1—Mn1142.39 (15)
C3—C4—H4120.3C15—N2—C16107.38 (18)
C5—C4—H4120.3C15—N2—H2A123.4 (16)
C4—C5—C6122.1 (2)C16—N2—H2A128.2 (16)
C4—C5—H5119.0C18—N3—C20104.95 (18)
C6—C5—H5119.0C18—N3—Mn1110.58 (14)
C5—C6—C1117.8 (2)C20—N3—Mn1144.43 (15)
C5—C6—C7118.59 (19)C18—N4—C19107.17 (18)
C1—C6—C7123.54 (18)C18—N4—H4A126.6 (15)
C12—C7—C8118.0 (2)C19—N4—H4A126.2 (15)
C12—C7—C6120.44 (19)C13—O1—Mn1128.94 (14)
C8—C7—C6121.51 (19)H5WA—O5—H5WB107 (3)
C9—C8—C7120.9 (2)H6WA—O6—H6WB113 (3)
C9—C8—H8119.5H7WA—O7—H7WB111 (3)
C7—C8—H8119.5C21—N5—C22107.7 (2)
C8—C9—C10120.6 (2)C21—N5—H5A129.3 (18)
C8—C9—H9119.7C22—N5—H5A122.9 (18)
C10—C9—H9119.7C21—N6—C23107.0 (2)
C9—C10—C11119.0 (2)C21—N6—H6A129.5 (19)
C9—C10—C14121.4 (2)C23—N6—H6A123.0 (19)
C11—C10—C14119.6 (2)N5—C21—N6109.6 (2)
C12—C11—C10120.3 (2)N5—C21—C21ii125.3 (3)
C12—C11—H11119.8N6—C21—C21ii125.1 (3)
C10—C11—H11119.8C23—C22—N5107.5 (3)
C11—C12—C7121.1 (2)C23—C22—H22126.2
C11—C12—H12119.4N5—C22—H22126.2
C7—C12—H12119.4C22—C23—N6108.2 (2)
O2—C13—O1123.64 (19)C22—C23—H23125.9
O2—C13—C1117.65 (19)N6—C23—H23125.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y+2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1iii0.86 (2)1.92 (2)2.771 (2)172 (2)
N4—H4A···O2iii0.90 (2)1.88 (2)2.772 (2)172 (2)
O5—H5WA···O70.85 (2)1.96 (2)2.810 (3)173 (4)
O5—H5WB···O20.83 (2)1.94 (2)2.760 (3)171 (4)
O6—H6WA···O5iv0.79 (2)2.08 (3)2.851 (3)165 (4)
O6—H6WB···O50.81 (2)2.06 (2)2.861 (3)171 (4)
O7—H7WB···O6v0.84 (2)1.98 (2)2.818 (3)175 (4)
N5—H5A···O40.89 (2)1.79 (2)2.676 (3)172 (3)
N6—H6A···O3ii0.87 (2)1.82 (2)2.678 (3)169 (3)
Symmetry codes: (ii) x1, y+2, z+2; (iii) x, y+1, z+1; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula(C6H8N4)[Mn(C14H8O4)2(C6H6N4)2]·6H2O
Mr1047.90
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.278 (1), 11.977 (2), 14.268 (1)
α, β, γ (°)81.310 (2), 76.269 (1), 85.793 (1)
V3)1193.4 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.36
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.900, 0.932
No. of measured, independent and
observed [I > 2σ(I)] reflections
8661, 4629, 3821
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.117, 1.05
No. of reflections4629
No. of parameters361
No. of restraints13
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.30

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862 (19)1.92 (2)2.771 (2)172 (2)
N4—H4A···O2i0.901 (19)1.88 (2)2.772 (2)172 (2)
O5—H5WA···O70.85 (2)1.96 (2)2.810 (3)173 (4)
O5—H5WB···O20.83 (2)1.94 (2)2.760 (3)171 (4)
O6—H6WA···O5ii0.79 (2)2.08 (3)2.851 (3)165 (4)
O6—H6WB···O50.81 (2)2.06 (2)2.861 (3)171 (4)
O7—H7WB···O6iii0.84 (2)1.98 (2)2.818 (3)175 (4)
N5—H5A···O40.89 (2)1.79 (2)2.676 (3)172 (3)
N6—H6A···O3iv0.87 (2)1.82 (2)2.678 (3)169 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) x1, y+2, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds