Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the tridentate ligand 2,6-bis­(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine, C23H19N7, both sets of triazole N atoms are anti with respect to the pyridine N atom, while in the copper complex aqua­[2,6-bis­(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine](pyridine)(tetra­fluoro­borato)copper(II) tetra­fluoro­borate, [Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4, the triazole N atoms are in the synsyn conformation. The coordination of the CuII atom is distorted octa­hedral. The ligand structure is stabilized through inter­molecular C—H...N inter­actions, while the crystal structure of the Cu complex is stabilized through water- and BF4-mediated hydrogen bonds. Photoluminiscence studies of the ligand and complex show that the ligand is fluorescent due to triazole–pyridine conjugation, but that the fluorescence is quenched on complexation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011004223X/fg3196sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011004223X/fg3196Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011004223X/fg3196IIsup3.hkl
Contains datablock II

CCDC references: 758588; 758822

Comment top

Huisgen's dipolar cycloaddition of organic azides with alkynes is the most direct route for the synthesis of 1,2,3-triazoles (Huisgen et al., 1967). These are nitrogen heteroarenes which have found numerous applications in organic (Karthikeyan & Sankararaman, 2008), organometallic (Karthikeyan & Sankararaman, 2009) and medicinal chemistry (Shia et al., 2002), as well as in materials chemistry (Crowley & Bandeen, 2010). 1,2,3-Triazole-based materials have advantageous properties for high-performance metal coatings and adhesives (Zhu et al., 2006). However, there are major problems commonly associated with Huisgen's dipolar cycloaddition methodology, including the need for long reaction times and high temperatures, as well as the formation of regioisomeric mixtures of products when using unsymmetrical alkynes. It was found that cycloadditions of terminal alkynes with alkyl azides catalysed by CuI can be conducted at room temperature and are highly regioselective (Rostovtsev et al., 2002). The cycloaddition of alkynes with azides under CuI-catalysed conditions leads exclusively to 1,4-substituted-1,2,3-triazoles in high yields. This type of copper catalysis, however, does not promote the cycloaddition of internal alkynes. Mechanistic studies have demonstrated that these reactions involve terminal copper acetylides and proceed via a stepwise non-concerted process (Tornoe et al., 2002). We made benzyl triazole from benzyl azide and alkynes using a `click reaction' (Horne et al., 2004), which gave 1,4-disubstituted 1,2,3 triazoles. 1,2,3-Triazoles can be used for the preparation of bi- and tridentate ligands by suitably choosing the alkynes that are used for the cycloaddition reaction. The title tridentate triazole ligand, (I), was prepared from 1,5-diethynylpyridine. The first published work on 2,6-bis(1,2,3-triazol-4-yl)pyridine (BTP) was by Meudtner et al. (2007). The tridentate triazole coordination to a metal ion leads to conformational changes in the ligand. The conformational sensitivity of BTP can be suitably modulated to design nanoswitches (Piot et al., 2009) sensitive to metal ions or pH changes.

A view of the title BTP ligand, (I), with its `horse-shoe' conformation and the atom-numbering scheme, is shown in Fig. 1. The torsion angles N7—C14—C15—N4 [156.1 (3)°, anti-periplanar] and N7—C10—C9—N3 [171.8 (3)°, anti-periplanar] show that the triazole moieties are positioned antianti wth respect to the N atom of the pyridine ring. The antianti conformation is preferred by BTP, due to electrostatic repulsion between the lone pairs of atoms N5 and N2 and N7. Protonation of these N atoms or coordination with metals can remove this electrostatic interaction and make the conformation between triazole and pyridine synsyn. Density functional theory calculations (Meudtner et al., 2007) on a model system predict the stabilization energy for the synsyn phase to be 6.4 kcal mol-1 (1 kcal mol-1 = 4.184 kJ mol-1) more than that for the antianti phase. The dihedral angles of the triazole rings N1–N3/C9/C8 and N4–N6/C16/C15 with the pyridine ring are 7.5 (3) and 22.5 (2)°, respectively. The benzyl rings C1–C6 and C18–C23 are inclined to each other at an angle of 14.3 (2)°. Analysis of the shortest intermolecular contacts shows that chains of molecules are developed along the a direction by C—H···N interactions (Table 1, Fig. 2). The inversion-related five-membered rings N1–N3/C8/C9 at (x, y, z) and (1 - x, 1 - y, 1 - z) overlap significantly, with a centroid-to-centroid separation of 3.537 (2) Å, leading to an N2···N3ii separation of 3.576 (5) Å [symmetry code: (ii) 1 - x, 1 - y, 1 - z].

A view of the copper complex with BTP, aqua[2,6-bis(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate (CUBTP), (II), is shown in Fig. 3. The coordination geometry around the CuII ion is distorted octahedral. The two bite angles of the ligand with the metal atom are N4—Cu—N7 = 78.94 (11)° and N7—Cu—N3 = 78.54 (11)°. Atoms N3, N4, N7 and N8 form a near-regular plane, with the metal atom deviating slightly out of the mean plane in the direction of the water molecule [0.0755 (2) Å]. The water molecule is almost normal to the equatorial plane. The axial bond lengths [Cu1—O1 2.271 (3) Å and Cu1—F7 2.464 (4) Å] are considerably elongated compared with the four Cu—N coordination distances [Cu—N 1.948 (3)–2.067 (3)Å]. This is common among octahedrally coordinated copper compounds (Silverside et al., 2007).

As would be expected, there is considerable conformational change between the free BTP ligand, (I), and the coordinated ligand in the CUBTP complex, (II). The pyridine and triazole moieties are nearly in the same plane, the dihedral angle between the two triazole moieties being 7.5 (2)° [the corresponding value in the ligand is 24.7 (2)°]. The triazole rings have almost rotated through 180° about the respective pyridine–triazole bonds, making both triazole N atoms in a synsyn conformation with respect to the pyridine N atoms. The relevant torsion angles in the complex (with corresponding values in the ligand in parentheses) are N7—C10—C9—N3 = 0.1 (5)° [-171.8 (3)°] and N7—C14—C15—N4 = 2.3 (5) [156.1 (3)°]. Similar conformational changes during complexation were noticed in 4-(2-pyridyl)-1,2,3-triazole (Meudtner et al., 2007).

In the CUBTP crystal structure, the cations and anions are linked by O—H···F hydrogen bonds to generate chains which extend in the a direction; details are in Table 2 and Fig. 4. In addition to the O—H···F hydrogen bonds, geometry calculations show other significant interactions, including C—H···F and C—H···O contacts and a C13—H13···π interaction with the centroid of the C1–C6 phenyl ring at (1 - x, -y, 2 - z); details are in Table 2. There are also ππ interactions, with an almost complete overlap of the coordinated pyridine rings at (x, y, z) and (1 - x, -y, 2 - z), and a centroid-to-centroid separation of 3.815 (2) Å and a slippage of only 0.60 Å (slippage is the distance between the centroid of one ring and the perpendicular projection of the centroid of the second ring on the first ring). The phenyl ring C1–C6 and its equivalent at (-x, -1 - y, 2 - z) have a centroid-to-centroid separation of 3.837 (2) Å but with a slippage of 1.95 Å; the distance between the centroid of one ring and the plane of the inversion-related ring is 3.302 (2) Å.

The BTP ligand is photoluminiscent. Fig. 5 shows the excitation and emission spectra of BTP. There are two excitation bands centred at 237 and 301 nm, and an emission band at 339 nm. The luminiscence is quenched on complexation or protonation of the ligand. Fig. 6 shows the luminiscence being quenched when copper tetrafluoroborate is added to the ligand solution. The conformational change of the pyridine–triazole moiety, from antianti in the ligand to synsyn in the complex, is the cause of the quenching (Choi et al., 2006). The ligand could thus be potentially useful as a pH or metal ion sensor.

Experimental top

Sonagashira coupling reaction (Sonogashira et al., 1975) of 2,6-dibromopyridine with 2-methylbut-3-yn-2-ol gave 4,4'-(pyridine-2,6-diyl)bis(2-methylbut-3-yn-2-ol) in good yield. 2,6-Diethynylpyridine was prepared from 4,4'-(pyridine-2,6-diyl)bis(2-methylbut-3-yn-2-ol) by treating it with KOH in toluene at 353 K in 70% yield (Shinohara et al., 2001). 2,6-Diethynylpyridine (0.25g, 2 mmol) was dissolved in tBuOH–H2O (1:1 v/v, 4.0 ml), and benzyl azide (0.53g, 4 mmol), CuSO4 (20 mg) and sodium ascorbate (40 mg) were added. The resulting mixture was stirred at room temperature overnight, diluted with NaCl and extracted with dichloromethane. The organic layer was dried over Na2SO4 and the solvent evaporated under reduced pressure. The crude products were purified by flash chromatography on silica gel eluting with CH2Cl2–EtOAc, to yield the corresponding ligand, BTP, (I). The compound was crystallized from chloroform.

Complex (II) was prepared from copper(II) tetrafluoroborate and the BTP ligand. BTP (0.1 g, 0.03 mmol) and copper(II) tetrafluoroborate (0.08 g, 0.03mmol) were dissolved in acetonitrile. A drop of pyridine was added and the mixture warmed to give a clear solution. The clear solution was allowed to stand for crystallization of (II).

Refinement top

One of the benzyl moieties (C18–C23) in CUBTP is disordered. The occupancies assigned to the disordered components were refined as least-squares variables with their sum kept as 1. When the refinement converged, the occupancies were almost 0.5 each. In the final refinement the occupancies of the components were set at 0.5. The disordered rings were constrained as idealized hexagons, with C—C = 1.39 Å. The methylene H atoms associated with atom C17 were geometrically fixed with respect to both disordered components of the benzyl moiety. Each of these four H atoms was given 50% occupancy. Their positions were fixed only after the refinement convergence and hence not refined in the last set of cycles. The Uiso(H) values of these H atoms were fixed at 1.2Ueq(C17). Water H atoms were located in a difference map and refined isotropically without restraints. In both compounds, the remaining H atoms bound to C atoms were constrained as riding, with C—H = 0.95 Å for aromatic CH and 0.97 Å for secondary CH2 groups, with Uiso(H) = 1.2Ueq(C).

Thermal motion analysis of BTP (refined without restraints) showed the difference between the mean square displacements of N7 and C10 in the direction of the N7—C10 bond as 0.0205 Å2 and the standard deviation of MSDA as 0.0027 Å2. To avoid this apparent inconsistency, a rigid-bond restraint was set between N7 and C10. In CUBTP, pseudo-isotropic restraints were applied to the C atoms of the disordered phenyl ring to remove minor inconsistencies among displacement parameters caused by disorder.

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004) and SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004) and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The BTP ligand, (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.
[Figure 2] Fig. 2. The packing of BTP in the unit cell. Intermolecular interactions are shown as dashed lines. [Symmetry codes: (i) x - 1, y, z; (ii) 1 - x, 1 - y, 1 - z.]
[Figure 3] Fig. 3. The molecular structure of CUBTP, (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Only one of the two disordered orientations for the C18–C23 ring is shown.
[Figure 4] Fig. 4. A view of the hydrogen-bonded chain extending along the a direction in CUBTP. For symmetry codes, see Table 2.
[Figure 5] Fig. 5. The fluorescence spectra of BTP in acetonitrile (5 × 10-5 M). (A) Excitation spectrum of BTP (λemission = 339 nm), (B) emission spectrum of BTP (λexcitation = 237 nm), (C) emission spectrum of BTP (λexcitation = 301 nm).
[Figure 6] Fig. 6. The fluorescence emission spectra of BTP in acetonitrile (5 × 10-5 M) with (A) 1 × 10-5 M copper tetrafluoroborate, (B) 2 × 10-5 M copper tetrafluoroborate and (C) 3 × 10-5 M copper tetrafluoroborate.
(I) 2,6-bis(1-benzyl-1H-1,2,3-triazol-4-yl)pyridine top
Crystal data top
C23H19N7Z = 2
Mr = 393.45F(000) = 412
Triclinic, P1Dx = 1.314 Mg m3
a = 5.8800 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.460 (2) ÅCell parameters from 7794 reflections
c = 16.140 (3) Åθ = 2.8–25.9°
α = 103.53 (3)°µ = 0.08 mm1
β = 99.31 (3)°T = 298 K
γ = 104.61 (3)°Needle, colourless
V = 994.6 (3) Å30.25 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEX2 CCD area-detector
diffractometer
3417 independent reflections
Radiation source: fine-focus sealed tube1811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and ϕ scansθmax = 25.0°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 56
Tmin = 0.934, Tmax = 0.973k = 1313
10767 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0791P)2 + 0.3737P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
3417 reflectionsΔρmax = 0.33 e Å3
272 parametersΔρmin = 0.25 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.007 (2)
Crystal data top
C23H19N7γ = 104.61 (3)°
Mr = 393.45V = 994.6 (3) Å3
Triclinic, P1Z = 2
a = 5.8800 (12) ÅMo Kα radiation
b = 11.460 (2) ŵ = 0.08 mm1
c = 16.140 (3) ÅT = 298 K
α = 103.53 (3)°0.25 × 0.22 × 0.20 mm
β = 99.31 (3)°
Data collection top
Bruker Kappa APEX2 CCD area-detector
diffractometer
3417 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
1811 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.973Rint = 0.059
10767 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.185H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
3417 reflectionsΔρmin = 0.25 e Å3
272 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3432 (7)1.0200 (3)0.3308 (2)0.0693 (10)
H10.35051.08470.30470.083*
C20.1824 (8)0.9972 (4)0.3818 (3)0.0791 (11)
H20.07771.04550.38950.095*
C30.1752 (6)0.9035 (3)0.4215 (2)0.0681 (10)
H30.06500.88890.45600.082*
C40.3277 (5)0.8307 (3)0.41135 (18)0.0497 (8)
C50.4858 (6)0.8533 (3)0.3587 (2)0.0627 (9)
H50.58950.80460.35010.075*
C60.4924 (7)0.9473 (3)0.3184 (2)0.0701 (10)
H60.59950.96120.28270.084*
C70.3192 (6)0.7354 (3)0.4612 (2)0.0632 (9)
H7A0.38000.77960.52310.076*
H7B0.15170.68700.45250.076*
C90.5882 (5)0.5004 (3)0.37662 (19)0.0505 (8)
C80.4044 (6)0.5510 (3)0.3657 (2)0.0558 (9)
H80.27070.52340.31860.067*
C100.6303 (5)0.3921 (3)0.3188 (2)0.0507 (8)
C110.8216 (6)0.3492 (3)0.3448 (2)0.0607 (9)
H110.92410.38700.40030.073*
C120.8590 (6)0.2495 (3)0.2875 (2)0.0655 (10)
H120.98550.21870.30460.079*
C130.7100 (6)0.1964 (3)0.2057 (2)0.0610 (9)
H130.73500.12930.16690.073*
C140.5212 (6)0.2423 (3)0.1804 (2)0.0511 (8)
C150.3671 (6)0.1939 (3)0.0921 (2)0.0493 (8)
C160.1439 (6)0.1987 (3)0.0590 (2)0.0565 (9)
H160.04620.23470.08990.068*
C170.1106 (6)0.1312 (3)0.0951 (2)0.0630 (9)
H17A0.25840.11320.07460.076*
H17B0.12670.06230.14600.076*
C180.0732 (6)0.2524 (3)0.1202 (2)0.0573 (9)
C190.0978 (7)0.2868 (4)0.1645 (2)0.0797 (11)
H190.18740.23310.18170.096*
C200.1412 (8)0.3988 (4)0.1843 (3)0.0938 (13)
H200.25880.42030.21490.113*
C210.0135 (8)0.4784 (4)0.1596 (3)0.0831 (12)
H210.04640.55550.17190.100*
C220.1617 (8)0.4461 (4)0.1171 (3)0.0892 (13)
H220.25340.49950.10170.107*
C230.2041 (7)0.3319 (3)0.0963 (2)0.0778 (11)
H230.32240.31010.06600.093*
N10.4558 (5)0.6490 (2)0.43693 (17)0.0546 (7)
N20.6644 (5)0.6605 (3)0.49136 (18)0.0652 (8)
N30.7433 (5)0.5690 (3)0.45419 (18)0.0640 (8)
N40.4445 (6)0.1332 (3)0.0247 (2)0.0686 (8)
N50.2767 (6)0.1020 (3)0.04726 (19)0.0706 (9)
N60.0928 (5)0.1417 (2)0.02644 (17)0.0555 (7)
N70.4806 (5)0.3394 (2)0.23758 (17)0.0573 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.085 (3)0.051 (2)0.071 (2)0.018 (2)0.016 (2)0.0199 (18)
C20.090 (3)0.068 (3)0.092 (3)0.040 (2)0.027 (2)0.025 (2)
C30.063 (2)0.070 (2)0.071 (2)0.020 (2)0.0247 (18)0.0140 (19)
C40.0437 (19)0.0471 (19)0.0504 (18)0.0079 (16)0.0078 (14)0.0078 (15)
C50.059 (2)0.063 (2)0.074 (2)0.0228 (18)0.0222 (18)0.0256 (19)
C60.078 (3)0.064 (2)0.075 (2)0.018 (2)0.0305 (19)0.028 (2)
C70.058 (2)0.066 (2)0.066 (2)0.0128 (19)0.0203 (17)0.0223 (18)
C90.0440 (19)0.0518 (19)0.0538 (19)0.0038 (16)0.0057 (16)0.0269 (16)
C80.053 (2)0.052 (2)0.055 (2)0.0072 (17)0.0036 (16)0.0177 (17)
C100.0481 (19)0.0492 (19)0.0578 (16)0.0073 (15)0.0116 (13)0.0299 (15)
C110.052 (2)0.061 (2)0.070 (2)0.0090 (18)0.0074 (17)0.0351 (19)
C120.066 (2)0.062 (2)0.086 (3)0.0273 (19)0.023 (2)0.042 (2)
C130.070 (2)0.053 (2)0.078 (2)0.0257 (19)0.0297 (19)0.0355 (18)
C140.061 (2)0.0408 (18)0.063 (2)0.0160 (16)0.0259 (17)0.0265 (16)
C150.063 (2)0.0383 (17)0.0591 (19)0.0213 (16)0.0262 (17)0.0230 (15)
C160.072 (2)0.051 (2)0.056 (2)0.0246 (18)0.0270 (17)0.0206 (16)
C170.070 (2)0.049 (2)0.065 (2)0.0114 (17)0.0129 (18)0.0169 (17)
C180.064 (2)0.0453 (19)0.059 (2)0.0106 (17)0.0082 (17)0.0192 (16)
C190.088 (3)0.075 (3)0.096 (3)0.029 (2)0.038 (2)0.046 (2)
C200.095 (3)0.095 (3)0.112 (3)0.020 (3)0.038 (3)0.067 (3)
C210.088 (3)0.061 (3)0.097 (3)0.009 (2)0.005 (2)0.044 (2)
C220.095 (3)0.061 (3)0.117 (3)0.028 (2)0.017 (3)0.036 (2)
C230.087 (3)0.061 (2)0.088 (3)0.018 (2)0.026 (2)0.027 (2)
N10.0514 (18)0.0525 (17)0.0568 (16)0.0074 (14)0.0091 (14)0.0210 (14)
N20.0566 (19)0.064 (2)0.0612 (18)0.0086 (16)0.0005 (15)0.0126 (15)
N30.0566 (19)0.0630 (19)0.0639 (18)0.0130 (16)0.0001 (15)0.0175 (15)
N40.087 (2)0.0635 (19)0.0694 (19)0.0437 (17)0.0256 (18)0.0184 (15)
N50.096 (2)0.0590 (19)0.0694 (19)0.0404 (18)0.0282 (19)0.0176 (15)
N60.0693 (19)0.0418 (15)0.0618 (18)0.0177 (14)0.0223 (15)0.0210 (13)
N70.0617 (18)0.0505 (16)0.0615 (15)0.0110 (13)0.0154 (12)0.0254 (13)
Geometric parameters (Å, º) top
C1—C61.361 (5)C13—H130.9300
C1—C21.366 (5)C14—N71.369 (4)
C1—H10.9300C14—C151.455 (4)
C2—C31.369 (5)C15—C161.354 (4)
C2—H20.9300C15—N41.356 (4)
C3—C41.375 (4)C16—N61.329 (4)
C3—H30.9300C16—H160.9300
C4—C51.376 (4)C17—N61.452 (4)
C4—C71.495 (4)C17—C181.510 (4)
C5—C61.377 (4)C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C6—H60.9300C18—C191.358 (5)
C7—N11.450 (4)C18—C231.363 (5)
C7—H7A0.9700C19—C201.367 (5)
C7—H7B0.9700C19—H190.9300
C9—N31.351 (4)C20—C211.352 (6)
C9—C81.356 (4)C20—H200.9300
C9—C101.470 (4)C21—C221.351 (6)
C8—N11.336 (4)C21—H210.9300
C8—H80.9300C22—C231.399 (5)
C10—N71.359 (4)C22—H220.9300
C10—C111.380 (4)C23—H230.9300
C11—C121.381 (5)N1—N21.345 (3)
C11—H110.9300N2—N31.310 (4)
C12—C131.364 (5)N4—N51.307 (4)
C12—H120.9300N5—N61.335 (4)
C13—C141.388 (4)
C6—C1—C2119.5 (3)N7—C14—C15117.6 (3)
C6—C1—H1120.2C13—C14—C15121.9 (3)
C2—C1—H1120.2C16—C15—N4107.6 (3)
C1—C2—C3120.1 (4)C16—C15—C14132.0 (3)
C1—C2—H2119.9N4—C15—C14120.4 (3)
C3—C2—H2119.9N6—C16—C15106.2 (3)
C2—C3—C4121.3 (3)N6—C16—H16126.9
C2—C3—H3119.4C15—C16—H16126.9
C4—C3—H3119.4N6—C17—C18110.1 (3)
C3—C4—C5117.9 (3)N6—C17—H17A109.6
C3—C4—C7118.1 (3)C18—C17—H17A109.6
C5—C4—C7124.0 (3)N6—C17—H17B109.6
C4—C5—C6120.8 (3)C18—C17—H17B109.6
C4—C5—H5119.6H17A—C17—H17B108.2
C6—C5—H5119.6C19—C18—C23118.4 (3)
C1—C6—C5120.3 (3)C19—C18—C17120.7 (3)
C1—C6—H6119.8C23—C18—C17120.9 (3)
C5—C6—H6119.8C18—C19—C20121.4 (4)
N1—C7—C4114.9 (3)C18—C19—H19119.3
N1—C7—H7A108.5C20—C19—H19119.3
C4—C7—H7A108.5C21—C20—C19120.2 (4)
N1—C7—H7B108.5C21—C20—H20119.9
C4—C7—H7B108.5C19—C20—H20119.9
H7A—C7—H7B107.5C22—C21—C20120.1 (4)
N3—C9—C8107.8 (3)C22—C21—H21120.0
N3—C9—C10122.2 (3)C20—C21—H21120.0
C8—C9—C10129.9 (3)C21—C22—C23119.5 (4)
N1—C8—C9105.5 (3)C21—C22—H22120.2
N1—C8—H8127.3C23—C22—H22120.2
C9—C8—H8127.3C18—C23—C22120.4 (4)
N7—C10—C11121.3 (3)C18—C23—H23119.8
N7—C10—C9117.5 (3)C22—C23—H23119.8
C11—C10—C9121.1 (3)C8—N1—N2110.7 (3)
C10—C11—C12119.3 (3)C8—N1—C7129.5 (3)
C10—C11—H11120.4N2—N1—C7119.8 (3)
C12—C11—H11120.4N3—N2—N1106.5 (2)
C13—C12—C11119.8 (3)N2—N3—C9109.5 (3)
C13—C12—H12120.1N5—N4—C15108.5 (3)
C11—C12—H12120.1N4—N5—N6107.7 (3)
C12—C13—C14120.0 (3)C16—N6—N5110.0 (3)
C12—C13—H13120.0C16—N6—C17129.6 (3)
C14—C13—H13120.0N5—N6—C17120.0 (3)
N7—C14—C13120.4 (3)C10—N7—C14119.2 (3)
C6—C1—C2—C31.3 (6)C23—C18—C19—C200.6 (6)
C1—C2—C3—C40.0 (6)C17—C18—C19—C20177.1 (3)
C2—C3—C4—C51.1 (5)C18—C19—C20—C210.2 (6)
C2—C3—C4—C7176.4 (3)C19—C20—C21—C221.7 (7)
C3—C4—C5—C60.8 (5)C20—C21—C22—C232.2 (6)
C7—C4—C5—C6176.5 (3)C19—C18—C23—C220.1 (5)
C2—C1—C6—C51.5 (6)C17—C18—C23—C22177.6 (3)
C4—C5—C6—C10.4 (5)C21—C22—C23—C181.3 (6)
C3—C4—C7—N1170.7 (3)C9—C8—N1—N20.1 (3)
C5—C4—C7—N112.0 (5)C9—C8—N1—C7178.4 (3)
N3—C9—C8—N10.3 (3)C4—C7—N1—C874.7 (4)
C10—C9—C8—N1179.1 (3)C4—C7—N1—N2107.1 (3)
N3—C9—C10—N7171.8 (3)C8—N1—N2—N30.3 (3)
C8—C9—C10—N77.6 (5)C7—N1—N2—N3178.3 (3)
N3—C9—C10—C115.4 (4)N1—N2—N3—C90.5 (3)
C8—C9—C10—C11175.2 (3)C8—C9—N3—N20.5 (4)
N7—C10—C11—C121.0 (4)C10—C9—N3—N2179.0 (3)
C9—C10—C11—C12178.1 (3)C16—C15—N4—N50.2 (4)
C10—C11—C12—C131.2 (5)C14—C15—N4—N5178.5 (3)
C11—C12—C13—C140.1 (5)C15—N4—N5—N60.2 (3)
C12—C13—C14—N71.1 (4)C15—C16—N6—N50.1 (3)
C12—C13—C14—C15176.1 (3)C15—C16—N6—C17172.9 (3)
N7—C14—C15—C1622.2 (5)N4—N5—N6—C160.2 (3)
C13—C14—C15—C16160.5 (3)N4—N5—N6—C17173.8 (3)
N7—C14—C15—N4156.2 (3)C18—C17—N6—C1678.2 (4)
C13—C14—C15—N421.1 (4)C18—C17—N6—N594.0 (3)
N4—C15—C16—N60.1 (3)C11—C10—N7—C140.2 (4)
C14—C15—C16—N6178.5 (3)C9—C10—N7—C14176.9 (2)
N6—C17—C18—C1970.5 (4)C13—C14—N7—C101.3 (4)
N6—C17—C18—C23107.2 (4)C15—C14—N7—C10176.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N3i0.972.453.411 (5)171
Symmetry code: (i) x1, y, z.
(II) aqua[2,6-bis(1-benzyl-1H-1,2,3-triazol-4- yl)pyridine](pyridine)(tetrafluoroborato)copper(II) tetrafluoroborate top
Crystal data top
[Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4Z = 2
Mr = 727.73F(000) = 738
Triclinic, P1Dx = 1.557 Mg m3
a = 8.2990 (17) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.956 (3) ÅCell parameters from 5323 reflections
c = 14.520 (3) Åθ = 2.8–28.1°
α = 88.56 (3)°µ = 0.79 mm1
β = 84.76 (3)°T = 173 K
γ = 87.36 (3)°Rectangle, blue
V = 1552.7 (5) Å30.41 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEX2 CCD area-detector
diffractometer
7222 independent reflections
Radiation source: fine-focus sealed tube4381 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω and ϕ scansθmax = 28.5°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 1010
Tmin = 0.761, Tmax = 0.903k = 1617
20211 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0585P)2 + 1.7736P]
where P = (Fo2 + 2Fc2)/3
7222 reflections(Δ/σ)max = 0.001
459 parametersΔρmax = 0.58 e Å3
72 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4γ = 87.36 (3)°
Mr = 727.73V = 1552.7 (5) Å3
Triclinic, P1Z = 2
a = 8.2990 (17) ÅMo Kα radiation
b = 12.956 (3) ŵ = 0.79 mm1
c = 14.520 (3) ÅT = 173 K
α = 88.56 (3)°0.41 × 0.22 × 0.20 mm
β = 84.76 (3)°
Data collection top
Bruker Kappa APEX2 CCD area-detector
diffractometer
7222 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
4381 reflections with I > 2σ(I)
Tmin = 0.761, Tmax = 0.903Rint = 0.047
20211 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05672 restraints
wR(F2) = 0.149H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.58 e Å3
7222 reflectionsΔρmin = 0.61 e Å3
459 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2125 (6)0.4025 (3)1.0440 (3)0.0451 (11)
H10.28960.42451.08570.054*
C20.0462 (6)0.3990 (3)1.0728 (3)0.0496 (13)
H20.00940.42021.13390.060*
C30.0622 (6)0.3650 (3)1.0125 (4)0.0545 (13)
H30.17470.36251.03210.065*
C40.0113 (6)0.3346 (3)0.9246 (4)0.0538 (13)
H40.08770.30930.88360.065*
C50.1493 (6)0.3406 (3)0.8956 (3)0.0456 (11)
H50.18390.32170.83360.055*
C60.2623 (5)0.3736 (3)0.9547 (3)0.0370 (10)
C70.4385 (5)0.3826 (3)0.9208 (3)0.0486 (12)
H7A0.49820.42180.96730.058*
H7B0.45150.42180.86280.058*
C80.5606 (5)0.2193 (3)0.9661 (3)0.0348 (9)
H80.55670.23001.03120.042*
C90.6202 (5)0.1377 (3)0.9154 (2)0.0287 (8)
C100.7024 (5)0.0454 (3)0.9351 (2)0.0274 (8)
C110.7415 (5)0.0146 (3)1.0194 (2)0.0347 (9)
H110.71130.05371.07400.042*
C120.8254 (5)0.0740 (3)1.0233 (3)0.0390 (10)
H120.85230.09721.08130.047*
C130.8707 (5)0.1295 (3)0.9436 (2)0.0325 (9)
H130.92980.19040.94560.039*
C140.8279 (4)0.0942 (2)0.8607 (2)0.0265 (8)
C150.8597 (5)0.1407 (3)0.7699 (2)0.0281 (8)
C160.9374 (5)0.2249 (3)0.7344 (3)0.0339 (9)
H160.99510.27220.76650.041*
C170.9679 (4)0.30328 (16)0.57307 (14)0.0449 (11)
C180.9318 (4)0.40708 (16)0.60536 (14)0.045 (4)0.50
C190.7710 (4)0.44294 (16)0.61746 (14)0.056 (3)0.50
H190.68700.39880.60600.068*0.50
C200.7330 (4)0.54333 (16)0.64632 (14)0.081 (4)0.50
H200.62310.56780.65460.097*0.50
C210.8559 (4)0.60786 (16)0.66308 (14)0.057 (3)0.50
H210.82990.67650.68280.069*0.50
C221.0167 (4)0.57201 (16)0.65098 (14)0.066 (3)0.50
H221.10070.61610.66240.079*0.50
C231.0547 (4)0.47162 (16)0.62212 (14)0.058 (3)0.50
H231.16460.44710.61390.070*0.50
C18'0.9013 (4)0.40917 (16)0.59899 (14)0.026 (3)0.50
C19'0.7372 (4)0.43403 (16)0.59558 (14)0.073 (4)0.50
H19'0.66780.38430.57590.088*0.50
C20'0.6747 (4)0.53162 (16)0.62105 (14)0.095 (5)0.50
H20'0.56260.54860.61870.114*0.50
C21'0.7763 (4)0.60434 (16)0.64991 (14)0.067 (4)0.50
H21'0.73360.67100.66730.081*0.50
C22'0.9404 (4)0.57948 (16)0.65331 (14)0.040 (2)0.50
H22'1.00990.62920.67300.048*0.50
C23'1.0029 (4)0.48190 (16)0.62785 (14)0.033 (2)0.50
H23'1.11510.46490.63020.040*0.50
C240.5110 (5)0.1468 (3)0.6131 (3)0.0365 (9)
H240.44430.16110.66830.044*
C250.4712 (6)0.1857 (3)0.5320 (3)0.0473 (11)
H250.37850.22590.53100.057*
C260.5659 (6)0.1660 (3)0.4530 (3)0.0462 (11)
H260.54070.19230.39580.055*
C270.6988 (5)0.1074 (3)0.4570 (3)0.0407 (10)
H270.76730.09300.40260.049*
C280.7314 (5)0.0702 (3)0.5404 (2)0.0334 (9)
H280.82280.02910.54270.040*
B10.3973 (7)0.3176 (4)0.7870 (3)0.0420 (12)
B21.0833 (6)0.1243 (3)0.6993 (3)0.0386 (11)
N10.5089 (4)0.2807 (2)0.9039 (2)0.0357 (8)
N20.5307 (4)0.2428 (2)0.8176 (2)0.0359 (8)
N30.5984 (4)0.1545 (2)0.8252 (2)0.0284 (7)
N40.7967 (4)0.0952 (2)0.69900 (19)0.0287 (7)
N50.8299 (4)0.1473 (2)0.6220 (2)0.0320 (7)
N60.9146 (4)0.2263 (2)0.6443 (2)0.0343 (8)
N70.7433 (4)0.0090 (2)0.85778 (19)0.0255 (7)
N80.6393 (4)0.0895 (2)0.6183 (2)0.0295 (7)
O10.4330 (4)0.0437 (3)0.7635 (2)0.0408 (7)
F10.2933 (5)0.2436 (3)0.8215 (3)0.1203 (16)
F20.3308 (9)0.3650 (4)0.7207 (4)0.199 (3)
F30.4230 (4)0.38174 (19)0.85615 (18)0.0657 (8)
F40.5311 (4)0.2672 (3)0.7544 (3)0.1206 (16)
F51.1758 (4)0.2133 (2)0.6892 (3)0.0993 (13)
F61.0747 (4)0.0803 (3)0.6143 (2)0.0928 (11)
F70.9336 (3)0.14432 (19)0.74031 (19)0.0552 (7)
F81.1567 (4)0.0579 (3)0.7512 (2)0.0932 (12)
Cu10.68168 (6)0.03638 (3)0.73765 (3)0.02770 (15)
H17A1.08490.29320.55600.054*0.50
H17B0.91050.29380.51680.054*0.50
H17C0.92840.28540.51310.054*0.50
H17D1.08680.30290.56520.054*0.50
H1A0.346 (6)0.024 (3)0.753 (3)0.042 (14)*
H2A0.420 (5)0.104 (4)0.765 (3)0.043 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (3)0.0231 (19)0.051 (3)0.012 (2)0.002 (2)0.0006 (17)
C20.065 (3)0.0242 (19)0.056 (3)0.018 (2)0.022 (3)0.0136 (19)
C30.038 (3)0.040 (2)0.084 (4)0.014 (2)0.012 (3)0.024 (2)
C40.044 (3)0.048 (3)0.072 (4)0.006 (2)0.008 (3)0.020 (2)
C50.049 (3)0.036 (2)0.051 (3)0.006 (2)0.001 (2)0.0086 (19)
C60.038 (3)0.0210 (17)0.050 (2)0.0068 (17)0.007 (2)0.0028 (16)
C70.049 (3)0.0179 (18)0.077 (3)0.0043 (19)0.009 (2)0.0090 (19)
C80.038 (3)0.0266 (18)0.036 (2)0.0025 (17)0.0073 (18)0.0088 (16)
C90.029 (2)0.0277 (18)0.0277 (19)0.0007 (16)0.0036 (16)0.0055 (14)
C100.030 (2)0.0255 (17)0.0249 (18)0.0031 (16)0.0028 (16)0.0014 (14)
C110.042 (3)0.037 (2)0.0235 (19)0.0019 (18)0.0002 (17)0.0078 (16)
C120.058 (3)0.035 (2)0.0244 (19)0.000 (2)0.0081 (19)0.0048 (16)
C130.043 (3)0.0245 (18)0.031 (2)0.0008 (17)0.0097 (18)0.0035 (15)
C140.030 (2)0.0223 (17)0.0273 (18)0.0002 (15)0.0020 (16)0.0017 (14)
C150.033 (2)0.0254 (17)0.0269 (18)0.0049 (16)0.0046 (16)0.0005 (14)
C160.041 (3)0.0289 (19)0.032 (2)0.0090 (18)0.0023 (18)0.0008 (15)
C170.061 (3)0.032 (2)0.038 (2)0.006 (2)0.013 (2)0.0098 (17)
C180.053 (6)0.044 (7)0.038 (6)0.008 (5)0.005 (5)0.010 (5)
C190.056 (6)0.051 (6)0.063 (6)0.011 (5)0.009 (5)0.004 (5)
C200.075 (8)0.078 (7)0.085 (7)0.018 (6)0.002 (6)0.005 (6)
C210.069 (8)0.044 (6)0.056 (6)0.013 (5)0.005 (6)0.001 (5)
C220.077 (8)0.057 (6)0.066 (6)0.027 (5)0.009 (5)0.004 (5)
C230.064 (6)0.058 (6)0.055 (6)0.012 (5)0.017 (5)0.006 (5)
C18'0.024 (4)0.024 (5)0.029 (5)0.000 (4)0.002 (4)0.009 (4)
C19'0.062 (7)0.071 (7)0.087 (7)0.002 (6)0.015 (6)0.009 (6)
C20'0.075 (8)0.094 (8)0.114 (8)0.030 (6)0.010 (7)0.003 (7)
C21'0.076 (8)0.051 (6)0.072 (7)0.000 (5)0.006 (6)0.006 (5)
C22'0.048 (6)0.028 (4)0.042 (5)0.003 (4)0.007 (4)0.003 (4)
C23'0.036 (5)0.031 (4)0.032 (5)0.003 (4)0.002 (3)0.009 (4)
C240.040 (3)0.038 (2)0.030 (2)0.0071 (19)0.0019 (18)0.0065 (16)
C250.052 (3)0.055 (3)0.038 (2)0.021 (2)0.009 (2)0.008 (2)
C260.060 (3)0.046 (2)0.034 (2)0.003 (2)0.012 (2)0.0085 (19)
C270.053 (3)0.044 (2)0.024 (2)0.003 (2)0.0008 (19)0.0008 (17)
C280.036 (2)0.037 (2)0.0264 (19)0.0043 (18)0.0002 (17)0.0010 (16)
B10.051 (3)0.042 (3)0.035 (3)0.001 (3)0.008 (2)0.009 (2)
B20.032 (3)0.034 (2)0.049 (3)0.003 (2)0.005 (2)0.002 (2)
N10.030 (2)0.0236 (15)0.051 (2)0.0036 (14)0.0058 (16)0.0076 (14)
N20.033 (2)0.0278 (16)0.046 (2)0.0088 (14)0.0043 (16)0.0021 (14)
N30.0257 (18)0.0242 (14)0.0348 (17)0.0054 (13)0.0021 (14)0.0006 (12)
N40.040 (2)0.0233 (14)0.0230 (15)0.0066 (14)0.0001 (14)0.0019 (12)
N50.043 (2)0.0266 (15)0.0254 (16)0.0076 (14)0.0012 (14)0.0040 (12)
N60.045 (2)0.0244 (15)0.0325 (17)0.0092 (15)0.0034 (15)0.0014 (13)
N70.0299 (18)0.0228 (14)0.0232 (15)0.0042 (13)0.0009 (13)0.0028 (11)
N80.0339 (19)0.0262 (15)0.0286 (16)0.0047 (14)0.0014 (14)0.0025 (12)
O10.042 (2)0.0348 (18)0.0448 (18)0.0023 (16)0.0012 (15)0.0022 (13)
F10.122 (3)0.100 (3)0.138 (3)0.058 (3)0.033 (3)0.068 (3)
F20.320 (8)0.156 (4)0.136 (4)0.070 (5)0.147 (5)0.000 (3)
F30.086 (2)0.0537 (15)0.0581 (17)0.0272 (15)0.0086 (15)0.0222 (13)
F40.066 (2)0.112 (3)0.183 (4)0.011 (2)0.007 (3)0.086 (3)
F50.053 (2)0.0559 (18)0.178 (4)0.0029 (16)0.037 (2)0.023 (2)
F60.072 (2)0.154 (3)0.0539 (19)0.018 (2)0.0130 (16)0.034 (2)
F70.0350 (15)0.0541 (15)0.0735 (18)0.0039 (12)0.0101 (13)0.0048 (13)
F80.082 (2)0.139 (3)0.064 (2)0.060 (2)0.0057 (17)0.037 (2)
Cu10.0349 (3)0.0258 (2)0.0229 (2)0.01012 (19)0.00085 (19)0.00054 (16)
Geometric parameters (Å, º) top
C1—C61.373 (6)C21—C221.3900
C1—C21.405 (6)C21—H210.9500
C1—H10.9500C22—C231.3900
C2—C31.363 (7)C22—H220.9500
C2—H20.9500C23—H230.9500
C3—C41.362 (7)C18'—C19'1.3900
C3—H30.9500C18'—C23'1.3900
C4—C51.359 (6)C19'—C20'1.3900
C4—H40.9500C19'—H19'0.9500
C5—C61.374 (6)C20'—C21'1.3900
C5—H50.9500C20'—H20'0.9500
C6—C71.500 (6)C21'—C22'1.3900
C7—N11.474 (4)C21'—H21'0.9500
C7—H7A0.9900C22'—C23'1.3900
C7—H7B0.9900C22'—H22'0.9500
C8—N11.331 (5)C23'—H23'0.9500
C8—C91.359 (5)C24—N81.335 (5)
C8—H80.9500C24—C251.366 (5)
C9—N31.363 (5)C24—H240.9500
C9—C101.451 (5)C25—C261.356 (6)
C10—N71.335 (4)C25—H250.9500
C10—C111.368 (5)C26—C271.374 (6)
C11—C121.376 (5)C26—H260.9500
C11—H110.9500C27—C281.369 (5)
C12—C131.379 (5)C27—H270.9500
C12—H120.9500C28—N81.331 (5)
C13—C141.380 (5)C28—H280.9500
C13—H130.9500B1—F21.282 (6)
C14—N71.338 (4)B1—F41.317 (6)
C14—C151.443 (5)B1—F31.357 (5)
C15—N41.355 (4)B1—F11.375 (6)
C15—C161.359 (5)B2—F61.353 (6)
C16—N61.339 (5)B2—F81.358 (5)
C16—H160.9500B2—F51.359 (6)
C17—C181.4446B2—F71.361 (5)
C17—N61.472 (3)N1—N21.335 (4)
C17—C18'1.4990N2—N31.309 (4)
C17—H17A0.983 (3)N3—Cu12.067 (3)
C17—H17B0.995 (3)N4—N51.305 (4)
C17—H17C0.994 (3)N4—Cu12.034 (3)
C17—H17D0.983 (3)N5—N61.330 (4)
C18—C191.3900N7—Cu11.973 (3)
C18—C231.3900N8—Cu11.948 (3)
C19—C201.3900O1—Cu12.271 (3)
C19—H190.9500O1—H1A0.81 (5)
C20—C211.3900O1—H2A0.78 (5)
C20—H200.9500F7—CU12.464 (4)
C6—C1—C2119.1 (4)C23—C22—C21120.0
C6—C1—H1120.5C23—C22—H22120.0
C2—C1—H1120.5C21—C22—H22120.0
C3—C2—C1119.6 (4)C22—C23—C18120.0
C3—C2—H2120.2C22—C23—H23120.0
C1—C2—H2120.2C18—C23—H23120.0
C4—C3—C2120.8 (5)C19'—C18'—C23'120.0
C4—C3—H3119.6C19'—C18'—C17119.9
C2—C3—H3119.6C23'—C18'—C17120.1
C5—C4—C3119.7 (5)C18'—C19'—C20'120.0
C5—C4—H4120.1C18'—C19'—H19'120.0
C3—C4—H4120.1C20'—C19'—H19'120.0
C4—C5—C6121.1 (4)C21'—C20'—C19'120.0
C4—C5—H5119.5C21'—C20'—H20'120.0
C6—C5—H5119.5C19'—C20'—H20'120.0
C1—C6—C5119.6 (4)C20'—C21'—C22'120.0
C1—C6—C7119.9 (4)C20'—C21'—H21'120.0
C5—C6—C7120.4 (4)C22'—C21'—H21'120.0
N1—C7—C6112.1 (3)C21'—C22'—C23'120.0
N1—C7—H7A109.2C21'—C22'—H22'120.0
C6—C7—H7A109.2C23'—C22'—H22'120.0
N1—C7—H7B109.2C22'—C23'—C18'120.0
C6—C7—H7B109.2C22'—C23'—H23'120.0
H7A—C7—H7B107.9C18'—C23'—H23'120.0
N1—C8—C9104.4 (3)N8—C24—C25122.9 (4)
N1—C8—H8127.8N8—C24—H24118.6
C9—C8—H8127.8C25—C24—H24118.6
C8—C9—N3107.4 (3)C26—C25—C24119.0 (4)
C8—C9—C10135.4 (4)C26—C25—H25120.5
N3—C9—C10117.2 (3)C24—C25—H25120.5
N7—C10—C11121.4 (3)C25—C26—C27118.9 (4)
N7—C10—C9111.3 (3)C25—C26—H26120.5
C11—C10—C9127.2 (3)C27—C26—H26120.5
C10—C11—C12118.5 (3)C28—C27—C26119.2 (4)
C10—C11—H11120.7C28—C27—H27120.4
C12—C11—H11120.7C26—C27—H27120.4
C11—C12—C13120.4 (3)N8—C28—C27122.2 (4)
C11—C12—H12119.8N8—C28—H28118.9
C13—C12—H12119.8C27—C28—H28118.9
C12—C13—C14118.1 (3)F2—B1—F4109.9 (5)
C12—C13—H13120.9F2—B1—F3112.4 (5)
C14—C13—H13120.9F4—B1—F3112.3 (4)
N7—C14—C13121.0 (3)F2—B1—F1106.9 (6)
N7—C14—C15111.5 (3)F4—B1—F1106.1 (4)
C13—C14—C15127.4 (3)F3—B1—F1108.9 (4)
N4—C15—C16107.4 (3)F6—B2—F8107.8 (4)
N4—C15—C14116.9 (3)F6—B2—F5107.7 (4)
C16—C15—C14135.7 (3)F8—B2—F5109.6 (4)
N6—C16—C15104.6 (3)F6—B2—F7111.4 (4)
N6—C16—H16127.7F8—B2—F7110.0 (4)
C15—C16—H16127.7F5—B2—F7110.3 (4)
C18—C17—N6110.98 (15)C8—N1—N2113.0 (3)
C18—C17—C18'10.6C8—N1—C7127.4 (3)
N6—C17—C18'110.66 (16)N2—N1—C7119.6 (3)
C18—C17—H17A109.78 (13)N3—N2—N1104.9 (3)
N6—C17—H17A109.9 (3)N2—N3—C9110.3 (3)
C18'—C17—H17A118.65 (13)N2—N3—Cu1137.1 (2)
C18—C17—H17B108.71 (14)C9—N3—Cu1112.6 (2)
N6—C17—H17B109.2 (2)N5—N4—C15110.2 (3)
C18'—C17—H17B99.46 (15)N5—N4—Cu1136.4 (2)
H17A—C17—H17B108.2 (2)C15—N4—Cu1113.3 (2)
C18—C17—H17C117.45 (14)N4—N5—N6105.7 (3)
N6—C17—H17C109.3 (2)N5—N6—C16112.1 (3)
C18'—C17—H17C108.78 (15)N5—N6—C17119.9 (3)
H17A—C17—H17C98.6 (2)C16—N6—C17127.9 (3)
H17B—C17—H17C10.67 (3)C10—N7—C14120.5 (3)
C18—C17—H17D100.29 (13)C10—N7—Cu1120.3 (2)
N6—C17—H17D110.0 (3)C14—N7—Cu1119.2 (2)
C18'—C17—H17D109.73 (13)C28—N8—C24117.8 (3)
H17A—C17—H17D10.88 (4)C28—N8—Cu1123.1 (3)
H17B—C17—H17D117.3 (2)C24—N8—Cu1119.1 (2)
H17C—C17—H17D108.3 (2)Cu1—O1—H1A129 (3)
C19—C18—C23120.0Cu1—O1—H2A122 (3)
C19—C18—C17118.8H1A—O1—H2A104 (5)
C23—C18—C17121.2N8—Cu1—N7174.61 (13)
C20—C19—C18120.0N8—Cu1—N4101.53 (12)
C20—C19—H19120.0N7—Cu1—N478.94 (11)
C18—C19—H19120.0N8—Cu1—N3100.68 (12)
C21—C20—C19120.0N7—Cu1—N378.54 (11)
C21—C20—H20120.0N4—Cu1—N3157.37 (12)
C19—C20—H20120.0N8—Cu1—O194.26 (13)
C20—C21—C22120.0N7—Cu1—O191.04 (12)
C20—C21—H21120.0N4—Cu1—O194.82 (13)
C22—C21—H21120.0N3—Cu1—O187.75 (12)
C6—C1—C2—C31.4 (5)N1—N2—N3—Cu1179.8 (3)
C1—C2—C3—C40.2 (6)C8—C9—N3—N21.0 (4)
C2—C3—C4—C51.7 (6)C10—C9—N3—N2176.7 (3)
C3—C4—C5—C62.3 (6)C8—C9—N3—Cu1179.6 (2)
C2—C1—C6—C50.9 (5)C10—C9—N3—Cu12.7 (4)
C2—C1—C6—C7176.4 (3)C16—C15—N4—N50.7 (4)
C4—C5—C6—C11.0 (6)C14—C15—N4—N5177.7 (3)
C4—C5—C6—C7178.3 (4)C16—C15—N4—Cu1177.9 (3)
C1—C6—C7—N1111.1 (4)C14—C15—N4—Cu13.7 (4)
C5—C6—C7—N171.6 (5)C15—N4—N5—N60.1 (4)
N1—C8—C9—N30.9 (4)Cu1—N4—N5—N6178.0 (3)
N1—C8—C9—C10176.1 (4)N4—N5—N6—C160.6 (4)
C8—C9—C10—N7176.9 (4)N4—N5—N6—C17178.1 (3)
N3—C9—C10—N70.1 (5)C15—C16—N6—N51.0 (4)
C8—C9—C10—C111.1 (7)C15—C16—N6—C17177.6 (3)
N3—C9—C10—C11177.9 (4)C18—C17—N6—N5132.4 (3)
N7—C10—C11—C120.3 (6)C18'—C17—N6—N5121.0 (3)
C9—C10—C11—C12177.6 (4)C18—C17—N6—C1646.2 (4)
C10—C11—C12—C130.9 (6)C18'—C17—N6—C1657.5 (4)
C11—C12—C13—C140.7 (6)C11—C10—N7—C141.7 (5)
C12—C13—C14—N70.6 (6)C9—C10—N7—C14176.5 (3)
C12—C13—C14—C15178.7 (4)C11—C10—N7—Cu1179.0 (3)
N7—C14—C15—N42.2 (5)C9—C10—N7—Cu12.9 (4)
C13—C14—C15—N4176.0 (4)C13—C14—N7—C101.9 (5)
N7—C14—C15—C16179.9 (4)C15—C14—N7—C10179.8 (3)
C13—C14—C15—C161.8 (7)C13—C14—N7—Cu1178.8 (3)
N4—C15—C16—N61.0 (4)C15—C14—N7—Cu10.4 (4)
C14—C15—C16—N6177.0 (4)C27—C28—N8—C240.5 (6)
N6—C17—C18—C1969.4 (2)C27—C28—N8—Cu1179.4 (3)
C18'—C17—C18—C1920.8C25—C24—N8—C280.0 (6)
N6—C17—C18—C23112.1 (2)C25—C24—N8—Cu1179.0 (3)
C18'—C17—C18—C23157.6C28—N8—Cu1—N766.8 (14)
C23—C18—C19—C200.0C24—N8—Cu1—N7114.3 (13)
C17—C18—C19—C20178.5C28—N8—Cu1—N427.7 (3)
C18—C19—C20—C210.0C24—N8—Cu1—N4151.2 (3)
C19—C20—C21—C220.0C28—N8—Cu1—N3148.0 (3)
C20—C21—C22—C230.0C24—N8—Cu1—N333.1 (3)
C21—C22—C23—C180.0C28—N8—Cu1—O1123.5 (3)
C19—C18—C23—C220.0C24—N8—Cu1—O155.4 (3)
C17—C18—C23—C22178.4C10—N7—Cu1—N885.7 (13)
C18—C17—C18'—C19'165.2C14—N7—Cu1—N893.7 (13)
N6—C17—C18'—C19'71.4 (2)C10—N7—Cu1—N4178.8 (3)
C18—C17—C18'—C23'13.7C14—N7—Cu1—N41.9 (3)
N6—C17—C18'—C23'107.5 (2)C10—N7—Cu1—N33.4 (3)
C23'—C18'—C19'—C20'0.0C14—N7—Cu1—N3175.9 (3)
C17—C18'—C19'—C20'178.9C10—N7—Cu1—O184.1 (3)
C18'—C19'—C20'—C21'0.0C14—N7—Cu1—O196.6 (3)
C19'—C20'—C21'—C22'0.0N5—N4—Cu1—N86.5 (4)
C20'—C21'—C22'—C23'0.0C15—N4—Cu1—N8171.6 (3)
C21'—C22'—C23'—C18'0.0N5—N4—Cu1—N7179.0 (4)
C19'—C18'—C23'—C22'0.0C15—N4—Cu1—N73.0 (3)
C17—C18'—C23'—C22'178.9N5—N4—Cu1—N3175.4 (3)
N8—C24—C25—C260.3 (7)C15—N4—Cu1—N32.7 (5)
C24—C25—C26—C270.1 (7)N5—N4—Cu1—O188.9 (4)
C25—C26—C27—C280.4 (6)C15—N4—Cu1—O193.1 (3)
C26—C27—C28—N80.7 (6)N2—N3—Cu1—N81.5 (4)
C9—C8—N1—N20.6 (4)C9—N3—Cu1—N8177.7 (2)
C9—C8—N1—C7177.5 (4)N2—N3—Cu1—N7176.0 (4)
C6—C7—N1—C881.2 (5)C9—N3—Cu1—N73.1 (2)
C6—C7—N1—N2100.9 (4)N2—N3—Cu1—N4170.4 (3)
C8—N1—N2—N30.0 (4)C9—N3—Cu1—N48.8 (5)
C7—N1—N2—N3178.2 (3)N2—N3—Cu1—O192.4 (4)
N1—N2—N3—C90.6 (4)C9—N3—Cu1—O188.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H2A···F40.79 (5)2.34 (5)3.040 (5)150 (4)
O1—H2A···F10.79 (5)2.19 (5)2.901 (5)150 (4)
O1—H1A···F8i0.81 (5)1.94 (5)2.718 (5)162 (4)
C5—H5···F5i0.952.503.379 (6)154
C24—H24···F5i0.952.353.051 (5)130
C22—H22···F5ii0.952.373.213 (4)147
C11—H11···O1iii0.952.553.366 (4)144
C13—H13···Cgiii0.952.553.331 (4)140
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H19N7[Cu(BF4)(C5H5N)(C23H19N7)(H2O)]BF4
Mr393.45727.73
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)298173
a, b, c (Å)5.8800 (12), 11.460 (2), 16.140 (3)8.2990 (17), 12.956 (3), 14.520 (3)
α, β, γ (°)103.53 (3), 99.31 (3), 104.61 (3)88.56 (3), 84.76 (3), 87.36 (3)
V3)994.6 (3)1552.7 (5)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.080.79
Crystal size (mm)0.25 × 0.22 × 0.200.41 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEX2 CCD area-detector
diffractometer
Bruker Kappa APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Multi-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.934, 0.9730.761, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
10767, 3417, 1811 20211, 7222, 4381
Rint0.0590.047
(sin θ/λ)max1)0.5950.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.185, 1.01 0.056, 0.149, 1.02
No. of reflections34177222
No. of parameters272459
No. of restraints172
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.250.58, 0.61

Computer programs: , APEX2 (Bruker, 2004) and SAINT (Bruker, 2004), SAINT (Bruker, 2004) and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···N3i0.972.453.411 (5)171
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H2A···F40.79 (5)2.34 (5)3.040 (5)150 (4)
O1—H2A···F10.79 (5)2.19 (5)2.901 (5)150 (4)
O1—H1A···F8i0.81 (5)1.94 (5)2.718 (5)162 (4)
C5—H5···F5i0.952.503.379 (6)154
C24—H24···F5i0.952.353.051 (5)130
C22—H22···F5ii0.952.373.213 (4)147
C11—H11···O1iii0.952.553.366 (4)144
C13—H13···Cgiii0.952.5463.331 (4)140
Symmetry codes: (i) x1, y, z; (ii) x, y+1, z; (iii) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds