Download citation
Download citation
link to html
The asymmetric unit of the title two-dimensional coordination polymer, [Co2(C16H6O8)(C14H14N4)2]n, contains one Co2+ ion, half of a biphenyl-3,3′,4,4′-tetra­carboxyl­ate (bptc) anion lying about an inversion centre and one 1,4-bis­(imidazol-1-ylmeth­yl)benzene (bix) ligand. The CoII atom is coordinated by three carboxyl­ate O atoms from two different bptc ligands and two N atoms from two bix ligands constructing a distorted square pyramid. Each Co2+ ion is inter­linked by two bptc anions, while each bptc anion coordinates to four Co atoms as a hexa­dentate ligand so that four CoII atoms and four bptc anions afford a larger 38-membered ring. These inorganic rings are further extended into a two-dimensional undulated network in the (10\overline{1}) plane. Two CoII atoms in adjacent 38-membered rings are joined together by pairs of bix ligands forming a 26-membered [Co2(bix)2] ring that is penetrated by a bptc anion; these components share a common inversion centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110038503/fg3189sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110038503/fg3189Isup2.hkl
Contains datablock I

CCDC reference: 798590

Comment top

The rational design and synthesis of metal–organic frameworks have attracted considerable attention owing to the intriguing architectures of these frameworks, which have potential applications in the catalysis and gas storage fields [ok as edited?] (Eddaoudi et al., 2002; Belof et al., 2007). During the past decades, many metal–organic frameworks have been successfully synthesized and reported, in which polycarboxylates are widely used as bridging ligands to assemble coordination polymers (Duan et al., 2007; Liu et al., 2008; Ghosh et al., 2009; Jiang et al., 2009; Xu et al., 2009; Li et al., 2009). Biphenyl-3,3',4,4'-tetracarboxylic acid (bptc) is a flexible ligand coordinating to transition metals [(a), (b), (c), (d), (e), (f), (g) in the Scheme], with four carboxyl groups that can supply eight potential donor oxygen atoms; in addition the two phenyl rings can be rotated around the C—C single bond. Coordination polymers related to biphenyl-3,3',4,4'-tetracarboxylic acid have rarely been reported (Wang et al., 2005, 2006; Wang, Gou et al., 2007; Wang, Yang et al., 2007; Yang et al., 2007; Liu et al., 2009). Herein we represent the title coordination polymer, [Co2(C16H6O8)(C14H14N4)2]n, [Co2(bptc)(bix)2]n, (I) [bix = 1,4-bis(imidazol-1-ylmethyl)benzene].

As shown in Fig. 1, the asymmetric unit of (I) contains one Co2+ ion and one bix ligand, both in general positions, as well as a half of a bptc anion lying about an inversion centre chosen for convenience as (0.5,0.5,0.5). The Co2+ ion is coordinated by two N atoms (N1 and N4d) from two different bix ligands and three carboxylate O atoms (O1, O2 and O3b) from two bptc anions. Three Co—O lengths range from 2.0212 (18) to 2.3411 (18) Å, and Co—N distances are 2.048 (2) Å and 2.062 (2) Å (Table 1), similar to those in the cobalt–bptc coordination polymer (Liu et al., 2009). The Co atom exhibits an approximately square-pyramidal geometry with the atoms O1, O2, O3b and N4d in the equatorial plane (mean deviation from the plane 0.0578 Å) and N1 in the apical position. For the bix ligand, two terminal imidazole groups assume a cis-conformation and their planes are titled 93.1 and 74.9° with respect to the average plane of the phenyl ring.

Each Co2+ ion is bonded to two bptc anions and each bptc anion coordinates to four Co atoms so that four Co atoms and four bptc anions give rise to a large 38-membered ring (Fig. 2) in which the bptc ligand acts as a hexadentate ligand, two 3,3'-carboxyl groups adopt a monodentate bridging mode, while the other two 4,4'-carboxyl groups exhibit a bidentate chelating mode [(b) in the Scheme].These inorganic rings are further extended into a two-dimensional undulated network parallel to the (1 0 -1) plane. Two Co atoms in two adjacent 38-membered rings are linked by a pair of bix ligands forming a 26-membered [Co2(bix)2] ring lying about the inversion centre at (1,0,1) (see Fig. 1) and this ring is penetrated by a bptc anion sharing the same inversion centre (Fig. 3). Metal–organic frameworks involving a loop have been rarely studied (Yang et al., 2008). In the compound [Co2(1,3-bix)2(bpea)2]n (H2bpea = biphenylethene-4,4'-dicarboxylic acid) (Yang et al., 2008), a [Co2(bix)2] loop was formed, similar to that in (I). Adjacent [Co2(1,3-bix)2] loops are joined by bpea ligands into a two-dimensional network and two identical networks interpenetrate each other. Notably, these loops are penetrated by bpea from the other network, unlike those loops being penetrated by the bptc anion from the same network. Compound (I) is the first example reported of this particular interpenetration. A pair of bix ligands and a penetrated bptc anion are considered together as a node, [which can be simplified to] a {72, 8}2{73, 8} net (Blatov et al., 2000) can be simplified (Fig. 4). Each Co atom bridges three adjacent nodes and every node links six neighbouring Co atoms. Moreover, three nodes nearly form an equilateral triangle with three distances 11.61, 11.61 and 11.03 Å. Such a coordination mode for bptc has been reported in [Cu2(bptc)(4,4'-bpy)(H2O)2].2H2O (4,4'-bpy = 4,4'-bipyridine) (Yang et al., 2007), in which bptc4- and 4,4'-bpy ligands bridge Cu atoms into a three-dimensional framework. In that structure, Cu is also in a distorted square-pyramidal environment.

Related literature top

For related literature, see: Belof et al. (2007); Blatov et al. (2000); Duan et al. (2007); Eddaoudi et al. (2002); Ghosh et al. (2009); Jiang et al. (2009); Li et al. (2009); Liu et al. (2008, 2009); Wang et al. (2005, 2006); Wang, Gou, Hu, Han, Li, Xue, Yang & Shi (2007); Wang, Yang, Hu, Xue, Li & Shi (2007); Xu et al. (2009); Yang et al. (2007, 2008).

Experimental top

A mixture of CoSO4.7H2O (0.5 mmol, 0.14 g), tcbp [tcbp = ?] (0.5 mmol, 0.16 g), bix (0.5 mmol, 0.10 g), NaOH (2 mmol, 0.08 g) and H2O (15 ml) was placed in a Parr Teflon-lined stainless steel vessel (23 ml), which was sealed and heated at 393 K for 4 d. After the mixture slowly cooled to room temperature, red crystals of (I) were obtained.

Refinement top

All H atoms bound to C were positioned geometrically and refined using a riding model, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C–H = 0.97 Å and Uiso(H) = 1.2Ueq for CH2 H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008) and TOPOS (Blatov et al., 2000); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the asymmetric unit and key symmetry-related atoms. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (a) -x + 3/2, y - 1/2, -z + 3/2; (b) -x + 3/2, y + 1/2, -z + 3/2; (c) -x + 1, -y + 1, -z + 1; (d) -x + 2, -y, -z + 2.]
[Figure 2] Fig. 2. View of the two-dimensional network in the (101) plane. [Symmetry codes: ($) -x + 3/2, y + 1/2, -z + 3/2; (#) x, y + 1, z; (@) -x + 1, -y + 2, -z + 1; (&) x - 1/2, -y + 3/2, z - 1/2; (*) -x + 1, -y + 1, -z + 1].
[Figure 3] Fig. 3. A view showing the [Co2(bix)2] loop penetrated by the bptc anion in (I). Displacement ellipsoids are drawn at the 30% probability level.
[Figure 4] Fig. 4. A view of the {72,8}2{73,8} net (Co, blue; node, red).
Poly[(µ4-biphenyl-3,3',4,4'-tetracarboxylato)bis[µ2-1,4-bis(imidazol- 1-ylmethyl)benzene]dicobalt(II)] top
Crystal data top
[Co2(C16H6O8)(C14H14N4)2]F(000) = 944
Mr = 460.33Dx = 1.530 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2999 reflections
a = 9.3243 (12) Åθ = 2.6–24.7°
b = 11.0261 (14) ŵ = 0.90 mm1
c = 19.675 (3) ÅT = 298 K
β = 98.872 (2)°Block, red
V = 1998.6 (4) Å30.16 × 0.12 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4932 independent reflections
Radiation source: fine-focus sealed tube3660 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.065
0.3° wide ω exposures scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1112
Tmin = 0.870, Tmax = 0.916k = 1414
16575 measured reflectionsl = 2626
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0344P)2]
where P = (Fo2 + 2Fc2)/3
4932 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co2(C16H6O8)(C14H14N4)2]V = 1998.6 (4) Å3
Mr = 460.33Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.3243 (12) ŵ = 0.90 mm1
b = 11.0261 (14) ÅT = 298 K
c = 19.675 (3) Å0.16 × 0.12 × 0.10 mm
β = 98.872 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4932 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
3660 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.916Rint = 0.065
16575 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.00Δρmax = 0.49 e Å3
4932 reflectionsΔρmin = 0.33 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6386 (3)0.3400 (2)0.62273 (11)0.0248 (5)
C20.6212 (3)0.2278 (2)0.58964 (12)0.0267 (5)
C30.5568 (3)0.2256 (2)0.52106 (12)0.0382 (7)
H30.54430.15170.49810.046*
C40.5110 (3)0.3304 (2)0.48635 (13)0.0396 (7)
H40.46900.32580.44040.048*
C50.5263 (3)0.4429 (2)0.51841 (12)0.0274 (6)
C60.5924 (3)0.4449 (2)0.58688 (12)0.0279 (6)
H60.60610.51910.60940.033*
C70.6964 (3)0.3506 (2)0.69801 (12)0.0272 (6)
C80.6724 (3)0.1096 (2)0.62369 (12)0.0322 (6)
C101.1325 (3)0.3150 (3)0.84616 (14)0.0423 (7)
H101.15790.37980.87580.051*
C111.2256 (4)0.2331 (3)0.82715 (16)0.0548 (9)
H111.32560.23090.84090.066*
C91.0070 (3)0.1894 (2)0.77791 (13)0.0388 (7)
H90.92970.15010.75130.047*
C121.2003 (4)0.0489 (3)0.74932 (16)0.0645 (10)
H12A1.27170.07660.72180.077*
H12B1.12090.01190.71860.077*
C131.2687 (3)0.0450 (3)0.80014 (14)0.0437 (7)
C141.4136 (3)0.0471 (3)0.82264 (15)0.0441 (7)
H141.47370.00760.80460.053*
C151.4731 (3)0.1292 (3)0.87182 (16)0.0484 (8)
H151.57270.12810.88680.058*
C161.3892 (4)0.2121 (3)0.89902 (15)0.0482 (8)
C171.2439 (4)0.2146 (4)0.87397 (19)0.0727 (12)
H171.18490.27200.89050.087*
C181.1839 (4)0.1329 (4)0.82457 (19)0.0726 (12)
H181.08530.13690.80750.087*
C191.4551 (5)0.3003 (3)0.95342 (17)0.0780 (13)
H19A1.43230.38240.93770.094*
H19B1.55980.29130.96070.094*
C201.3334 (4)0.3611 (3)1.05390 (15)0.0505 (9)
H201.31280.44041.03950.061*
C211.4101 (4)0.1756 (3)1.05628 (16)0.0553 (9)
H211.45150.10311.04490.066*
C221.3483 (3)0.1970 (3)1.11257 (15)0.0433 (7)
H221.33970.14091.14700.052*
Co10.81348 (4)0.39402 (3)0.819609 (16)0.02624 (11)
N10.9941 (2)0.28830 (19)0.81501 (10)0.0326 (5)
N21.1449 (3)0.1539 (2)0.78381 (12)0.0488 (7)
N31.4005 (3)0.2803 (2)1.01907 (13)0.0530 (7)
N41.3001 (3)0.3147 (2)1.11107 (11)0.0377 (6)
O10.6899 (2)0.26282 (16)0.73708 (8)0.0383 (5)
O20.7481 (2)0.45151 (16)0.72088 (8)0.0375 (5)
O30.5740 (2)0.03197 (17)0.62971 (9)0.0424 (5)
O40.8033 (2)0.08968 (16)0.63999 (9)0.0412 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0255 (14)0.0262 (13)0.0219 (12)0.0014 (11)0.0010 (10)0.0022 (10)
C20.0318 (15)0.0229 (13)0.0240 (12)0.0004 (11)0.0004 (10)0.0031 (10)
C30.061 (2)0.0228 (14)0.0269 (14)0.0006 (13)0.0050 (13)0.0012 (11)
C40.065 (2)0.0272 (15)0.0216 (13)0.0024 (14)0.0093 (13)0.0016 (11)
C50.0357 (15)0.0226 (13)0.0228 (12)0.0003 (12)0.0011 (11)0.0049 (10)
C60.0319 (15)0.0227 (13)0.0273 (13)0.0008 (11)0.0006 (11)0.0002 (10)
C70.0296 (15)0.0287 (14)0.0221 (12)0.0079 (11)0.0001 (11)0.0006 (10)
C80.0488 (18)0.0231 (13)0.0225 (12)0.0036 (13)0.0020 (12)0.0006 (10)
C100.0420 (18)0.0455 (18)0.0368 (16)0.0013 (15)0.0021 (13)0.0007 (13)
C110.039 (2)0.072 (2)0.052 (2)0.0119 (18)0.0033 (16)0.0033 (18)
C90.0460 (19)0.0368 (16)0.0307 (14)0.0123 (14)0.0036 (13)0.0004 (12)
C120.079 (3)0.072 (2)0.0415 (18)0.042 (2)0.0073 (17)0.0043 (17)
C130.0455 (19)0.0515 (19)0.0366 (15)0.0168 (16)0.0148 (14)0.0030 (14)
C140.048 (2)0.0358 (17)0.0498 (18)0.0037 (15)0.0115 (15)0.0033 (14)
C150.0360 (18)0.059 (2)0.0514 (19)0.0118 (16)0.0094 (15)0.0094 (15)
C160.058 (2)0.0482 (19)0.0453 (17)0.0170 (17)0.0287 (16)0.0071 (14)
C170.067 (3)0.089 (3)0.071 (3)0.014 (2)0.038 (2)0.015 (2)
C180.037 (2)0.126 (4)0.058 (2)0.006 (2)0.0160 (17)0.008 (2)
C190.115 (3)0.070 (2)0.062 (2)0.041 (2)0.054 (2)0.0271 (19)
C200.081 (3)0.0314 (16)0.0435 (17)0.0103 (16)0.0226 (17)0.0035 (13)
C210.070 (2)0.0376 (18)0.061 (2)0.0036 (17)0.0188 (18)0.0095 (16)
C220.052 (2)0.0363 (16)0.0411 (16)0.0014 (15)0.0065 (14)0.0017 (13)
Co10.0350 (2)0.02181 (18)0.02007 (17)0.00322 (16)0.00160 (13)0.00080 (14)
N10.0389 (14)0.0324 (13)0.0248 (11)0.0056 (10)0.0003 (10)0.0017 (9)
N20.0545 (18)0.0570 (17)0.0335 (13)0.0263 (14)0.0025 (12)0.0021 (12)
N30.076 (2)0.0431 (16)0.0476 (15)0.0185 (14)0.0324 (14)0.0150 (12)
N40.0507 (16)0.0305 (13)0.0328 (12)0.0050 (11)0.0095 (11)0.0039 (10)
O10.0531 (13)0.0358 (11)0.0238 (9)0.0005 (10)0.0007 (9)0.0088 (8)
O20.0560 (13)0.0250 (10)0.0272 (9)0.0038 (9)0.0071 (9)0.0025 (8)
O30.0503 (13)0.0300 (11)0.0431 (11)0.0074 (10)0.0051 (9)0.0109 (9)
O40.0463 (13)0.0309 (11)0.0424 (11)0.0082 (9)0.0062 (9)0.0002 (8)
Geometric parameters (Å, º) top
C1—C61.388 (3)C13—C181.383 (5)
C1—C21.396 (3)C14—C151.377 (4)
C1—C71.500 (3)C14—H140.9300
C2—C31.390 (3)C15—C161.365 (4)
C2—C81.508 (3)C15—H150.9300
C3—C41.376 (3)C16—C171.369 (5)
C3—H30.9300C16—C191.505 (4)
C4—C51.390 (3)C17—C181.379 (5)
C4—H40.9300C17—H170.9300
C5—C61.392 (3)C18—H180.9300
C5—C5i1.496 (4)C19—N31.476 (3)
C6—H60.9300C19—H19A0.9700
C7—O11.243 (3)C19—H19B0.9700
C7—O21.267 (3)C20—N41.316 (3)
C8—O41.233 (3)C20—N31.337 (3)
C8—O31.274 (3)C20—H200.9300
C10—C111.345 (4)C21—C221.346 (4)
C10—N11.372 (3)C21—N31.362 (4)
C10—H100.9300C21—H210.9300
C11—N21.363 (4)C22—N41.373 (3)
C11—H110.9300C22—H220.9300
C9—N11.327 (3)Co1—O3ii2.0212 (18)
C9—N21.332 (3)Co1—O22.0449 (17)
C9—H90.9300Co1—N4iii2.048 (2)
C12—N21.475 (4)Co1—N12.062 (2)
C12—C131.510 (4)Co1—O12.3411 (18)
C12—H12A0.9700N4—Co1iii2.048 (2)
C12—H12B0.9700O3—Co1iv2.0212 (18)
C13—C141.356 (4)
C6—C1—C2119.8 (2)C15—C16—C19121.1 (3)
C6—C1—C7118.2 (2)C17—C16—C19121.1 (3)
C2—C1—C7121.8 (2)C16—C17—C18120.8 (3)
C3—C2—C1118.0 (2)C16—C17—H17119.6
C3—C2—C8118.4 (2)C18—C17—H17119.6
C1—C2—C8123.5 (2)C17—C18—C13120.7 (3)
C4—C3—C2121.5 (2)C17—C18—H18119.6
C4—C3—H3119.3C13—C18—H18119.6
C2—C3—H3119.3N3—C19—C16111.6 (3)
C3—C4—C5121.5 (2)N3—C19—H19A109.3
C3—C4—H4119.3C16—C19—H19A109.3
C5—C4—H4119.3N3—C19—H19B109.3
C4—C5—C6116.9 (2)C16—C19—H19B109.3
C4—C5—C5i121.9 (3)H19A—C19—H19B108.0
C6—C5—C5i121.2 (3)N4—C20—N3111.7 (3)
C1—C6—C5122.3 (2)N4—C20—H20124.2
C1—C6—H6118.8N3—C20—H20124.2
C5—C6—H6118.8C22—C21—N3107.0 (3)
O1—C7—O2121.1 (2)C22—C21—H21126.5
O1—C7—C1120.3 (2)N3—C21—H21126.5
O2—C7—C1118.5 (2)C21—C22—N4109.2 (3)
O4—C8—O3123.6 (2)C21—C22—H22125.4
O4—C8—C2120.2 (2)N4—C22—H22125.4
O3—C8—C2116.0 (2)O3ii—Co1—O2106.94 (8)
C11—C10—N1109.5 (3)O3ii—Co1—N4iii105.97 (9)
C11—C10—H10125.2O2—Co1—N4iii131.01 (9)
N1—C10—H10125.2O3ii—Co1—N194.70 (8)
C10—C11—N2106.6 (3)O2—Co1—N1105.03 (7)
C10—C11—H11126.7N4iii—Co1—N1107.33 (9)
N2—C11—H11126.7O3ii—Co1—O1165.87 (7)
N1—C9—N2111.2 (3)O2—Co1—O159.33 (6)
N1—C9—H9124.4N4iii—Co1—O187.03 (8)
N2—C9—H9124.4N1—Co1—O186.47 (8)
N2—C12—C13112.0 (2)C9—N1—C10105.3 (2)
N2—C12—H12A109.2C9—N1—Co1129.2 (2)
C13—C12—H12A109.2C10—N1—Co1125.25 (19)
N2—C12—H12B109.2C9—N2—C11107.4 (2)
C13—C12—H12B109.2C9—N2—C12126.4 (3)
H12A—C12—H12B107.9C11—N2—C12126.3 (3)
C14—C13—C18117.9 (3)C20—N3—C21106.7 (2)
C14—C13—C12121.7 (3)C20—N3—C19126.9 (3)
C18—C13—C12120.3 (3)C21—N3—C19126.4 (3)
C13—C14—C15120.9 (3)C20—N4—C22105.5 (2)
C13—C14—H14119.5C20—N4—Co1iii128.2 (2)
C15—C14—H14119.5C22—N4—Co1iii126.21 (18)
C16—C15—C14121.5 (3)C7—O1—Co183.22 (15)
C16—C15—H15119.3C7—O2—Co196.12 (14)
C14—C15—H15119.3C8—O3—Co1iv103.03 (16)
C15—C16—C17117.9 (3)
C6—C1—C2—C30.2 (4)C11—C10—N1—Co1174.05 (19)
C7—C1—C2—C3175.2 (2)O3ii—Co1—N1—C9167.3 (2)
C6—C1—C2—C8177.9 (2)O2—Co1—N1—C958.3 (2)
C7—C1—C2—C86.7 (4)N4iii—Co1—N1—C984.4 (2)
C1—C2—C3—C40.1 (4)O1—Co1—N1—C91.4 (2)
C8—C2—C3—C4178.3 (3)O3ii—Co1—N1—C105.8 (2)
C2—C3—C4—C50.5 (5)O2—Co1—N1—C10114.7 (2)
C3—C4—C5—C61.2 (4)N4iii—Co1—N1—C10102.6 (2)
C3—C4—C5—C5i178.5 (3)O1—Co1—N1—C10171.7 (2)
C2—C1—C6—C51.0 (4)N1—C9—N2—C110.3 (3)
C7—C1—C6—C5174.6 (2)N1—C9—N2—C12179.1 (3)
C4—C5—C6—C11.4 (4)C10—C11—N2—C90.1 (3)
C5i—C5—C6—C1178.3 (3)C10—C11—N2—C12179.4 (3)
C6—C1—C7—O1153.9 (2)C13—C12—N2—C9117.1 (3)
C2—C1—C7—O121.6 (4)C13—C12—N2—C1163.5 (4)
C6—C1—C7—O224.3 (3)N4—C20—N3—C210.2 (4)
C2—C1—C7—O2160.2 (2)N4—C20—N3—C19179.2 (3)
C3—C2—C8—O4111.0 (3)C22—C21—N3—C200.1 (4)
C1—C2—C8—O467.1 (3)C22—C21—N3—C19179.4 (3)
C3—C2—C8—O364.5 (3)C16—C19—N3—C20122.7 (4)
C1—C2—C8—O3117.4 (3)C16—C19—N3—C2157.9 (5)
N1—C10—C11—N20.2 (3)N3—C20—N4—C220.3 (4)
N2—C12—C13—C1495.0 (3)N3—C20—N4—Co1iii175.9 (2)
N2—C12—C13—C1885.8 (4)C21—C22—N4—C200.3 (3)
C18—C13—C14—C154.3 (4)C21—C22—N4—Co1iii176.0 (2)
C12—C13—C14—C15176.4 (3)O2—C7—O1—Co14.8 (2)
C13—C14—C15—C160.9 (5)C1—C7—O1—Co1177.1 (2)
C14—C15—C16—C172.5 (5)O3ii—Co1—O1—C711.7 (4)
C14—C15—C16—C19179.2 (3)O2—Co1—O1—C72.94 (14)
C15—C16—C17—C182.2 (5)N4iii—Co1—O1—C7145.56 (16)
C19—C16—C17—C18179.4 (3)N1—Co1—O1—C7106.86 (15)
C16—C17—C18—C131.3 (6)O1—C7—O2—Co15.4 (3)
C14—C13—C18—C174.5 (5)C1—C7—O2—Co1176.38 (19)
C12—C13—C18—C17176.2 (3)O3ii—Co1—O2—C7173.43 (15)
C15—C16—C19—N3116.0 (3)N4iii—Co1—O2—C756.33 (18)
C17—C16—C19—N365.7 (5)N1—Co1—O2—C773.62 (16)
N3—C21—C22—N40.1 (4)O1—Co1—O2—C72.88 (14)
N2—C9—N1—C100.4 (3)O4—C8—O3—Co1iv7.0 (3)
N2—C9—N1—Co1173.71 (17)C2—C8—O3—Co1iv177.69 (16)
C11—C10—N1—C90.4 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y+1/2, z+3/2; (iii) x+2, y, z+2; (iv) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co2(C16H6O8)(C14H14N4)2]
Mr460.33
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.3243 (12), 11.0261 (14), 19.675 (3)
β (°) 98.872 (2)
V3)1998.6 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.16 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.870, 0.916
No. of measured, independent and
observed [I > 2σ(I)] reflections
16575, 4932, 3660
Rint0.065
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.101, 1.00
No. of reflections4932
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.33

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2008) and TOPOS (Blatov et al., 2000), PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Co1—O3i2.0212 (18)Co1—N12.062 (2)
Co1—O22.0449 (17)Co1—O12.3411 (18)
Co1—N4ii2.048 (2)
N2—C12—C13112.0 (2)N3—C19—C16111.6 (3)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+2, y, z+2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds