Download citation
Download citation
link to html
The structures of six crystalline inclusion compounds between various host mol­ecules and three guest mol­ecules based on the 2-pyridone skeleton are described. The six compounds are 1,1′-biphenyl-2,2′-dicarboxylic acid–2-pyridone (1/2), C14H10O4·2C5H5NO, (I–a), 1,1′-biphenyl-2,2′-dicarboxylic acid–4-methyl-2-pyridone (1/2), C14H10O4·2C6H7NO, (I–c), 1,1′-bi­phenyl-2,2′-dicarboxylic acid–6-methyl-2-pyridone (1/2), C14H10O4·2C6H7NO, (I–d), 1,1,6,6-tetra­phenyl-2,4-hexadiyne-1,6-diol–1-methyl-2-pyridone (1/2), C30H22O2·2C6H7NO, (II–b), 1,1,6,6-tetra­phenyl-2,4-hexadiyne-1,6-diol–4-methy-2-pyridone (1/2), C30H22O2·2C6H7NO, (II–c), and 4,4′,4′′-(ethane-1,1,1-tri­yl)triphenol–6-methyl-2-pyridone–water (1/3/1), C20H18O3·3C6H7NO·H2O, (III–d). In two of the compounds, (I–a) and (I–d), the host mol­ecules lie about crystallographic twofold axes. In two other compounds, (II–b) and (II–c), the host mol­ecules lie across inversion centers. In all cases, the guest mol­ecules are hydrogen bonded to the host mol­ecules through O—H...O=C hydrogen bonds [the range of O...O distances is 2.543 (2)–2.843 (2) Å. The pyridone moieties form dimers through N—H...O=C hydrogen bonds in five of the compounds [the range of N...O distances is 2.763 (2)–2.968 (2) Å]. In four compounds, (I–a), (I–c), (I–d) and (II–c), the mol­ecules are arranged in extended zigzag chains formed via host–guest hydrogen bonding. In five of the compounds, the guest mol­ecules are arranged in parallel pairs on top of each other, related by inversion centers. However, none of these compounds underwent photodimerization in the solid state upon irradiation. In one of the crystalline compounds, (III–d), the guest mol­ecules are arranged in stacks with one disordered mol­ecule. The unsuccessful dimerization is attributed to the large inter­atomic distances between the potentially reactive atoms [the range of distances is 4.027 (4)–4.865 (4) Å] and to the bad overlap, expressed by the lateral shift between the orbitals of these atoms [the range of the shifts from perfect overlap is 1.727 (4)–3.324 (4) Å]. The bad overlap and large distances between potentially photoreactive atoms are attributed to the hydrogen-bonding schemes, because the inter­actions involved in hydrogen bonding are stronger than those in π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010901751X/fg3097sup1.cif
Contains datablocks global, I-a, I-c, I-d, II-b, II-c, III-d

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097I-asup2.hkl
Contains datablock I-a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097I-csup3.hkl
Contains datablock I-c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097I-dsup4.hkl
Contains datablock I-d

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097II-bsup5.hkl
Contains datablock II-b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097II-csup6.hkl
Contains datablock II-c

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010901751X/fg3097III-dsup7.hkl
Contains datablock III-d

CCDC references: 742236; 742237; 742238; 742239; 742240; 742241

Comment top

Inducing photochemical reactions in inclusion compounds has proved to be a unique method for synthesizing a large variety of compounds (Tanaka & Toda, 2002). Understanding the mechanism and the geometric requirements needed to enable such reactions depend on our knowledge of the molecular structure and the packing of molecules in the crystal. It would be an advantage to be able to monitor structural changes at different stages along the reaction. However, in most cases the crystal breaks and its crystal structure cannot be determined. Nevertheless there are more than a few examples for such reactions where the crystal integrity remains through the reaction (homogeneous photochemical reaction) (Wegner, 1969; Osaki & Schmidt, 1972; Cheng & Foxman, 1977; Nakanishi et al., 1981; Chang et al., 1982; Ohashi et al., 1982; Braun & Wegner, 1983; Tieke & Chapuis, 1984; Wang & Jones, 1987; Leibovitch et al., 1998). In some cases, the crystal structures of a solid solution containing both the reactant and the product were analyzed structurally (Nakanishi et al., 1981; Chang et al., 1982; Leibovitch et al., 1998; Theocharis & Desiraju, 1984; Turowska-Tyrk, 2003; Turowska-Tyrk & Trzop, 2003, Zouev et al., 2006; Lavy & Kaftory, 2006; Lavy et al., 2008). In a neat, solid, photoreactive compound, the molecular structural changes induced by the reaction affect and interfere with the neighboring molecules. However, the same molecule in inclusion compounds is surrounded by host molecules that are not involved in the reaction, and are thus not expected to undergo structural changes. Therefore, the volume available for the guest molecule to accommodate its structural change determines the homogeneity of the reaction. This volume is also called `reaction cavity', originally introduced and developed by Cohen (1975) to describe reactions in crystals. This model was further developed by Weiss et al. (1993) and Keating & Garcia-Garibay (1998). The (4πs + 4πs) photocycloadditions are among the oldest known and, with the (2πs + 2πs) cycloadditions, constitute an important group of photochemical reactions. The success in showing that photodimerization of pyridone is homogeneous throughout the entire reaction (Lavy et al., 2008) prompted us to examine similar systems. However, we fail to show photodimerization in these systems. We present here the structures of six inclusion compounds and discuss the failure of the systems to undergo solid-state photodimerization.

The six inclusion compounds are: 1,1'-biphenyl-2,2'-dicarboxylic acid–2-(1H)-pyridone (1/2) (I–a) (Fig. 1), 1,1'-biphenyl-2,2'-dicarboxylic acid–4-methyl-2-(1H)-pyridone (1/2) (I–c) (Fig. 2), 1,1'-biphenyl-2,2'-dicarboxylic acid–6-methyl-2-(1H)-pyridone (1/2) (I–d) (Fig. 3), 1,1,6,6-tetraphenyl-2,4-hexdiyne-1,6-diol–1-methyl-2-(1H)-pyridone (1/2) (II–b) (Fig. 4), 1,1,6,6-tetraphenyl-2,4-hexdiyne-1,6-diol–4-methyl-2-(1H)-pyridone (1/2) (II–c) (Fig. 5), and 4,4',4''-(ethane-1,1,1-triyl)triphenol–6-methyl-2-(1H)-pyridone–water (1/3/1) (III–d) (Fig. 6). 1,1'-Biphenyl-2,2'-dicarboxylic acid, (I), has the trivial name diphenic acid. In all six compounds, the guest molecules, (a)–(d), are hydrogen bonded to the host molecules, (I)—(III), through CO···H—O interactions [the range of O···O distances is 2.543 (2)–2.842 (2) Å; see Table 1 and Figs. 1–6]. In five of the compounds, the guest molecules [(a), (c) and (d)] form dimers by hydrogen bonds of CO···H—N type through inversion centers. The exception is guest molecule (b), in which the hydrogen donor (N—H) was replaced by N—Me. Such hydrogen-bonding schemes that form dimers are typical of pyridone-like compounds possesing H—N—CO units. The packing of the guest and host molecules is determined by the hydrogen-bonding schemes. The packing of molecules in the unit cell showing the different schemes of hydrogen bonds together with the mutual geometric realations between pairs of guest molecules are shown in Figs. 7–12 for each of the compounds. In (I–a), (I–c) and (I–d) (Figs. 7–9), each of the host molecules is hydrogen bonded through its hydroxy groups to two guest molecules that form dimers through hydrogen bonds. The molecules are arranged in long zigzag chains. A similar arrangement is observed in (II–c) (Fig. 11). In the absence of a hydrogen donor (N—H) in the guest of (II–b), the dimers are not formed and therefore the chain is cut into isolated host molecules hydrogen bonded to two guest molecules (Fig. 10). The packing of molecules in (III–d) is different (Fig. 12) as a consequence of the presence of three hydrogen donors in the host molecule, and the presence of a water molecule. The latter serve as mediator for hydrogen bonding between two host molecules and a guest. One of the guest molecules does not participate in the hydrogen-bond schemes and its role is filling space. The space available for this molecule is large and the molecule is accommodated in disordered manner.

A search of the Cambridge Structural Database (Allen, 2002) provided 135 compounds containing the pyridone skeleton. The average CO distance from 169 hits is 1.26 (2) Å, slightly longer than the CO carbonyl bonds that are not involved in hydrogen bonding. The average O···N intermolecular distance is 2.80 (5) Å, and the average N—H···O angle is 170 (7)°. The ranges of the corresponding parameters in the compounds presented here are 1.257 (3)–1.288 (3) Å [1.247 (2)–1.288 (5)?], 2.763 (2)–2.968 (2) Å and 163–178°, respectively.

The success of [4 + 4] photodimerization in the solid state is highly dependent on the mutual arrangement of the two monomers, on the distances between the reactive centers and on the substituents of the monomer. In the ideal case, the substituents are very small (normally H atoms), the double bonds are parallel, the orbitals of the reacting centers are overlapping and the distances between them are 3.5–4.2 Å. In cases where these requirements are not met, the photoreaction will fail to proceed. The potentially reactive compounds (a)–(d) do not have bulky groups as substituents and therefore it was expected that the other requirements would be fulfilled. It turned out that none of the inclusion compounds was photoactive. The geometric relationships between the guest molecules is summarized in Table 2. As shown in the table, each of the compounds fails to meet one of the requirements. In (I–c) and (II–b), the distances between the reacting centers [4.865 (4) and 4.769 (4) Å, respectively] are above the limit (4.2 Å) set by Schmidt (1965). In (I–a), (I–c), (I–d), (II–b), and (II–c) the lateral shifts between the orbitals are too large [2.257 (4), 3.324 (4), 1.929 (6), 3.122 (4) and 1.996 (5) Å, respectively] to allow the overlap needed for the reaction to take place (Ramamurthy & Venkatesan, 1987; Zolotoy et al., 2002). Compound (III–d) shows the best geometry between the guest molecules, such as the shortest distances between reactive atoms and the shortest lateral shift of the orbitals; nevertheless, irradiation did not reveal the expected results. This behaviour might be attributed to the mutual orientation, namely head-to-head with the methyl groups overlapping each other. It is important to note, however, that irradiation of solid inclusion compounds of diphenic acid with 5-chloro- or 5-methyl-2-pyridone revealed [2 + 2] photodimerization to the corresponding cisanti dimer (Hirano et al., 2005). However, in the later, the distances between the reacting atoms were very short (3.458 and 3.458 Å) and the methyl groups did not overlap each other. It was expected that the packing would be governed by the ππ interactions between guest molecules, which would determine the mutual geometry enabling photodimerization. However, the stronger intermolecular interactions of hydrogen bonds prevailed and determined the molecular packing. We therefore attribute the geometric relations between the guest molecules to the hydrogen-bonding interactions.

Related literature top

For related literature, see: Allen (2002); Braun & Wegner (1983); Chang et al. (1982); Cheng & Foxman (1977); Cohen (1975); Hirano et al. (2005); Keating & Garcia-Garibay (1998); Lavy et al. (2008); Leibovitch et al. (1998); Nakanishi et al. (1981); Ohashi et al. (1982); Osaki & Schmidt (1972); Ramamurthy & Venkatesan (1987); Tanaka & Toda (2002); Theocharis & Desiraju (1984); Tieke & Chapuis (1984); Turowska-Tyrk (2003); Turowska-Tyrk & Trzop (2003); Wang & Jones (1987); Wegner (1969); Weiss et al. (1993); Zolotoy et al. (2002); Zouev et al. (2006).

Experimental top

Commercially available reagents were purchased from Aldrich and used without further purification. All inclusion compounds were prepared by mixing stoichiometric amounts of the host and guest compounds in ethyl acetate, followed by slow evaporation to yield crystals of the inclusion compounds.

Refinement top

The host molecules in (I–a) and (I–d) lie on twofold symmetry axes. There are two crystallographic independent guest molecules in (I–c). In (III–d) there are three guest molecules in the asymmetric unit for each host molecule and a water molecule. Two of the guest molecules are ordered, while the third is disordered over two sites related by a rotation axis; the occupancy factors were initially freely refined and then fixed at 76:24. The minor portion was refined with restricted geometry (using DFIX in SHELXL97 software; Sheldrick, 2008). The H-atom positions of the major portion were calculated and fixed during the refinement. The H atoms of the minor portion were not included. The H atoms of the water molecule in (III-d) were refined freely. In the other compounds, all H atoms were refined at idealized positions, riding on the C, N and O atoms, with C—H distances of 0.93 and 0.96 Å, N—H distances of 0.86 Å, and O—H distances of 0.82 Å, and with Uiso(H) values either refined freely or set at 1.2 or 1.5 times Ueq(C,N,O). [Please check changes to descriptions of H-atom treatment made in accordance with data in CIF.]

Computing details top

For all compounds, data collection: Collect (Nonius, 2006); cell refinement: DENZO HKL-2000 (Otwinowski & Minor, 1997); data reduction: DENZO HKL-2000 (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I–a). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 2] Fig. 2. The molecular structure of (I–c). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 3] Fig. 3. The molecular structure of (I–d). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 4] Fig. 4. The molecular structure of (II–b). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 5] Fig. 5. The molecular structure of (II–c). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 6] Fig. 6. The molecular structure of (III–d). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).
[Figure 7] Fig. 7. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (I–a). [Symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1; (ix) x + 1/2, y - 1/2, z.]
[Figure 8] Fig. 8. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (I–c). [Symmetry codes: (ii) -x + 2, -y, -z + 1; (vi) x -1, y - 1, z.]
[Figure 9] Fig. 9. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (I–d). [Symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1; (x) x + 1/2, -y - 1/2, z.]
[Figure 10] Fig. 10. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (II–b). [Symmetry code: (iv) -x + 1, -y, -z + 1.]
[Figure 11] Fig. 11. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (II–c). [Symmetry codes: (ii) -x + 2, -y, -z + 1; (iv) -x + 1, -y, -z + 1.]
[Figure 12] Fig. 12. The packing of molecules in the unit cell, showing also the distances between potentially reactive centers in (III–d) omitting the disordered molecule. [Symmetry code: (vii) -x + 1, -y + 2, -z + 1.]
(I-a) 1,1'-Biphenyl-2,2'-dicarboxylic acid–2-(1H)-pyridone (1/2) top
Crystal data top
C14H10O4·2C5H5NOF(000) = 904.0
Mr = 432.42Dx = 1.339 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 6780 reflections
a = 10.569 (1) Åθ = 3.2–25.9°
b = 14.054 (3) ŵ = 0.10 mm1
c = 15.016 (1) ÅT = 293 K
β = 105.95 (3)°Prism, colourless
V = 2144.6 (6) Å30.20 × 0.10 × 0.04 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1489 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 3.2°
phi– and ω–scansh = 012
6780 measured reflectionsk = 016
2013 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.062Only H-atom displacement parameters refined
wR(F2) = 0.200 w = 1/[σ2(Fo2) + (0.1098P)2 + 1.1226P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
2013 reflectionsΔρmax = 0.56 e Å3
157 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)
Crystal data top
C14H10O4·2C5H5NOV = 2144.6 (6) Å3
Mr = 432.42Z = 4
Monoclinic, C2/cMo Kα radiation
a = 10.569 (1) ŵ = 0.10 mm1
b = 14.054 (3) ÅT = 293 K
c = 15.016 (1) Å0.20 × 0.10 × 0.04 mm
β = 105.95 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1489 reflections with I > 2σ(I)
6780 measured reflectionsRint = 0.026
2013 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.200Only H-atom displacement parameters refined
S = 1.03Δρmax = 0.56 e Å3
2013 reflectionsΔρmin = 0.35 e Å3
157 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1058 (2)0.50666 (19)0.3779 (2)0.1418 (12)
O20.07094 (18)0.58007 (13)0.39187 (16)0.0978 (7)
H1O20.01610.61970.41770.151 (16)*
O30.09147 (17)0.71551 (13)0.46002 (13)0.0837 (6)
N10.14965 (17)0.84329 (14)0.55304 (13)0.0699 (6)
H1N10.23010.83410.55320.075 (7)*
C10.0638 (2)0.36367 (17)0.26248 (15)0.0661 (6)
C20.1501 (3)0.2897 (2)0.22859 (19)0.0845 (8)
H20.12710.24370.19130.104 (10)*
C30.2706 (3)0.2825 (2)0.2489 (2)0.0915 (9)
H30.32720.23240.22490.100 (9)*
C40.3057 (3)0.3491 (2)0.3039 (2)0.0850 (8)
H40.38650.34500.31710.105 (9)*
C50.2209 (2)0.42181 (19)0.33947 (19)0.0776 (7)
H50.24440.46650.37780.091 (8)*
C60.1004 (2)0.43056 (16)0.31978 (16)0.0671 (6)
C70.0121 (2)0.50949 (19)0.36342 (19)0.0803 (8)
C80.0570 (2)0.78351 (16)0.50250 (16)0.0651 (6)
C90.0742 (2)0.80481 (18)0.50159 (18)0.0759 (7)
H90.14250.76720.46690.100 (9)*
C100.1019 (2)0.87866 (19)0.5502 (2)0.0819 (8)
H100.18900.89160.54800.118 (11)*
C110.0025 (3)0.93577 (19)0.6035 (2)0.0831 (8)
H110.02160.98570.63820.099 (9)*
C120.1230 (2)0.91696 (19)0.60353 (18)0.0795 (7)
H120.19120.95460.63830.101 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0598 (12)0.159 (2)0.214 (3)0.0268 (12)0.0491 (14)0.101 (2)
O20.0669 (11)0.0765 (12)0.1545 (19)0.0043 (9)0.0381 (11)0.0266 (12)
O30.0697 (11)0.0857 (12)0.1036 (13)0.0064 (8)0.0371 (9)0.0243 (10)
N10.0515 (10)0.0775 (12)0.0836 (13)0.0006 (8)0.0231 (9)0.0094 (10)
C10.0607 (12)0.0736 (13)0.0636 (12)0.0031 (10)0.0167 (10)0.0036 (10)
C20.0898 (18)0.0873 (17)0.0803 (16)0.0178 (14)0.0298 (13)0.0164 (13)
C30.0850 (18)0.099 (2)0.0919 (17)0.0320 (15)0.0262 (15)0.0078 (15)
C40.0636 (14)0.0993 (19)0.0962 (18)0.0145 (13)0.0290 (13)0.0038 (15)
C50.0593 (13)0.0846 (16)0.0933 (17)0.0050 (11)0.0284 (12)0.0055 (13)
C60.0534 (12)0.0718 (14)0.0775 (14)0.0003 (10)0.0204 (10)0.0015 (11)
C70.0545 (13)0.0906 (17)0.1001 (18)0.0062 (11)0.0283 (12)0.0227 (14)
C80.0584 (12)0.0695 (13)0.0713 (13)0.0032 (10)0.0241 (10)0.0036 (11)
C90.0557 (12)0.0844 (16)0.0898 (16)0.0077 (11)0.0235 (11)0.0085 (13)
C100.0577 (13)0.0812 (16)0.114 (2)0.0029 (11)0.0359 (14)0.0045 (14)
C110.0688 (15)0.0802 (16)0.1077 (19)0.0001 (12)0.0367 (14)0.0177 (14)
C120.0648 (14)0.0818 (16)0.0936 (17)0.0041 (12)0.0247 (13)0.0154 (14)
Geometric parameters (Å, º) top
O1—C71.205 (3)C4—C51.368 (4)
O2—C71.304 (3)C4—H40.9300
O2—H1O20.8200C5—C61.389 (3)
O3—C81.257 (3)C5—H50.9300
N1—C121.358 (3)C6—C71.482 (3)
N1—C81.354 (3)C8—C91.415 (3)
N1—H1N10.8600C9—C101.346 (3)
C1—C21.384 (3)C9—H90.9300
C1—C61.399 (3)C10—C111.388 (4)
C1—C1i1.495 (4)C10—H100.9300
C2—C31.392 (4)C11—C121.352 (4)
C2—H20.9300C11—H110.9300
C3—C41.365 (4)C12—H120.9300
C3—H30.9300
C7—O2—H1O2109.5C5—C6—C7118.4 (2)
C12—N1—C8123.85 (19)C1—C6—C7121.9 (2)
C12—N1—H1N1118.1O1—C7—O2121.9 (2)
C8—N1—H1N1118.1O1—C7—C6123.4 (2)
C2—C1—C6117.7 (2)O2—C7—C6114.5 (2)
C2—C1—C1i117.16 (19)O3—C8—N1119.35 (19)
C6—C1—C1i125.11 (17)O3—C8—C9125.2 (2)
C3—C2—C1121.6 (3)N1—C8—C9115.5 (2)
C3—C2—H2119.2C10—C9—C8121.1 (2)
C1—C2—H2119.2C10—C9—H9119.5
C4—C3—C2119.9 (2)C8—C9—H9119.5
C4—C3—H3120.0C9—C10—C11121.0 (2)
C2—C3—H3120.0C9—C10—H10119.5
C5—C4—C3119.4 (2)C11—C10—H10119.5
C5—C4—H4120.3C12—C11—C10118.3 (2)
C3—C4—H4120.3C12—C11—H11120.8
C4—C5—C6121.6 (3)C10—C11—H11120.8
C4—C5—H5119.2C11—C12—N1120.2 (2)
C6—C5—H5119.2C11—C12—H12119.9
C5—C6—C1119.7 (2)N1—C12—H12119.9
C6—C1—C2—C31.2 (4)C1—C6—C7—O124.0 (4)
C1i—C1—C2—C3179.1 (3)C5—C6—C7—O221.0 (4)
C1—C2—C3—C40.4 (5)C1—C6—C7—O2161.2 (2)
C2—C3—C4—C50.7 (5)C12—N1—C8—O3178.0 (2)
C3—C4—C5—C61.0 (4)C12—N1—C8—C92.7 (3)
C4—C5—C6—C10.2 (4)O3—C8—C9—C10179.2 (3)
C4—C5—C6—C7178.0 (2)N1—C8—C9—C101.5 (4)
C2—C1—C6—C50.9 (3)C8—C9—C10—C110.6 (4)
C1i—C1—C6—C5178.6 (2)C9—C10—C11—C121.7 (4)
C2—C1—C6—C7176.8 (2)C10—C11—C12—N10.6 (4)
C1i—C1—C6—C70.9 (4)C8—N1—C12—C111.8 (4)
C5—C6—C7—O1153.8 (3)
Symmetry code: (i) x, y, z+1/2.
(I-c) 1,1'-Biphenyl-2,2'-dicarboxylic acid–4-methyl-2-(1H)-pyridone (1/2) top
Crystal data top
C14H10O4·2C6H7NOZ = 2
Mr = 460.47F(000) = 484.0
Triclinic, P1Dx = 1.293 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.838 (2) ÅCell parameters from 9471 reflections
b = 10.085 (2) Åθ = 1.5–24.7°
c = 14.016 (3) ŵ = 0.09 mm1
α = 89.77 (3)°T = 293 K
β = 74.90 (3)°Prism, colourless
γ = 62.764 (2)°0.20 × 0.20 × 0.10 mm
V = 1183.0 (5) Å3
Data collection top
Nonius KappaCCD
diffractometer
3051 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 24.7°, θmin = 1.5°
phi– and ω–scansh = 011
9471 measured reflectionsk = 1011
3998 independent reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0881P)2 + 0.2916P]
where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max < 0.001
307 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C14H10O4·2C6H7NOγ = 62.764 (2)°
Mr = 460.47V = 1183.0 (5) Å3
Triclinic, P1Z = 2
a = 9.838 (2) ÅMo Kα radiation
b = 10.085 (2) ŵ = 0.09 mm1
c = 14.016 (3) ÅT = 293 K
α = 89.77 (3)°0.20 × 0.20 × 0.10 mm
β = 74.90 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3051 reflections with I > 2σ(I)
9471 measured reflectionsRint = 0.022
3998 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 0.91Δρmax = 0.28 e Å3
3998 reflectionsΔρmin = 0.16 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.78130 (19)0.31011 (17)0.36902 (10)0.0713 (4)
H1010.81290.34860.40360.086*
O20.85147 (19)0.44073 (17)0.25697 (10)0.0704 (4)
O111.2056 (2)0.1275 (2)0.25137 (11)0.0798 (5)
H11O1.19150.08890.30210.096*
O211.09138 (17)0.00628 (16)0.20186 (10)0.0660 (4)
O3A1.1422 (2)0.02959 (18)0.41578 (11)0.0744 (4)
O3B0.88444 (18)0.42061 (17)0.48227 (10)0.0680 (4)
N1A1.11195 (19)0.05334 (18)0.58106 (12)0.0579 (4)
H1NA1.04710.01620.58980.069*
N1B0.89778 (18)0.48817 (17)0.63171 (11)0.0544 (4)
H1NB0.96280.52020.60140.065*
C10.8583 (2)0.2245 (2)0.10768 (14)0.0537 (5)
C20.8078 (2)0.1603 (2)0.04568 (17)0.0707 (6)
H20.86550.12950.02140.085*
C30.6744 (3)0.1418 (3)0.08159 (19)0.0874 (8)
H30.64250.09970.03850.105*
C40.5880 (3)0.1848 (3)0.1802 (2)0.0826 (7)
H40.49860.17090.20450.099*
C50.6354 (2)0.2489 (2)0.24313 (16)0.0645 (5)
H50.57770.27750.31030.077*
C60.7669 (2)0.2712 (2)0.20803 (13)0.0515 (4)
C70.8048 (2)0.3497 (2)0.27920 (13)0.0524 (4)
C111.0070 (2)0.2367 (2)0.06315 (13)0.0547 (5)
C211.0199 (3)0.3048 (3)0.02309 (16)0.0771 (6)
H210.93580.34160.05130.093*
C311.1546 (4)0.3192 (3)0.06775 (18)0.0948 (9)
H311.16060.36430.12560.114*
C411.2786 (4)0.2673 (4)0.02724 (19)0.0967 (9)
H411.36880.27780.05700.116*
C511.2697 (3)0.1996 (3)0.05760 (16)0.0753 (6)
H511.35410.16510.08540.090*
C611.1364 (2)0.1819 (2)0.10261 (13)0.0531 (4)
C711.1409 (2)0.0965 (2)0.18959 (13)0.0532 (4)
C8A1.1456 (3)0.0898 (3)0.66141 (15)0.0679 (6)
H8A1.10020.07280.72410.081*
C9A1.2440 (3)0.1503 (3)0.65179 (16)0.0681 (6)
H9A1.26690.17450.70760.082*
C10A1.3126 (2)0.1770 (2)0.55759 (15)0.0556 (5)
C11A1.2770 (2)0.1386 (2)0.47826 (14)0.0573 (5)
H11A1.32090.15630.41550.069*
C12A1.1754 (2)0.0725 (2)0.48753 (14)0.0546 (5)
C13A1.4214 (3)0.2460 (3)0.54707 (18)0.0747 (6)
H13A1.35920.35150.57160.112*
H13B1.47910.23290.47810.112*
H13C1.49550.19780.58480.112*
C8B0.8574 (3)0.5010 (3)0.73209 (15)0.0681 (6)
H8B0.89980.54370.76660.082*
C9B0.7560 (3)0.4525 (3)0.78273 (16)0.0714 (6)
H9B0.72830.46190.85200.086*
C10B0.6928 (2)0.3878 (2)0.73083 (16)0.0631 (5)
C11B0.7351 (2)0.3761 (2)0.62905 (15)0.0606 (5)
H11B0.69330.33340.59400.073*
C12B0.8411 (2)0.42737 (19)0.57618 (13)0.0494 (4)
C13B0.5797 (3)0.3335 (3)0.7880 (2)0.0919 (8)
H13D0.62640.26890.83370.138*
H13E0.55990.27860.74220.138*
H13F0.48080.41820.82440.138*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.1007 (11)0.0957 (11)0.0462 (8)0.0687 (10)0.0240 (7)0.0112 (7)
O20.1016 (11)0.0795 (9)0.0500 (8)0.0610 (9)0.0188 (7)0.0064 (7)
O110.1022 (12)0.1220 (13)0.0612 (9)0.0798 (11)0.0449 (8)0.0312 (8)
O210.0756 (9)0.0782 (9)0.0661 (9)0.0490 (8)0.0312 (7)0.0230 (7)
O3A0.0950 (11)0.0987 (11)0.0580 (9)0.0618 (9)0.0364 (8)0.0187 (8)
O3B0.0856 (10)0.0906 (10)0.0452 (8)0.0566 (9)0.0178 (7)0.0074 (7)
N1A0.0604 (10)0.0669 (10)0.0562 (10)0.0356 (8)0.0220 (8)0.0148 (8)
N1B0.0627 (10)0.0655 (9)0.0444 (9)0.0387 (8)0.0141 (7)0.0071 (7)
C10.0532 (10)0.0562 (11)0.0499 (11)0.0200 (9)0.0233 (8)0.0014 (8)
C20.0576 (12)0.0815 (14)0.0637 (13)0.0219 (11)0.0238 (10)0.0168 (10)
C30.0582 (13)0.1051 (19)0.0949 (19)0.0309 (13)0.0300 (13)0.0309 (14)
C40.0536 (12)0.1001 (18)0.0960 (18)0.0377 (12)0.0216 (12)0.0138 (14)
C50.0547 (11)0.0739 (13)0.0640 (13)0.0301 (10)0.0160 (9)0.0029 (10)
C60.0508 (10)0.0555 (10)0.0481 (10)0.0231 (8)0.0181 (8)0.0023 (8)
C70.0559 (11)0.0597 (11)0.0410 (10)0.0283 (9)0.0116 (8)0.0009 (8)
C110.0668 (12)0.0606 (11)0.0393 (9)0.0321 (9)0.0155 (8)0.0024 (8)
C210.1034 (18)0.0811 (15)0.0484 (12)0.0427 (14)0.0263 (12)0.0138 (10)
C310.146 (3)0.105 (2)0.0459 (13)0.078 (2)0.0131 (15)0.0190 (12)
C410.122 (2)0.135 (2)0.0582 (15)0.095 (2)0.0016 (15)0.0118 (15)
C510.0808 (15)0.1096 (18)0.0558 (13)0.0663 (14)0.0111 (11)0.0074 (12)
C610.0599 (11)0.0686 (12)0.0390 (9)0.0393 (9)0.0101 (8)0.0031 (8)
C710.0486 (10)0.0711 (12)0.0445 (10)0.0319 (9)0.0141 (8)0.0051 (8)
C8A0.0760 (14)0.0877 (15)0.0485 (11)0.0457 (12)0.0181 (10)0.0138 (10)
C9A0.0767 (14)0.0865 (15)0.0522 (12)0.0448 (12)0.0241 (10)0.0048 (10)
C10A0.0524 (10)0.0520 (10)0.0602 (12)0.0224 (9)0.0173 (9)0.0047 (8)
C11A0.0615 (12)0.0624 (11)0.0502 (11)0.0308 (10)0.0165 (9)0.0121 (9)
C12A0.0575 (11)0.0571 (11)0.0527 (11)0.0260 (9)0.0237 (9)0.0128 (8)
C13A0.0742 (14)0.0748 (14)0.0846 (16)0.0438 (12)0.0211 (12)0.0028 (11)
C8B0.0761 (14)0.0905 (15)0.0464 (11)0.0449 (12)0.0209 (10)0.0063 (10)
C9B0.0718 (14)0.0981 (16)0.0453 (11)0.0423 (13)0.0147 (10)0.0164 (10)
C10B0.0530 (11)0.0679 (12)0.0630 (13)0.0273 (10)0.0107 (9)0.0214 (10)
C11B0.0620 (12)0.0636 (12)0.0654 (13)0.0362 (10)0.0208 (10)0.0096 (9)
C12B0.0549 (10)0.0520 (10)0.0409 (10)0.0250 (8)0.0138 (8)0.0058 (7)
C13B0.0817 (16)0.114 (2)0.0912 (18)0.0601 (16)0.0169 (14)0.0406 (15)
Geometric parameters (Å, º) top
O1—C71.314 (2)C31—C411.363 (4)
O1—H1010.8200C31—H310.9300
O2—C71.208 (2)C41—C511.372 (3)
O11—C711.313 (2)C41—H410.9300
O11—H11O0.8200C51—C611.390 (3)
O21—C711.206 (2)C51—H510.9300
O3A—C12A1.268 (2)C61—C711.488 (3)
O3B—C12B1.265 (2)C8A—C9A1.342 (3)
N1A—C8A1.350 (3)C8A—H8A0.9300
N1A—C12A1.352 (3)C9A—C10A1.404 (3)
N1A—H1NA0.8600C9A—H9A0.9300
N1B—C8B1.348 (3)C10A—C11A1.357 (3)
N1B—C12B1.354 (2)C10A—C13A1.500 (3)
N1B—H1NB0.8600C11A—C12A1.414 (3)
C1—C21.395 (3)C11A—H11A0.9300
C1—C61.403 (3)C13A—H13A0.9600
C1—C111.494 (3)C13A—H13B0.9600
C2—C31.375 (3)C13A—H13C0.9600
C2—H20.9300C8B—C9B1.346 (3)
C3—C41.370 (4)C8B—H8B0.9300
C3—H30.9300C9B—C10B1.397 (3)
C4—C51.381 (3)C9B—H9B0.9300
C4—H40.9300C10B—C11B1.367 (3)
C5—C61.378 (3)C10B—C13B1.506 (3)
C5—H50.9300C11B—C12B1.411 (3)
C6—C71.494 (3)C11B—H11B0.9300
C11—C211.394 (3)C13B—H13D0.9600
C11—C611.398 (3)C13B—H13E0.9600
C21—C311.383 (4)C13B—H13F0.9600
C21—H210.9300
C7—O1—H101109.5C11—C61—C71121.91 (16)
C71—O11—H11O109.5O21—C71—O11123.07 (18)
C8A—N1A—C12A123.04 (18)O21—C71—C61123.37 (16)
C8A—N1A—H1NA118.5O11—C71—C61113.56 (17)
C12A—N1A—H1NA118.5C9A—C8A—N1A120.7 (2)
C8B—N1B—C12B123.27 (17)C9A—C8A—H8A119.7
C8B—N1B—H1NB118.4N1A—C8A—H8A119.7
C12B—N1B—H1NB118.4C8A—C9A—C10A120.06 (19)
C2—C1—C6117.51 (19)C8A—C9A—H9A120.0
C2—C1—C11117.89 (18)C10A—C9A—H9A120.0
C6—C1—C11124.60 (16)C11A—C10A—C9A117.86 (19)
C3—C2—C1121.4 (2)C11A—C10A—C13A122.12 (19)
C3—C2—H2119.3C9A—C10A—C13A120.01 (19)
C1—C2—H2119.3C10A—C11A—C12A122.42 (18)
C4—C3—C2120.6 (2)C10A—C11A—H11A118.8
C4—C3—H3119.7C12A—C11A—H11A118.8
C2—C3—H3119.7O3A—C12A—N1A118.86 (18)
C3—C4—C5119.2 (2)O3A—C12A—C11A125.22 (18)
C3—C4—H4120.4N1A—C12A—C11A115.92 (17)
C5—C4—H4120.4C10A—C13A—H13A109.5
C6—C5—C4121.1 (2)C10A—C13A—H13B109.5
C6—C5—H5119.5H13A—C13A—H13B109.5
C4—C5—H5119.5C10A—C13A—H13C109.5
C5—C6—C1120.26 (17)H13A—C13A—H13C109.5
C5—C6—C7117.94 (17)H13B—C13A—H13C109.5
C1—C6—C7121.78 (17)C9B—C8B—N1B120.5 (2)
O2—C7—O1123.31 (17)C9B—C8B—H8B119.8
O2—C7—C6123.72 (17)N1B—C8B—H8B119.8
O1—C7—C6112.97 (17)C8B—C9B—C10B119.7 (2)
C21—C11—C61117.4 (2)C8B—C9B—H9B120.1
C21—C11—C1118.97 (19)C10B—C9B—H9B120.1
C61—C11—C1123.63 (17)C11B—C10B—C9B118.84 (18)
C31—C21—C11121.6 (2)C11B—C10B—C13B121.7 (2)
C31—C21—H21119.2C9B—C10B—C13B119.5 (2)
C11—C21—H21119.2C10B—C11B—C12B121.28 (18)
C41—C31—C21120.2 (2)C10B—C11B—H11B119.4
C41—C31—H31119.9C12B—C11B—H11B119.4
C21—C31—H31119.9O3B—C12B—N1B119.15 (16)
C31—C41—C51119.7 (2)O3B—C12B—C11B124.46 (17)
C31—C41—H41120.2N1B—C12B—C11B116.39 (17)
C51—C41—H41120.2C10B—C13B—H13D109.5
C41—C51—C61120.9 (2)C10B—C13B—H13E109.5
C41—C51—H51119.5H13D—C13B—H13E109.5
C61—C51—H51119.5C10B—C13B—H13F109.5
C51—C61—C11120.17 (19)H13D—C13B—H13F109.5
C51—C61—C71117.84 (18)H13E—C13B—H13F109.5
C6—C1—C2—C30.8 (3)C1—C11—C61—C51179.02 (19)
C11—C1—C2—C3178.4 (2)C21—C11—C61—C71175.07 (18)
C1—C2—C3—C40.7 (4)C1—C11—C61—C714.3 (3)
C2—C3—C4—C50.8 (4)C51—C61—C71—O21138.3 (2)
C3—C4—C5—C60.5 (4)C11—C61—C71—O2138.5 (3)
C4—C5—C6—C12.0 (3)C51—C61—C71—O1141.1 (3)
C4—C5—C6—C7176.35 (19)C11—C61—C71—O11142.17 (19)
C2—C1—C6—C52.1 (3)C12A—N1A—C8A—C9A1.1 (3)
C11—C1—C6—C5177.02 (18)N1A—C8A—C9A—C10A0.3 (3)
C2—C1—C6—C7176.21 (17)C8A—C9A—C10A—C11A0.6 (3)
C11—C1—C6—C74.7 (3)C8A—C9A—C10A—C13A179.4 (2)
C5—C6—C7—O2140.6 (2)C9A—C10A—C11A—C12A0.5 (3)
C1—C6—C7—O237.8 (3)C13A—C10A—C11A—C12A179.54 (18)
C5—C6—C7—O139.0 (2)C8A—N1A—C12A—O3A177.19 (19)
C1—C6—C7—O1142.65 (18)C8A—N1A—C12A—C11A2.0 (3)
C2—C1—C11—C2152.4 (3)C10A—C11A—C12A—O3A177.44 (19)
C6—C1—C11—C21128.5 (2)C10A—C11A—C12A—N1A1.7 (3)
C2—C1—C11—C61127.0 (2)C12B—N1B—C8B—C9B0.0 (3)
C6—C1—C11—C6152.1 (3)N1B—C8B—C9B—C10B0.2 (3)
C61—C11—C21—C310.5 (3)C8B—C9B—C10B—C11B0.3 (3)
C1—C11—C21—C31179.9 (2)C8B—C9B—C10B—C13B179.9 (2)
C11—C21—C31—C410.6 (4)C9B—C10B—C11B—C12B0.2 (3)
C21—C31—C41—C510.6 (4)C13B—C10B—C11B—C12B180.0 (2)
C31—C41—C51—C610.5 (4)C8B—N1B—C12B—O3B179.53 (18)
C41—C51—C61—C111.6 (3)C8B—N1B—C12B—C11B0.1 (3)
C41—C51—C61—C71175.2 (2)C10B—C11B—C12B—O3B179.58 (19)
C21—C11—C61—C511.6 (3)C10B—C11B—C12B—N1B0.1 (3)
(I-d) 1,1'-Biphenyl-2,2'-dicarboxylic acid–6-methyl-2-(1H)-pyridone (1/2) top
Crystal data top
C14H10O4·2C6H7NOF(000) = 968.0
Mr = 460.47Dx = 1.298 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8254 reflections
a = 11.415 (2) Åθ = 2.6–25.0°
b = 10.957 (2) ŵ = 0.09 mm1
c = 19.660 (3) ÅT = 293 K
β = 106.59 (2)°Prism, colourless
V = 2356.6 (7) Å30.30 × 0.25 × 0.10 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1408 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.0°, θmin = 2.6°
phi– and ω–scansh = 013
8025 measured reflectionsk = 013
2063 independent reflectionsl = 2322
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.287H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.1715P)2 + 1.7724P]
where P = (Fo2 + 2Fc2)/3
2063 reflections(Δ/σ)max < 0.001
158 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C14H10O4·2C6H7NOV = 2356.6 (7) Å3
Mr = 460.47Z = 4
Monoclinic, C2/cMo Kα radiation
a = 11.415 (2) ŵ = 0.09 mm1
b = 10.957 (2) ÅT = 293 K
c = 19.660 (3) Å0.30 × 0.25 × 0.10 mm
β = 106.59 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1408 reflections with I > 2σ(I)
8025 measured reflectionsRint = 0.055
2063 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0780 restraints
wR(F2) = 0.287H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.43 e Å3
2063 reflectionsΔρmin = 0.21 e Å3
158 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1093 (3)0.4426 (4)0.3399 (2)0.1250 (15)
O20.0262 (2)0.4960 (3)0.39257 (17)0.0935 (10)
H1020.02610.54690.41050.140*
O30.1146 (3)0.6716 (2)0.45987 (15)0.0841 (9)
N10.1472 (3)0.8760 (3)0.46155 (15)0.0691 (9)
H1N10.22080.86200.48690.083*
C10.0564 (3)0.2549 (3)0.26170 (16)0.0562 (8)
C20.1419 (3)0.1643 (3)0.23460 (19)0.0695 (10)
H20.12850.11050.20100.083*
C30.2461 (4)0.1520 (4)0.2561 (2)0.0797 (11)
H30.30160.09020.23700.096*
C40.2684 (4)0.2292 (4)0.3049 (2)0.0849 (13)
H40.33960.22150.31850.102*
C50.1842 (3)0.3195 (3)0.3341 (2)0.0718 (10)
H50.19900.37190.36800.086*
C60.0780 (3)0.3330 (3)0.31375 (17)0.0572 (9)
C70.0119 (3)0.4280 (3)0.34861 (18)0.0626 (9)
C80.0722 (4)0.7795 (4)0.4420 (2)0.0736 (10)
C90.0475 (4)0.8060 (4)0.4004 (2)0.0859 (13)
H90.10270.74280.38390.103*
C100.0825 (4)0.9229 (5)0.3843 (3)0.0975 (14)
H100.16290.93930.35860.117*
C110.0004 (4)1.0201 (4)0.4057 (2)0.0846 (12)
H110.02391.10010.39360.102*
C120.1150 (4)0.9947 (4)0.4441 (2)0.0765 (11)
C130.2144 (5)1.0878 (4)0.4696 (3)0.0938 (14)
H13A0.28501.06370.45560.14 (2)*
H13B0.23551.09340.52040.14 (2)*
H13C0.18611.16580.44920.125 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.089 (2)0.139 (3)0.169 (3)0.057 (2)0.073 (2)0.084 (3)
O20.0804 (18)0.083 (2)0.123 (2)0.0255 (15)0.0385 (17)0.0428 (17)
O30.0815 (18)0.0651 (18)0.098 (2)0.0143 (13)0.0140 (15)0.0125 (14)
N10.0749 (19)0.0593 (18)0.0725 (18)0.0078 (14)0.0201 (15)0.0061 (14)
C10.0566 (18)0.0534 (18)0.0566 (17)0.0029 (13)0.0133 (14)0.0016 (13)
C20.074 (2)0.065 (2)0.069 (2)0.0145 (17)0.0185 (18)0.0118 (16)
C30.073 (2)0.079 (3)0.085 (2)0.029 (2)0.019 (2)0.013 (2)
C40.064 (2)0.094 (3)0.105 (3)0.024 (2)0.037 (2)0.015 (2)
C50.070 (2)0.070 (2)0.082 (2)0.0143 (17)0.0331 (19)0.0157 (18)
C60.0551 (17)0.0498 (18)0.0668 (19)0.0058 (13)0.0175 (15)0.0020 (14)
C70.0598 (19)0.054 (2)0.074 (2)0.0040 (15)0.0197 (16)0.0060 (15)
C80.072 (2)0.067 (2)0.082 (2)0.0064 (19)0.0229 (19)0.0092 (19)
C90.071 (2)0.084 (3)0.099 (3)0.014 (2)0.018 (2)0.001 (2)
C100.077 (3)0.101 (4)0.113 (3)0.005 (2)0.025 (2)0.026 (3)
C110.089 (3)0.082 (3)0.086 (3)0.001 (2)0.031 (2)0.015 (2)
C120.089 (3)0.071 (2)0.076 (2)0.003 (2)0.034 (2)0.0003 (18)
C130.114 (4)0.066 (3)0.104 (3)0.016 (2)0.034 (3)0.013 (2)
Geometric parameters (Å, º) top
O1—C71.184 (4)C4—H40.9300
O2—C71.306 (4)C5—C61.389 (5)
O2—H1020.8200C5—H50.9300
O3—C81.288 (5)C6—C71.484 (5)
N1—C81.345 (5)C8—C91.407 (6)
N1—C121.369 (5)C9—C101.352 (6)
N1—H1N10.8600C9—H90.9300
C1—C21.387 (5)C10—C111.407 (7)
C1—C61.409 (5)C10—H100.9300
C1—C1i1.486 (7)C11—C121.340 (6)
C2—C31.378 (6)C11—H110.9300
C2—H20.9300C12—C131.501 (6)
C3—C41.357 (6)C13—H13A0.9600
C3—H30.9300C13—H13B0.9600
C4—C51.385 (5)C13—H13C0.9600
C7—O2—H102109.5O1—C7—C6125.6 (3)
C8—N1—C12124.9 (4)O2—C7—C6112.9 (3)
C8—N1—H1N1117.6O3—C8—N1119.0 (4)
C12—N1—H1N1117.6O3—C8—C9125.1 (4)
C2—C1—C6117.7 (3)N1—C8—C9115.9 (4)
C2—C1—C1i117.2 (3)C10—C9—C8120.3 (4)
C6—C1—C1i124.9 (3)C10—C9—H9119.9
C3—C2—C1121.8 (3)C8—C9—H9119.9
C3—C2—H2119.1C9—C10—C11121.2 (4)
C1—C2—H2119.1C9—C10—H10119.4
C4—C3—C2120.5 (3)C11—C10—H10119.4
C4—C3—H3119.7C12—C11—C10118.5 (4)
C2—C3—H3119.7C12—C11—H11120.8
C3—C4—C5119.4 (4)C10—C11—H11120.8
C3—C4—H4120.3C11—C12—N1119.2 (4)
C5—C4—H4120.3C11—C12—C13124.8 (4)
C4—C5—C6121.0 (3)N1—C12—C13116.0 (4)
C4—C5—H5119.5C12—C13—H13A109.5
C6—C5—H5119.5C12—C13—H13B109.5
C5—C6—C1119.5 (3)H13A—C13—H13B109.5
C5—C6—C7119.1 (3)C12—C13—H13C109.5
C1—C6—C7121.3 (3)H13A—C13—H13C109.5
O1—C7—O2121.5 (3)H13B—C13—H13C109.5
C6—C1—C2—C31.6 (5)C5—C6—C7—O24.9 (5)
C1i—C1—C2—C3176.2 (4)C1—C6—C7—O2176.5 (3)
C1—C2—C3—C40.1 (6)C12—N1—C8—O3177.6 (4)
C2—C3—C4—C51.3 (7)C12—N1—C8—C90.2 (6)
C3—C4—C5—C60.7 (7)O3—C8—C9—C10179.5 (4)
C4—C5—C6—C11.0 (6)N1—C8—C9—C102.2 (6)
C4—C5—C6—C7177.6 (4)C8—C9—C10—C112.9 (7)
C2—C1—C6—C52.1 (5)C9—C10—C11—C121.4 (7)
C1i—C1—C6—C5176.2 (3)C10—C11—C12—N10.6 (6)
C2—C1—C6—C7176.5 (3)C10—C11—C12—C13178.8 (4)
C1i—C1—C6—C72.4 (5)C8—N1—C12—C111.3 (6)
C5—C6—C7—O1174.1 (4)C8—N1—C12—C13178.2 (4)
C1—C6—C7—O14.5 (6)
Symmetry code: (i) x, y, z+1/2.
(II-b) 1,1,6,6-tetraphenyl-2,4-hexdiyne-1,6-diol–1-methyl-2-(1H)-pyridone (1/2) top
Crystal data top
C30H22O2·2C6H7NOZ = 1
Mr = 632.73F(000) = 334
Triclinic, P1Dx = 1.218 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.305 (1) ÅCell parameters from 8783 reflections
b = 9.369 (2) Åθ = 1.6–25.9°
c = 13.292 (3) ŵ = 0.08 mm1
α = 77.32 (2)°T = 293 K
β = 89.46 (2)°Block, clourless
γ = 76.57 (3)°0.30 × 0.20 × 0.10 mm
V = 862.4 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2398 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.027
Graphite monochromatorθmax = 25.9°, θmin = 1.6°
phi– and ω–scansh = 08
8783 measured reflectionsk = 1011
3182 independent reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.135 w = 1/[σ2(Fo2) + (0.0823P)2 + 0.1172P]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.016
3182 reflectionsΔρmax = 0.16 e Å3
220 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.207 (16)
Crystal data top
C30H22O2·2C6H7NOγ = 76.57 (3)°
Mr = 632.73V = 862.4 (3) Å3
Triclinic, P1Z = 1
a = 7.305 (1) ÅMo Kα radiation
b = 9.369 (2) ŵ = 0.08 mm1
c = 13.292 (3) ÅT = 293 K
α = 77.32 (2)°0.30 × 0.20 × 0.10 mm
β = 89.46 (2)°
Data collection top
Nonius KappaCCD
diffractometer
2398 reflections with I > 2σ(I)
8783 measured reflectionsRint = 0.027
3182 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 0.98Δρmax = 0.16 e Å3
3182 reflectionsΔρmin = 0.15 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.72411 (14)0.31208 (12)0.73995 (8)0.0458 (3)
H1010.73830.24670.70650.079 (7)*
O20.7501 (2)0.11080 (15)0.62033 (10)0.0747 (4)
N10.72456 (19)0.04472 (16)0.46798 (11)0.0546 (4)
C10.9785 (2)0.47211 (17)0.54999 (11)0.0443 (4)
C20.9418 (2)0.42336 (17)0.63672 (10)0.0428 (4)
C30.8938 (2)0.36020 (16)0.74321 (10)0.0363 (4)
C40.8595 (2)0.48128 (17)0.80710 (10)0.0410 (4)
C50.9291 (3)0.6085 (2)0.77981 (14)0.0602 (5)
H50.99510.62400.71970.072*
C60.9024 (3)0.7135 (2)0.84048 (18)0.0796 (6)
H60.94800.79980.82020.095*
C70.8093 (3)0.6910 (3)0.92987 (18)0.0760 (6)
H70.79360.76080.97130.091*
C80.7394 (3)0.5655 (3)0.95835 (14)0.0740 (6)
H80.67560.55031.01920.089*
C90.7629 (3)0.4599 (2)0.89711 (12)0.0579 (5)
H90.71370.37520.91670.070*
C101.05939 (19)0.22999 (16)0.79430 (9)0.0354 (3)
C111.0265 (2)0.09593 (17)0.85050 (11)0.0447 (4)
H110.90410.08310.85550.054*
C121.1750 (3)0.01938 (19)0.89941 (13)0.0555 (5)
H121.15120.10870.93730.067*
C131.3565 (2)0.0026 (2)0.89226 (13)0.0578 (5)
H131.45580.08050.92440.069*
C141.3906 (2)0.1303 (2)0.83720 (14)0.0623 (5)
H141.51330.14280.83280.075*
C151.2431 (2)0.2456 (2)0.78835 (12)0.0515 (4)
H151.26790.33480.75100.062*
C160.7005 (2)0.1523 (2)0.52692 (13)0.0519 (4)
C170.6240 (3)0.3025 (2)0.47230 (16)0.0648 (5)
H170.60520.37930.50810.078*
C180.5777 (3)0.3381 (2)0.37015 (16)0.0710 (6)
H180.52730.43780.33690.085*
C190.6052 (4)0.2259 (3)0.31494 (17)0.0831 (7)
H190.57400.24920.24460.100*
C200.6780 (3)0.0826 (3)0.36508 (15)0.0728 (6)
H200.69700.00710.32820.087*
C210.8020 (3)0.1124 (2)0.52008 (18)0.0745 (6)
H21A0.92040.12120.55450.112*
H21B0.82080.17400.47010.112*
H21C0.71570.14530.56980.112*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0457 (6)0.0496 (7)0.0444 (6)0.0141 (5)0.0007 (4)0.0120 (5)
O20.1014 (11)0.0638 (9)0.0615 (9)0.0169 (8)0.0126 (7)0.0213 (7)
N10.0515 (8)0.0506 (9)0.0670 (9)0.0102 (6)0.0052 (6)0.0265 (7)
C10.0636 (10)0.0373 (8)0.0310 (7)0.0114 (7)0.0023 (6)0.0063 (6)
C20.0590 (9)0.0370 (8)0.0317 (8)0.0100 (7)0.0020 (6)0.0077 (6)
C30.0451 (8)0.0365 (8)0.0278 (7)0.0123 (6)0.0037 (5)0.0056 (6)
C40.0468 (8)0.0408 (9)0.0322 (7)0.0026 (6)0.0038 (6)0.0094 (6)
C50.0793 (12)0.0525 (11)0.0566 (10)0.0234 (9)0.0055 (9)0.0203 (8)
C60.1010 (17)0.0639 (14)0.0867 (15)0.0223 (12)0.0045 (13)0.0406 (12)
C70.0730 (13)0.0749 (15)0.0828 (15)0.0098 (11)0.0186 (11)0.0510 (12)
C80.0701 (13)0.0974 (17)0.0495 (11)0.0085 (11)0.0046 (9)0.0361 (11)
C90.0651 (11)0.0627 (11)0.0424 (9)0.0036 (9)0.0087 (8)0.0165 (8)
C100.0441 (8)0.0392 (8)0.0250 (6)0.0112 (6)0.0052 (5)0.0102 (6)
C110.0481 (9)0.0419 (9)0.0428 (8)0.0130 (7)0.0008 (6)0.0041 (7)
C120.0701 (12)0.0411 (9)0.0497 (9)0.0089 (8)0.0075 (8)0.0023 (7)
C130.0544 (10)0.0590 (11)0.0519 (10)0.0068 (8)0.0118 (8)0.0161 (8)
C140.0415 (9)0.0829 (14)0.0619 (11)0.0127 (9)0.0005 (8)0.0169 (10)
C150.0505 (9)0.0579 (10)0.0476 (9)0.0212 (8)0.0065 (7)0.0064 (8)
C160.0510 (9)0.0521 (10)0.0588 (10)0.0139 (8)0.0012 (7)0.0234 (8)
C170.0665 (12)0.0497 (11)0.0795 (13)0.0056 (9)0.0115 (10)0.0253 (10)
C180.0672 (12)0.0603 (12)0.0793 (14)0.0095 (10)0.0110 (10)0.0077 (11)
C190.0960 (16)0.0921 (18)0.0599 (12)0.0164 (13)0.0069 (11)0.0198 (12)
C200.0850 (14)0.0788 (15)0.0631 (12)0.0136 (12)0.0048 (10)0.0397 (11)
C210.0712 (13)0.0487 (11)0.1050 (16)0.0083 (9)0.0065 (11)0.0267 (11)
Geometric parameters (Å, º) top
O1—C31.4179 (18)C10—C151.383 (2)
O1—H1010.8200C10—C111.385 (2)
O2—C161.247 (2)C11—C121.388 (2)
N1—C201.361 (2)C11—H110.9300
N1—C161.386 (2)C12—C131.371 (3)
N1—C211.463 (3)C12—H120.9300
C1—C21.196 (2)C13—C141.374 (3)
C1—C1i1.379 (3)C13—H130.9300
C2—C31.482 (2)C14—C151.383 (3)
C3—C41.535 (2)C14—H140.9300
C3—C101.542 (2)C15—H150.9300
C4—C51.379 (2)C16—C171.419 (3)
C4—C91.384 (2)C17—C181.352 (3)
C5—C61.383 (3)C17—H170.9300
C5—H50.9300C18—C191.386 (3)
C6—C71.364 (3)C18—H180.9300
C6—H60.9300C19—C201.346 (3)
C7—C81.367 (3)C19—H190.9300
C7—H70.9300C20—H200.9300
C8—C91.394 (3)C21—H21A0.9600
C8—H80.9300C21—H21B0.9600
C9—H90.9300C21—H21C0.9600
C3—O1—H101109.5C12—C11—H11119.8
C20—N1—C16121.67 (16)C13—C12—C11120.48 (16)
C20—N1—C21120.56 (16)C13—C12—H12119.8
C16—N1—C21117.78 (16)C11—C12—H12119.8
C2—C1—C1i179.7 (3)C12—C13—C14119.51 (16)
C1—C2—C3178.47 (16)C12—C13—H13120.2
O1—C3—C2109.36 (11)C14—C13—H13120.2
O1—C3—C4107.16 (11)C13—C14—C15120.24 (16)
C2—C3—C4110.50 (12)C13—C14—H14119.9
O1—C3—C10111.97 (12)C15—C14—H14119.9
C2—C3—C10108.85 (12)C14—C15—C10120.94 (16)
C4—C3—C10109.00 (11)C14—C15—H15119.5
C5—C4—C9118.65 (15)C10—C15—H15119.5
C5—C4—C3121.89 (14)O2—C16—N1118.57 (16)
C9—C4—C3119.41 (14)O2—C16—C17126.20 (16)
C4—C5—C6120.95 (18)N1—C16—C17115.22 (16)
C4—C5—H5119.5C18—C17—C16122.36 (18)
C6—C5—H5119.5C18—C17—H17118.8
C7—C6—C5120.2 (2)C16—C17—H17118.8
C7—C6—H6119.9C17—C18—C19120.0 (2)
C5—C6—H6119.9C17—C18—H18120.0
C6—C7—C8119.69 (18)C19—C18—H18120.0
C6—C7—H7120.2C20—C19—C18118.7 (2)
C8—C7—H7120.2C20—C19—H19120.6
C7—C8—C9120.65 (19)C18—C19—H19120.6
C7—C8—H8119.7C19—C20—N1122.06 (18)
C9—C8—H8119.7C19—C20—H20119.0
C4—C9—C8119.81 (19)N1—C20—H20119.0
C4—C9—H9120.1N1—C21—H21A109.5
C8—C9—H9120.1N1—C21—H21B109.5
C15—C10—C11118.33 (14)H21A—C21—H21B109.5
C15—C10—C3121.14 (13)N1—C21—H21C109.5
C11—C10—C3120.49 (13)H21A—C21—H21C109.5
C10—C11—C12120.49 (15)H21B—C21—H21C109.5
C10—C11—H11119.8
Symmetry code: (i) x+2, y+1, z+1.
(II-c) 1,1,6,6-tetraphenyl-2,4-hexdiyne-1,6-diol–4-methyl-2-(1H)-pyridone (1/2) top
Crystal data top
C30H22O2·2C6H7NOZ = 1
Mr = 632.73F(000) = 334.0
Triclinic, P1Dx = 1.208 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.640 (2) ÅCell parameters from 8509 reflections
b = 10.203 (2) Åθ = 2.1–25.8°
c = 11.403 (3) ŵ = 0.08 mm1
α = 106.71 (3)°T = 293 K
β = 111.54 (2)°Prism, colourless
γ = 95.87 (2)°0.25 × 0.10 × 0.05 mm
V = 870.8 (4) Å3
Data collection top
Nonius KappaCCD
diffractometer
1947 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.8°, θmin = 2.1°
phi– and ω–scansh = 010
8509 measured reflectionsk = 1212
3215 independent reflectionsl = 1312
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.0731P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max < 0.001
3215 reflectionsΔρmax = 0.14 e Å3
220 parametersΔρmin = 0.15 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.086 (10)
Crystal data top
C30H22O2·2C6H7NOγ = 95.87 (2)°
Mr = 632.73V = 870.8 (4) Å3
Triclinic, P1Z = 1
a = 8.640 (2) ÅMo Kα radiation
b = 10.203 (2) ŵ = 0.08 mm1
c = 11.403 (3) ÅT = 293 K
α = 106.71 (3)°0.25 × 0.10 × 0.05 mm
β = 111.54 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1947 reflections with I > 2σ(I)
8509 measured reflectionsRint = 0.034
3215 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 0.98Δρmax = 0.14 e Å3
3215 reflectionsΔρmin = 0.15 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.62987 (16)0.15238 (11)0.24833 (12)0.0502 (4)
H1O10.63120.15510.32130.060*
O20.62699 (18)0.13777 (15)0.48594 (15)0.0700 (4)
N10.7118 (2)0.02291 (18)0.58322 (17)0.0632 (5)
H1N10.60610.06380.55470.076*
C10.9242 (2)0.45897 (18)0.44718 (17)0.0457 (5)
C20.7922 (2)0.38783 (18)0.35623 (18)0.0438 (4)
C30.63810 (19)0.29019 (16)0.24071 (16)0.0377 (4)
C40.65921 (18)0.28371 (17)0.11167 (16)0.0378 (4)
C50.6658 (2)0.16042 (19)0.02543 (18)0.0488 (5)
H50.65600.07800.04440.059*
C60.6869 (3)0.1591 (2)0.0900 (2)0.0619 (6)
H60.69040.07530.14820.074*
C70.7026 (3)0.2794 (2)0.1192 (2)0.0643 (6)
H70.71870.27800.19580.077*
C80.6944 (3)0.4029 (2)0.0340 (2)0.0660 (6)
H80.70390.48500.05360.079*
C90.6723 (2)0.4046 (2)0.0800 (2)0.0553 (5)
H90.66600.48810.13660.066*
C100.4727 (2)0.33443 (18)0.23599 (17)0.0415 (4)
C110.4676 (3)0.4546 (2)0.3267 (2)0.0573 (5)
H110.56910.51460.39510.069*
C120.3115 (3)0.4873 (3)0.3172 (3)0.0781 (7)
H120.30910.56850.37920.094*
C130.1615 (3)0.3993 (3)0.2161 (3)0.0877 (9)
H130.05750.42090.20990.105*
C140.1646 (3)0.2806 (3)0.1246 (3)0.0817 (8)
H140.06260.22170.05600.098*
C150.3185 (2)0.2475 (2)0.1335 (2)0.0595 (6)
H150.31940.16650.07040.071*
C160.8338 (3)0.0784 (3)0.6539 (2)0.0758 (7)
H160.80170.15970.66910.091*
C171.0003 (3)0.0172 (3)0.7020 (2)0.0769 (7)
H171.08320.05600.75000.092*
C181.0489 (3)0.1056 (2)0.6797 (2)0.0676 (6)
C190.9245 (3)0.1592 (2)0.6076 (2)0.0647 (6)
H190.95610.24060.59250.078*
C200.7493 (3)0.0947 (2)0.5554 (2)0.0584 (5)
C211.2355 (3)0.1750 (3)0.7349 (3)0.0949 (8)
H21A1.29890.10440.72110.142*
H22B1.27700.22700.82940.142*
H21C1.24990.23790.68920.142*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0596 (8)0.0455 (7)0.0488 (8)0.0135 (6)0.0208 (7)0.0233 (6)
O20.0747 (9)0.0861 (10)0.0768 (10)0.0380 (8)0.0366 (8)0.0544 (9)
N10.0710 (11)0.0750 (12)0.0653 (11)0.0328 (9)0.0340 (9)0.0425 (10)
C10.0380 (9)0.0552 (11)0.0386 (10)0.0056 (8)0.0131 (8)0.0147 (9)
C20.0403 (10)0.0499 (10)0.0409 (10)0.0101 (8)0.0169 (9)0.0157 (8)
C30.0348 (8)0.0365 (9)0.0360 (9)0.0054 (7)0.0092 (7)0.0129 (7)
C40.0315 (8)0.0428 (10)0.0339 (9)0.0062 (7)0.0097 (7)0.0122 (8)
C50.0491 (10)0.0468 (11)0.0447 (11)0.0092 (8)0.0176 (9)0.0109 (9)
C60.0707 (13)0.0618 (13)0.0497 (13)0.0158 (10)0.0303 (11)0.0076 (10)
C70.0697 (13)0.0825 (16)0.0487 (13)0.0171 (12)0.0332 (11)0.0234 (12)
C80.0867 (15)0.0662 (13)0.0633 (14)0.0204 (11)0.0405 (12)0.0354 (11)
C90.0730 (13)0.0471 (11)0.0539 (12)0.0164 (10)0.0331 (11)0.0195 (9)
C100.0392 (9)0.0495 (10)0.0433 (10)0.0122 (8)0.0184 (8)0.0247 (9)
C110.0589 (12)0.0772 (14)0.0461 (12)0.0286 (10)0.0258 (10)0.0268 (11)
C120.0937 (18)0.1131 (19)0.0725 (16)0.0649 (16)0.0554 (15)0.0549 (15)
C130.0664 (16)0.152 (3)0.105 (2)0.0605 (17)0.0569 (16)0.091 (2)
C140.0372 (11)0.115 (2)0.103 (2)0.0137 (12)0.0211 (12)0.0647 (18)
C150.0391 (10)0.0654 (12)0.0664 (14)0.0049 (9)0.0121 (9)0.0279 (11)
C160.0858 (17)0.0876 (16)0.0818 (17)0.0440 (14)0.0394 (14)0.0549 (14)
C170.0816 (17)0.0893 (17)0.0742 (16)0.0442 (14)0.0298 (13)0.0443 (14)
C180.0713 (14)0.0750 (15)0.0574 (14)0.0292 (12)0.0277 (11)0.0193 (12)
C190.0734 (14)0.0650 (13)0.0645 (14)0.0257 (11)0.0330 (12)0.0262 (11)
C200.0770 (14)0.0671 (13)0.0517 (12)0.0355 (11)0.0357 (11)0.0317 (11)
C210.0763 (16)0.0922 (18)0.091 (2)0.0231 (14)0.0173 (14)0.0187 (15)
Geometric parameters (Å, º) top
O1—C31.430 (2)C10—C111.375 (3)
O1—H1O10.8200C10—C151.395 (3)
O2—C201.272 (3)C11—C121.395 (3)
N1—C161.357 (3)C11—H110.9300
N1—C201.364 (3)C12—C131.373 (4)
N1—H1N10.8600C12—H120.9300
C1—C21.197 (2)C13—C141.362 (4)
C1—C1i1.380 (4)C13—H130.9300
C2—C31.479 (3)C14—C151.381 (3)
C3—C101.529 (3)C14—H140.9300
C3—C41.532 (3)C15—H150.9300
C4—C51.377 (3)C16—C171.342 (3)
C4—C91.386 (3)C16—H160.9300
C5—C61.391 (3)C17—C181.402 (3)
C5—H50.9300C17—H170.9300
C6—C71.367 (3)C18—C191.364 (3)
C6—H60.9300C18—C211.504 (3)
C7—C81.378 (3)C19—C201.410 (3)
C7—H70.9300C19—H190.9300
C8—C91.378 (3)C21—H21A0.9600
C8—H80.9300C21—H22B0.9600
C9—H90.9300C21—H21C0.9600
C3—O1—H1O1109.5C12—C11—H11119.7
C16—N1—C20123.0 (2)C13—C12—C11119.9 (2)
C16—N1—H1N1118.5C13—C12—H12120.1
C20—N1—H1N1118.5C11—C12—H12120.1
C2—C1—C1i179.5 (2)C14—C13—C12120.2 (2)
C1—C2—C3174.69 (19)C14—C13—H13119.9
O1—C3—C2108.84 (15)C12—C13—H13119.9
O1—C3—C10109.47 (12)C13—C14—C15120.2 (2)
C2—C3—C10112.85 (15)C13—C14—H14119.9
O1—C3—C4107.53 (14)C15—C14—H14119.9
C2—C3—C4107.83 (15)C14—C15—C10120.7 (2)
C10—C3—C4110.17 (13)C14—C15—H15119.7
C5—C4—C9118.68 (18)C10—C15—H15119.7
C5—C4—C3121.74 (16)C17—C16—N1120.6 (2)
C9—C4—C3119.58 (16)C17—C16—H16119.7
C4—C5—C6120.04 (19)N1—C16—H16119.7
C4—C5—H5120.0C16—C17—C18119.8 (2)
C6—C5—H5120.0C16—C17—H17120.1
C7—C6—C5120.82 (19)C18—C17—H17120.1
C7—C6—H6119.6C19—C18—C17118.7 (2)
C5—C6—H6119.6C19—C18—C21121.6 (2)
C6—C7—C8119.5 (2)C17—C18—C21119.7 (2)
C6—C7—H7120.3C18—C19—C20121.9 (2)
C8—C7—H7120.3C18—C19—H19119.1
C9—C8—C7120.0 (2)C20—C19—H19119.1
C9—C8—H8120.0O2—C20—N1118.82 (19)
C7—C8—H8120.0O2—C20—C19125.17 (19)
C8—C9—C4121.03 (19)N1—C20—C19116.01 (19)
C8—C9—H9119.5C18—C21—H21A109.5
C4—C9—H9119.5C18—C21—H22B109.5
C11—C10—C15118.40 (19)H21A—C21—H22B109.5
C11—C10—C3123.75 (16)C18—C21—H21C109.5
C15—C10—C3117.85 (17)H21A—C21—H21C109.5
C10—C11—C12120.5 (2)H22B—C21—H21C109.5
C10—C11—H11119.7
C1i—C1—C2—C3123 (32)O1—C3—C10—C1556.7 (2)
C1—C2—C3—O148.3 (19)C2—C3—C10—C15178.04 (14)
C1—C2—C3—C10170.1 (18)C4—C3—C10—C1561.4 (2)
C1—C2—C3—C468.0 (19)C15—C10—C11—C120.9 (3)
O1—C3—C4—C50.6 (2)C3—C10—C11—C12179.13 (17)
C2—C3—C4—C5117.78 (17)C10—C11—C12—C130.4 (3)
C10—C3—C4—C5118.67 (17)C11—C12—C13—C140.3 (3)
O1—C3—C4—C9179.40 (14)C12—C13—C14—C150.4 (4)
C2—C3—C4—C962.2 (2)C13—C14—C15—C100.2 (3)
C10—C3—C4—C961.36 (19)C11—C10—C15—C140.9 (3)
C9—C4—C5—C60.7 (3)C3—C10—C15—C14179.18 (17)
C3—C4—C5—C6179.30 (15)C20—N1—C16—C170.9 (4)
C4—C5—C6—C70.5 (3)N1—C16—C17—C180.3 (4)
C5—C6—C7—C81.1 (3)C16—C17—C18—C190.7 (4)
C6—C7—C8—C90.7 (3)C16—C17—C18—C21179.4 (2)
C7—C8—C9—C40.5 (3)C17—C18—C19—C200.0 (3)
C5—C4—C9—C81.1 (3)C21—C18—C19—C20179.9 (2)
C3—C4—C9—C8178.83 (17)C16—N1—C20—O2178.4 (2)
O1—C3—C10—C11123.40 (19)C16—N1—C20—C191.5 (3)
C2—C3—C10—C112.0 (2)C18—C19—C20—O2178.9 (2)
C4—C3—C10—C11118.6 (2)C18—C19—C20—N11.0 (3)
Symmetry code: (i) x+2, y+1, z+1.
(III-d) 4,4',4''-(ethane-1,1,1-triyl)triphenol–6-methyl-2-(1H)-pyridone–water (1/3/1) top
Crystal data top
C20H18O3·3C6H7NO·H2OF(000) = 1361.6
Mr = 651.74Dx = 1.239 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 23701 reflections
a = 10.634 (2) Åθ = 1.4–25.0°
b = 11.484 (2) ŵ = 0.09 mm1
c = 28.574 (4) ÅT = 293 K
β = 96.43 (2)°Prism, colorless
V = 3467.5 (10) Å30.35 × 0.30 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3757 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.0°, θmin = 1.4°
phi– and ω–scansh = 012
23701 measured reflectionsk = 013
6109 independent reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.83 w = 1/[σ2(Fo2) + (0.1224P)2]
where P = (Fo2 + 2Fc2)/3
6109 reflections(Δ/σ)max = 0.002
481 parametersΔρmax = 0.22 e Å3
20 restraintsΔρmin = 0.23 e Å3
Crystal data top
C20H18O3·3C6H7NO·H2OV = 3467.5 (10) Å3
Mr = 651.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.634 (2) ŵ = 0.09 mm1
b = 11.484 (2) ÅT = 293 K
c = 28.574 (4) Å0.35 × 0.30 × 0.09 mm
β = 96.43 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3757 reflections with I > 2σ(I)
23701 measured reflectionsRint = 0.062
6109 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04720 restraints
wR(F2) = 0.161H atoms treated by a mixture of independent and constrained refinement
S = 0.83Δρmax = 0.22 e Å3
6109 reflectionsΔρmin = 0.23 e Å3
481 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.78769 (16)0.88810 (13)0.43141 (6)0.0540 (5)
H1010.72350.87870.44440.065*
O21.23738 (16)0.56931 (15)0.18889 (6)0.0561 (5)
H1O21.20710.59030.16260.067*
O30.39912 (17)0.37168 (17)0.19938 (7)0.0656 (5)
H1O30.34520.42290.19890.079*
C10.8978 (2)0.39579 (19)0.34566 (9)0.0512 (6)
H1A0.92600.33200.32780.061*
H1B0.82730.37130.36150.061*
H1C0.96560.42070.36850.061*
C20.8566 (2)0.49856 (17)0.31197 (7)0.0373 (5)
C30.8394 (2)0.60608 (17)0.34304 (7)0.0356 (5)
C40.8987 (2)0.71181 (17)0.33791 (8)0.0376 (5)
H40.95130.72050.31430.045*
C50.8811 (2)0.80530 (18)0.36739 (8)0.0403 (5)
H50.92200.87560.36330.048*
C60.8037 (2)0.79416 (17)0.40244 (8)0.0386 (5)
C70.7436 (2)0.6899 (2)0.40835 (8)0.0481 (6)
H70.69140.68140.43220.058*
C80.7614 (2)0.59797 (19)0.37870 (8)0.0483 (6)
H80.71960.52820.38280.058*
C90.9564 (2)0.51979 (17)0.27829 (8)0.0364 (5)
C101.0837 (2)0.5001 (2)0.29213 (9)0.0522 (6)
H101.10810.47450.32270.063*
C111.1756 (2)0.5172 (2)0.26240 (9)0.0574 (7)
H111.25990.50210.27290.069*
C121.1427 (2)0.55651 (18)0.21716 (8)0.0421 (6)
C131.0175 (2)0.58060 (19)0.20285 (8)0.0429 (6)
H130.99400.60940.17270.051*
C140.9268 (2)0.56221 (18)0.23303 (8)0.0422 (6)
H140.84270.57890.22260.051*
C150.7301 (2)0.46699 (16)0.28294 (7)0.0362 (5)
C160.6336 (2)0.54694 (18)0.27213 (8)0.0440 (6)
H160.64320.62220.28400.053*
C170.5236 (2)0.5178 (2)0.24427 (8)0.0467 (6)
H170.46080.57360.23740.056*
C180.5062 (2)0.4070 (2)0.22656 (8)0.0453 (6)
C190.6017 (2)0.32628 (19)0.23592 (9)0.0500 (6)
H190.59170.25130.22370.060*
C200.7120 (2)0.35640 (18)0.26325 (9)0.0471 (6)
H200.77610.30140.26870.056*
O40.62796 (19)1.19711 (17)0.43940 (7)0.0703 (6)
N10.4159 (2)1.22869 (16)0.43493 (8)0.0537 (5)
H1N10.41991.21430.46460.064*
C210.1930 (3)1.2541 (3)0.44175 (13)0.0810 (9)
H21A0.11391.25780.42200.097*
H21B0.20081.32040.46230.097*
H21C0.19591.18410.46020.097*
C220.2998 (3)1.2538 (2)0.41169 (11)0.0651 (8)
C230.2909 (4)1.2760 (3)0.36518 (12)0.0802 (10)
H230.21271.29260.34850.096*
C240.4003 (4)1.2739 (3)0.34212 (13)0.0890 (11)
H240.39411.28910.31000.107*
C250.5145 (3)1.2504 (3)0.36569 (11)0.0748 (9)
H250.58611.25100.34980.090*
C260.5261 (3)1.2247 (2)0.41454 (10)0.0591 (7)
O50.57334 (18)0.86075 (16)0.47216 (6)0.0631 (5)
N20.36052 (19)0.88775 (16)0.46732 (7)0.0476 (5)
H2N20.36400.86520.49610.057*
C270.1370 (3)0.9128 (3)0.47380 (11)0.0676 (8)
H27A0.05890.91920.45350.081*
H27B0.14320.97570.49610.081*
H27C0.13890.83990.49030.081*
C280.2447 (3)0.9184 (2)0.44521 (9)0.0532 (7)
C290.2366 (3)0.9513 (2)0.39996 (10)0.0633 (8)
H290.15880.97150.38380.076*
C300.3474 (3)0.9549 (2)0.37710 (10)0.0719 (8)
H300.34190.97790.34570.086*
C310.4605 (3)0.9259 (2)0.39957 (10)0.0640 (7)
H310.53240.92930.38380.077*
C320.4707 (3)0.8900 (2)0.44735 (9)0.0512 (6)
O6A0.3836 (3)0.5162 (3)0.53700 (12)0.0924 (10)0.76
N30.3659 (3)0.5580 (2)0.46137 (12)0.0784 (9)
H3N30.44460.53900.46350.118*
C330.3849 (5)0.6035 (3)0.38078 (16)0.1122 (16)
H33A0.46870.57730.39190.168*
H33B0.38840.68290.37040.168*
H33C0.35040.55550.35500.168*
C34A0.3114 (5)0.5946 (3)0.41660 (18)0.0792 (14)0.76
C350.1848 (5)0.6235 (3)0.4159 (2)0.1020 (16)
H35A0.13800.65360.38920.153*0.76
C36A0.1246 (6)0.6087 (5)0.4548 (3)0.116 (2)0.76
H36A0.03770.62140.45180.174*0.76
C370.1795 (4)0.5754 (3)0.4982 (2)0.1078 (15)
H370.13730.57040.52500.162*
C38A0.3169 (4)0.5477 (3)0.49915 (19)0.0760 (12)0.76
O6B0.5372 (7)0.5195 (7)0.4429 (3)0.065 (2)0.24
C34B0.2312 (10)0.5891 (9)0.4628 (4)0.056 (3)0.24
C36B0.2511 (15)0.6470 (11)0.3805 (5)0.085 (4)0.24
C38B0.4350 (11)0.5558 (9)0.4336 (4)0.058 (3)0.24
O1W0.8354 (2)1.1149 (2)0.40034 (7)0.0657 (6)
H1W0.819 (3)1.039 (3)0.4092 (12)0.101 (12)*
H2W0.780 (3)1.154 (3)0.4081 (11)0.078 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0531 (11)0.0545 (9)0.0577 (11)0.0031 (8)0.0203 (9)0.0151 (8)
O20.0381 (10)0.0860 (12)0.0468 (10)0.0077 (8)0.0161 (8)0.0075 (8)
O30.0430 (11)0.0866 (12)0.0663 (13)0.0133 (9)0.0019 (9)0.0245 (10)
C10.0527 (16)0.0504 (13)0.0506 (16)0.0073 (11)0.0068 (13)0.0095 (11)
C20.0365 (13)0.0370 (11)0.0393 (13)0.0041 (9)0.0078 (10)0.0019 (9)
C30.0309 (12)0.0424 (11)0.0334 (12)0.0015 (9)0.0036 (10)0.0013 (9)
C40.0314 (12)0.0456 (12)0.0370 (12)0.0022 (9)0.0095 (10)0.0030 (9)
C50.0346 (13)0.0413 (11)0.0461 (14)0.0021 (9)0.0089 (11)0.0022 (9)
C60.0334 (13)0.0446 (12)0.0376 (13)0.0031 (9)0.0027 (10)0.0046 (9)
C70.0501 (16)0.0563 (14)0.0416 (14)0.0077 (11)0.0219 (12)0.0050 (11)
C80.0529 (16)0.0488 (13)0.0459 (14)0.0126 (11)0.0181 (12)0.0037 (10)
C90.0323 (13)0.0393 (11)0.0378 (13)0.0045 (9)0.0043 (10)0.0050 (9)
C100.0390 (15)0.0809 (17)0.0364 (14)0.0131 (12)0.0034 (12)0.0014 (12)
C110.0289 (14)0.0953 (19)0.0481 (16)0.0127 (12)0.0042 (12)0.0008 (13)
C120.0363 (14)0.0517 (13)0.0395 (13)0.0053 (10)0.0101 (11)0.0082 (10)
C130.0368 (14)0.0553 (13)0.0363 (13)0.0032 (10)0.0035 (11)0.0029 (10)
C140.0286 (13)0.0551 (13)0.0425 (14)0.0026 (10)0.0025 (11)0.0059 (10)
C150.0349 (13)0.0366 (11)0.0388 (12)0.0012 (9)0.0116 (10)0.0010 (9)
C160.0375 (14)0.0427 (12)0.0525 (15)0.0013 (10)0.0081 (11)0.0078 (10)
C170.0309 (13)0.0589 (14)0.0507 (15)0.0020 (10)0.0065 (11)0.0095 (11)
C180.0367 (14)0.0598 (14)0.0413 (14)0.0132 (11)0.0132 (11)0.0094 (11)
C190.0570 (17)0.0389 (12)0.0551 (16)0.0102 (11)0.0112 (13)0.0070 (10)
C200.0476 (16)0.0380 (12)0.0566 (15)0.0013 (10)0.0101 (12)0.0001 (10)
O40.0592 (14)0.0943 (14)0.0603 (12)0.0130 (10)0.0193 (11)0.0019 (10)
N10.0556 (14)0.0577 (12)0.0490 (13)0.0110 (10)0.0113 (11)0.0002 (9)
C210.057 (2)0.086 (2)0.101 (3)0.0173 (16)0.0119 (19)0.0005 (18)
C220.062 (2)0.0554 (15)0.076 (2)0.0120 (13)0.0022 (16)0.0033 (13)
C230.081 (2)0.081 (2)0.075 (2)0.0169 (17)0.009 (2)0.0226 (16)
C240.104 (3)0.100 (2)0.063 (2)0.017 (2)0.011 (2)0.0274 (17)
C250.086 (2)0.085 (2)0.0563 (19)0.0075 (17)0.0227 (18)0.0162 (15)
C260.0600 (19)0.0619 (15)0.0569 (18)0.0079 (13)0.0131 (15)0.0016 (12)
O50.0522 (12)0.0878 (12)0.0514 (11)0.0112 (9)0.0152 (10)0.0044 (9)
N20.0465 (13)0.0594 (12)0.0377 (11)0.0048 (9)0.0074 (10)0.0085 (9)
C270.0456 (17)0.088 (2)0.069 (2)0.0047 (14)0.0073 (15)0.0141 (15)
C280.0539 (18)0.0549 (14)0.0504 (16)0.0042 (11)0.0041 (13)0.0115 (11)
C290.065 (2)0.0734 (17)0.0503 (17)0.0098 (14)0.0003 (15)0.0027 (13)
C300.086 (2)0.0816 (19)0.0490 (17)0.0112 (17)0.0104 (17)0.0054 (14)
C310.068 (2)0.0798 (18)0.0478 (17)0.0078 (15)0.0216 (15)0.0010 (13)
C320.0509 (17)0.0576 (14)0.0462 (15)0.0050 (12)0.0100 (13)0.0105 (11)
O6A0.072 (2)0.118 (2)0.089 (2)0.0003 (18)0.0161 (19)0.0423 (19)
N30.069 (2)0.0609 (15)0.096 (2)0.0008 (13)0.0327 (19)0.0161 (15)
C330.132 (4)0.085 (2)0.106 (3)0.013 (2)0.048 (3)0.018 (2)
C34A0.090 (4)0.058 (2)0.081 (3)0.006 (2)0.028 (3)0.006 (2)
C350.079 (3)0.070 (2)0.140 (5)0.009 (2)0.062 (3)0.001 (3)
C36A0.066 (4)0.082 (3)0.193 (8)0.006 (3)0.021 (5)0.028 (4)
C370.064 (3)0.089 (2)0.161 (5)0.006 (2)0.029 (3)0.005 (3)
C38A0.062 (3)0.071 (2)0.092 (4)0.006 (2)0.006 (3)0.022 (2)
O6B0.025 (4)0.109 (6)0.058 (5)0.012 (4)0.006 (4)0.054 (4)
C34B0.030 (7)0.061 (6)0.075 (9)0.002 (5)0.001 (6)0.009 (6)
C36B0.089 (12)0.063 (8)0.100 (12)0.010 (7)0.003 (10)0.002 (8)
C38B0.078 (10)0.064 (7)0.033 (6)0.021 (6)0.017 (7)0.024 (5)
O1W0.0719 (15)0.0722 (13)0.0573 (12)0.0069 (12)0.0270 (11)0.0001 (10)
Geometric parameters (Å, º) top
O1—C61.382 (3)C24—H240.9300
O1—H1010.8200C25—C261.419 (4)
O2—C121.368 (3)C25—H250.9300
O2—H1O20.8200O5—C321.278 (3)
O3—C181.366 (3)N2—C321.360 (3)
O3—H1O30.8200N2—C281.366 (3)
C1—C21.555 (3)N2—H2N20.8600
C1—H1A0.9600C27—C281.481 (4)
C1—H1B0.9600C27—H27A0.9600
C1—H1C0.9600C27—H27B0.9600
C2—C91.530 (3)C27—H27C0.9600
C2—C31.543 (3)C28—C291.341 (4)
C2—C151.542 (3)C29—C301.411 (4)
C3—C81.387 (3)C29—H290.9300
C3—C41.383 (3)C30—C311.341 (4)
C4—C51.390 (3)C30—H300.9300
C4—H40.9300C31—C321.419 (4)
C5—C61.372 (3)C31—H310.9300
C5—H50.9300O6A—O6Bi1.048 (7)
C6—C71.377 (3)O6A—C38A1.278 (5)
C7—C81.380 (3)N3—C38B1.140 (10)
C7—H70.9300N3—C38A1.256 (5)
C8—H80.9300N3—C34A1.408 (5)
C9—C101.386 (3)N3—C34B1.482 (11)
C9—C141.385 (3)N3—H3N30.8600
C10—C111.378 (4)C33—C34A1.359 (7)
C10—H100.9300C33—C38B1.638 (11)
C11—C121.377 (4)C33—C36B1.507 (17)
C11—H110.9300C33—H33A0.9600
C12—C131.376 (3)C33—H33B0.9601
C13—C141.381 (3)C33—H33C0.9601
C13—H130.9300C34A—C36B1.300 (15)
C14—H140.9300C34A—C38B1.420 (13)
C15—C161.386 (3)C34A—C351.385 (7)
C15—C201.394 (3)C34A—C34B1.652 (14)
C16—C171.380 (3)C35—C36B1.324 (14)
C16—H160.9300C35—C36A1.354 (8)
C17—C181.374 (3)C35—C34B1.431 (12)
C17—H170.9300C35—H35A0.9300
C18—C191.379 (3)C36A—C34B1.153 (11)
C19—C201.378 (3)C36A—C371.365 (9)
C19—H190.9300C36A—H36A0.9299
C20—H200.9300C37—C34B1.215 (12)
O4—C261.267 (3)C37—C38A1.493 (6)
N1—C221.365 (4)C37—H370.9300
N1—C261.367 (4)C38A—C34B1.387 (12)
N1—H1N10.8600O6B—O6Ai1.048 (7)
C21—C221.499 (4)O6B—C38B1.167 (12)
C21—H21A0.9600O6B—H3N31.2226
C21—H21B0.9600C36B—H35A1.2573
C21—H21C0.9600C38B—H3N30.8702
C22—C231.346 (4)C38B—H33A1.3064
C23—C241.400 (5)O1W—H1W0.93 (4)
C23—H230.9300O1W—H2W0.79 (3)
C24—C251.348 (5)
C6—O1—H101109.5C32—C31—H31120.0
C12—O2—H1O2109.5O5—C32—N2119.0 (2)
C18—O3—H1O3109.5O5—C32—C31125.4 (3)
C2—C1—H1A109.5N2—C32—C31115.6 (2)
C2—C1—H1B109.5O6Bi—O6A—C38A155.5 (6)
H1A—C1—H1B109.5C38B—N3—C38A163.3 (7)
C2—C1—H1C109.5C38B—N3—C34A66.8 (7)
H1A—C1—H1C109.5C38A—N3—C34A129.9 (4)
H1B—C1—H1C109.5C38B—N3—C34B136.4 (8)
C9—C2—C3111.68 (16)C38A—N3—C34B60.2 (6)
C9—C2—C15108.89 (18)C34A—N3—C34B69.7 (5)
C3—C2—C15110.20 (17)C38B—N3—H3N349.2
C9—C2—C1110.05 (18)C38A—N3—H3N3114.2
C3—C2—C1107.12 (17)C34A—N3—H3N3116.0
C15—C2—C1108.85 (17)C34B—N3—H3N3174.4
C8—C3—C4116.99 (19)C34A—C33—C38B55.7 (5)
C8—C3—C2119.20 (18)C34A—C33—C36B53.6 (6)
C4—C3—C2123.8 (2)C38B—C33—C36B109.0 (8)
C3—C4—C5121.3 (2)C34A—C33—H33A108.5
C3—C4—H4119.3C38B—C33—H33A52.9
C5—C4—H4119.3C36B—C33—H33A161.1
C6—C5—C4120.17 (19)C34A—C33—H33B110.4
C6—C5—H5119.9C38B—C33—H33B125.6
C4—C5—H5119.9C36B—C33—H33B75.7
C5—C6—C7119.70 (19)H33A—C33—H33B109.5
C5—C6—O1119.27 (19)C34A—C33—H33C109.5
C7—C6—O1121.0 (2)C38B—C33—H33C124.9
C8—C7—C6119.5 (2)C36B—C33—H33C84.7
C8—C7—H7120.2H33A—C33—H33C109.5
C6—C7—H7120.2H33B—C33—H33C109.5
C7—C8—C3122.3 (2)C33—C34A—C36B69.0 (8)
C7—C8—H8118.9C33—C34A—C38B72.2 (5)
C3—C8—H8118.9C36B—C34A—C38B140.6 (10)
C10—C9—C14115.8 (2)C33—C34A—C35127.7 (5)
C10—C9—C2121.3 (2)C36B—C34A—C3559.0 (7)
C14—C9—C2122.9 (2)C38B—C34A—C35160.2 (7)
C11—C10—C9122.6 (2)C33—C34A—N3119.6 (5)
C11—C10—H10118.7C36B—C34A—N3167.3 (8)
C9—C10—H10118.7C38B—C34A—N347.5 (4)
C12—C11—C10120.1 (2)C35—C34A—N3112.6 (5)
C12—C11—H11119.9C33—C34A—C34B175.5 (5)
C10—C11—H11119.9C36B—C34A—C34B113.5 (9)
O2—C12—C11117.6 (2)C38B—C34A—C34B104.8 (6)
O2—C12—C13123.7 (2)C35—C34A—C34B55.4 (5)
C11—C12—C13118.7 (2)N3—C34A—C34B57.3 (4)
C12—C13—C14120.3 (2)C36B—C35—C36A173.6 (7)
C12—C13—H13119.9C36B—C35—C34A57.3 (7)
C14—C13—H13119.9C36A—C35—C34A120.4 (5)
C13—C14—C9122.4 (2)C36B—C35—C34B127.9 (9)
C13—C14—H14118.8C36A—C35—C34B48.8 (5)
C9—C14—H14118.8C34A—C35—C34B71.8 (5)
C16—C15—C20116.6 (2)C36B—C35—H35A65.1
C16—C15—C2122.92 (18)C36A—C35—H35A117.5
C20—C15—C2120.29 (19)C34A—C35—H35A122.1
C17—C16—C15121.8 (2)C34B—C35—H35A165.5
C17—C16—H16119.1C34B—C36A—C3757.0 (7)
C15—C16—H16119.1C34B—C36A—C3569.1 (8)
C18—C17—C16120.5 (2)C37—C36A—C35126.0 (6)
C18—C17—H17119.8C34B—C36A—H36A173.5
C16—C17—H17119.8C37—C36A—H36A116.6
O3—C18—C17123.6 (2)C35—C36A—H36A117.4
O3—C18—C19117.4 (2)C34B—C37—C36A52.7 (6)
C17—C18—C19119.0 (2)C34B—C37—C38A60.6 (6)
C20—C19—C18120.2 (2)C36A—C37—C38A113.2 (6)
C20—C19—H19119.9C34B—C37—H37175.8
C18—C19—H19119.9C36A—C37—H37124.6
C19—C20—C15121.9 (2)C38A—C37—H37122.2
C19—C20—H20119.1N3—C38A—O6A120.6 (4)
C15—C20—H20119.1N3—C38A—C34B68.0 (6)
C22—N1—C26124.8 (3)O6A—C38A—C34B170.8 (7)
C22—N1—H1N1117.6N3—C38A—C37117.7 (4)
C26—N1—H1N1117.6O6A—C38A—C37121.7 (5)
C22—C21—H21A109.5C34B—C38A—C3749.7 (5)
C22—C21—H21B109.5O6Ai—O6B—C38B159.3 (9)
H21A—C21—H21B109.5O6Ai—O6B—H3N3116.7
C22—C21—H21C109.5C38B—O6B—H3N342.6
H21A—C21—H21C109.5C36A—C34B—C3770.4 (8)
H21B—C21—H21C109.5C36A—C34B—C38A139.8 (13)
C23—C22—N1118.7 (3)C37—C34B—C38A69.7 (7)
C23—C22—C21126.2 (3)C36A—C34B—C3562.1 (7)
N1—C22—C21115.1 (3)C37—C34B—C35132.5 (9)
C22—C23—C24119.4 (3)C38A—C34B—C35157.6 (10)
C22—C23—H23120.3C36A—C34B—N3166.9 (12)
C24—C23—H23120.3C37—C34B—N3121.4 (9)
C25—C24—C23121.2 (3)C38A—C34B—N351.8 (4)
C25—C24—H24119.4C35—C34B—N3105.9 (9)
C23—C24—H24119.4C36A—C34B—C34A114.8 (10)
C24—C25—C26120.5 (3)C37—C34B—C34A173.5 (9)
C24—C25—H25119.7C38A—C34B—C34A104.9 (7)
C26—C25—H25119.7C35—C34B—C34A52.8 (5)
O4—C26—N1119.3 (3)N3—C34B—C34A53.1 (4)
O4—C26—C25125.4 (3)C35—C36B—C34A63.7 (8)
N1—C26—C25115.3 (3)C35—C36B—C33120.8 (10)
C32—N2—C28125.2 (2)C34A—C36B—C3357.3 (7)
C32—N2—H2N2117.4C35—C36B—H35A42.1
C28—N2—H2N2117.4C34A—C36B—H35A105.7
C28—C27—H27A109.5C33—C36B—H35A160.5
C28—C27—H27B109.5N3—C38B—O6B120.4 (10)
H27A—C27—H27B109.5N3—C38B—C34A65.7 (7)
C28—C27—H27C109.5O6B—C38B—C34A173.0 (11)
H27A—C27—H27C109.5N3—C38B—C33117.8 (9)
H27B—C27—H27C109.5O6B—C38B—C33121.9 (9)
C29—C28—N2118.4 (3)C34A—C38B—C3352.2 (4)
C29—C28—C27125.0 (3)N3—C38B—H3N348.4
N2—C28—C27116.5 (2)O6B—C38B—H3N372.1
C28—C29—C30119.2 (3)C34A—C38B—H3N3114.1
C28—C29—H29120.4C33—C38B—H3N3165.7
C30—C29—H29120.4N3—C38B—H33A153.5
C31—C30—C29121.5 (3)O6B—C38B—H33A86.1
C31—C30—H30119.3C34A—C38B—H33A88.1
C29—C30—H30119.3C33—C38B—H33A35.9
C30—C31—C32120.1 (3)H3N3—C38B—H33A157.4
C30—C31—H31120.0H1W—O1W—H2W107 (3)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I-a)(I-c)(I-d)(II-b)
Crystal data
Chemical formulaC14H10O4·2C5H5NOC14H10O4·2C6H7NOC14H10O4·2C6H7NOC30H22O2·2C6H7NO
Mr432.42460.47460.47632.73
Crystal system, space groupMonoclinic, C2/cTriclinic, P1Monoclinic, C2/cTriclinic, P1
Temperature (K)293293293293
a, b, c (Å)10.569 (1), 14.054 (3), 15.016 (1)9.838 (2), 10.085 (2), 14.016 (3)11.415 (2), 10.957 (2), 19.660 (3)7.305 (1), 9.369 (2), 13.292 (3)
α, β, γ (°)90, 105.95 (3), 9089.77 (3), 74.90 (3), 62.764 (2)90, 106.59 (2), 9077.32 (2), 89.46 (2), 76.57 (3)
V3)2144.6 (6)1183.0 (5)2356.6 (7)862.4 (3)
Z4241
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.100.090.090.08
Crystal size (mm)0.20 × 0.10 × 0.040.20 × 0.20 × 0.100.30 × 0.25 × 0.100.30 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6780, 2013, 1489 9471, 3998, 3051 8025, 2063, 1408 8783, 3182, 2398
Rint0.0260.0220.0550.027
(sin θ/λ)max1)0.5940.5880.5950.614
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.200, 1.03 0.045, 0.141, 0.91 0.078, 0.287, 1.09 0.042, 0.135, 0.98
No. of reflections2013399820633182
No. of parameters157307158220
No. of restraints0000
H-atom treatmentOnly H-atom displacement parameters refinedH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.56, 0.350.28, 0.160.43, 0.210.16, 0.15


(II-c)(III-d)
Crystal data
Chemical formulaC30H22O2·2C6H7NOC20H18O3·3C6H7NO·H2O
Mr632.73651.74
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)293293
a, b, c (Å)8.640 (2), 10.203 (2), 11.403 (3)10.634 (2), 11.484 (2), 28.574 (4)
α, β, γ (°)106.71 (3), 111.54 (2), 95.87 (2)90, 96.43 (2), 90
V3)870.8 (4)3467.5 (10)
Z14
Radiation typeMo KαMo Kα
µ (mm1)0.080.09
Crystal size (mm)0.25 × 0.10 × 0.050.35 × 0.30 × 0.09
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8509, 3215, 1947 23701, 6109, 3757
Rint0.0340.062
(sin θ/λ)max1)0.6130.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.131, 0.98 0.047, 0.161, 0.83
No. of reflections32156109
No. of parameters220481
No. of restraints020
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.150.22, 0.23

Computer programs: Collect (Nonius, 2006), DENZO HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

Hydrogen-bond geometry (Å, °). top
CompoundD—H···AD—HH···AD—H···AD···A
(1-a)
O2—H1O2···O30.821.761722.579 (2)
N1—H1N1···O3i0.862.071682.916 (2)
(1-c)
O1—H101···O3B0.821.771762.584 (2)
O11—H11O···O3A0.821.731732.543 (2)
N1A—H1NA···O3Aii0.862.131632.968 (2)
N1B—H1NB···O3Biii0.861.971732.828 (2)
(1-d)
O2—H102···O30.821.811662.612 (4)
N1—H1N1···O3i0.861.911782.767 (4)
(2-b)
O1—H101···O20.821.881742.695 (2)
(2-c)
O1—H1O1···O20.821.951732.765 (4)
N1—H1N1···O2iv0.861.911722.763 (2)
(3-d)
O1—H101···O50.821.871782.692 (3)
O2—H1O2···O1Wv0.821.831672.633 (3)
O3—H1O3···O2vi0.822.041672.843 (2)
N1—H1N1···O5vii0.862.001652.837 (3)
N2—H2N2···O4vii0.861.971762.829 (3)
N3—H3N3···O6Aviii0.861.941742.792 (5)
O1W—H1W···O10.93 (3)1.89 (3)176 (3)2.817 (3)
O1W—H2W···O40.79 (3)2.00 (3)159 (3)2.748 (3)
Symmetry codes: (i) -x + 1/2, -y + 3/2, -z + 1; (ii) -x + 2, -y, -z + 1]; (iii) -x + 2, -y + 1, -z + 1; (iv) -x + 1, -y, -z + 1; (v) -x + 2, y - 1/2, -z + 1/2; (vi) x - 1, y, z; (vii) -x + 1, -y + 2, -z + 1; (viii) -x + 1, -y + 1, -z + 1.
Relevant geometric data between monomers potentially to be photodimerized. top
CompoundSymmetry between moleculesDistance between reactive centers ÅPerpendicular distance ÅLateral shift between orbitals Å
IdealInversion3.5-4.23.5-4.20.0
(1-a)inversion4.196 (3)3.537 (3)2.257 (3)
(1-c)inversion4.865 (4)3.552 (4)3.324 (4)
(1-d)inversion4.007 (6)3.512 (6)1.929 (6)
(2-b)inversion4.769 (4)3.605 (4)3.122 (4)
(2-c)inversion4.177 (5)3.635 (5)1.996 (5)
(3-d)anone4.027 (4)3.634 (4)1.735 (4)
(3-d)anone3.909 (4)3.507 (4)1.727 (4)
Note: (a) The two distances are not equivalent because of the absence of an inversion center.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds