Download citation
Download citation
link to html
Crystallization of chloro­(2,2′:6′,2′′-terpyridine)platinum(II) chloride from dimethyl sulfoxide yields a red polymorph, [PtCl(C15H11N3)]Cl·C2H6OS, (I), which exhibits stacking along the a axis through pairs of Pt...Pt(−x, −y, −z) inter­actions of 3.3155 (8) Å. The cations are further associated through close Pt...Pt(1 − x, −y, −z) distances of 3.4360 (8) Å. Recrystallization from water gives a mero­hedrally twinned yellow–orange dihydrate form, [PtCl(C15H11N3)]Cl·2H2O, (II), with pairwise short Pt...Pt(1 − x, 2 − y, −z) contacts of 3.3903 (5) Å but no long-range stacking through the crystals. Inter­pair Pt...Pt(−x, 2 − y, −z) distances between cation pairs in the hydrate are 4.3269 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010601924X/fg3017sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010601924X/fg3017Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010601924X/fg3017IIsup3.hkl
Contains datablock II

CCDC references: 269735; 273856

Comment top

One-dimensional chains of metal atoms have been of interest to chemists and physicists for decades because of their potential as highly effective electronic conductors (Miller, 1982). Compounds containing such linear chains have been drawn naturally into the search for nanoscale electronic components, including wires (Wysodra et al., 2004). The best studied are the columnar stacks of d8 PtII compounds, such as Magnus' green salt, [Pt(NH3)4][PtCl4] (Magnus, 1829), and the Krogmann salts (Krogmann, 1969), including [Pt(CN)4]2− and[Pt(oxalate)2]2− (Mattes & Krogmann, 1964).

Other soluble platinum compounds with organic ligands also exhibit Pt···Pt stacking. The platinum diimine compound [Pt(bpy)Cl2] (bpy is 2,2'-bipyridine) is well known to crystallize in two different polymorphs with distinct colors. The red polymorph (Osborn & Rogers, 1974) crystallizes in Cmcm and has infinite arrays of [Pt(bpy)Cl2] molecules stacked on top of each other and rotated by 180°. The Pt atoms are 3.448 Å apart and form an infinite chain of Pt atoms in the lattice. The yellow polymorph (Textor & Oswald, 1974) crystallizes in Pbca, with the closest Pt···Pt distance being 4.524 Å.

Here, we report a similar phenomenon in structures of the related compound [Pt(terpy)Cl]Cl (terpy is 2,2':6',2''-terpyridine). A red form with a linear chain of Pt···Pt interactions through the crystal has been obtained via recrystallization from DMSO (dimethyl sulfoxide), [Pt(terpy)Cl]Cl·DMSO, (I). In contrast, a merohedrally twinned yellow crystalline form, [Pt(terpy)Cl]Cl·2H2O, (II), has been obtained from water and shows pairwise Pt···Pt contacts, but no infinite chain.

The cation of compound (I), shown in Fig. 1, exhibits stacking along the a axis in line with the Pt···Pt vector, as can be seen in Fig. 2. There are two distinct Pt···Pt distances of 3.3155 (8) and 3.4360 (8) Å. The shorter Pt···Pt(−x, −y, −z) distance is observed within pairs of [Pt(terpy)Cl]+ cations and the slightly longer Pt···Pt(1 − x, −y, −z) distance between adjacent pairs that lead to the infinite stacks. Adjacent cations in the chain are rotated 180° with respect to each other. In contrast, the crystal structure of (II), shown in analogous views in Figs. 3 and 4, respectively, only exhibits one short Pt···Pt(1 − x, 2 − y, −z) contact of 3.3903 (5) Å, but no long-range stacking through the crystal.

Complexes with the [Pt(terpy)Cl]+ cation have been characterized structurally before, including with the perchlorate anion (Bailey et al., 1995), with perchlorate co-crystallized with [Pt(thioquinolate)2] (Tzeng et al., 2003), with adenosine monophosphate (AMP) (Wong & Lippard, 1977), with [Pt(DMSO)Cl3] (Cini et al., 2001), and with trifluoromethanesulfonate (Yip et al., 1993). Selected data for these complexes and the two structures reported here are compared in Table 1. In several of the structures, close Pt···Pt contacts of less than 3.5 Å exist. In the structure cocrystallized with [Pt(thioquinolate)2], the closest distance between the two chemically distinct Pt centers is 4.474 Å, however.

We note that the palladium hydrate derivative [Pd(terpy)Cl]Cl·2H2O has been reported and structurally characterized (Intille et al., 1973a,b) The closest Pd···Pd distance is 3.863 Å. In the structure of [Pd(terpy)Cl]2[PdCl4] (Intille et al., 1973a), there are pairs of cations with Pd···Pd contacts of 3.332 Å, but a long Pd···Pd distance of 6.592 Å between cation and anion.

Two different packing arrangements in (I) and (II) have been achieved by varying only the solvent of recrystallization, and in which the solvent plays no obvious structure-directing role. These results suggest that the energy difference between the two structures is very small, which is consistent with previous studies of the [Pt(bpy)Cl2] polymorphs. Notably, in neither (I) nor (II) does the Cl anion act as a bridging ligand between the two cations, as is observed in the {[Au(bpy)Cl2]22-Cl)}Cl system (Micklitz et al., 1989). Pt···Pt stacking interactions are common. However, such interactions have only recently been observed for isoelectronic AuIII d8 centers (Klapötke et al., 2005). In both structures reported here, this affinity of the cationic Pt centers for each other is greater than their affinity for the Cl ligand, which might have been expected on Coulombic grounds.

In summary, the compound [Pt(terpy)Cl]Cl forms red and yellow crystalline forms, depending on which solvent it is recrystallized from. The red form exhibits close Pt···Pt contacts in a linear chain through the crystal, whereas the yellow form exhibits only pairwise contacts. These differences are similar to those observed in [Pt(bpy)Cl2], except that in the latter no solvents are included in the crystals. In the case of [Pt(terpy)Cl]Cl, solvent inclusion is likely in the presence of the exogenous Cl anion.

Experimental top

The platinum salt chloro(2,2':6',2''-terpyridine)platinum(II) chloride was prepared according to the method of Annibale et al. (2004). Crystals of (I) were grown by slow evaporation of a saturated dimethyl sulfoxide solution of [Pt(terpy)Cl]Cl, and crystals of (II) were grown by evaporation of an aqueous solution of the same compound.

Refinement top

Compound (I) crystallizes as a dimethyl sulfoxide solvate, whereas compound (II) crystallizes with two equivalents of water. The H atoms of the water molecules could not be located or refined successfully. All other H atoms in the structures were placed using a riding model, with C—H = 0.95–0.98 Å and Uiso(H) = 1.2Ueq(C). [Please check added text]

Computing details top

For both compounds, data collection: SMART (Bruker, 2005); cell refinement: SMART; data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Bruker, 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the structure of a single molecule of (I) with the dimethyl sulfoxide solvate. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view, along the c axis, of the unit cell of (I), showing the pairwise Pt···Pt interactions and the short Pt···Pt contacts between cation pairs along the a axis. Cl anions and dimethyl sulfoxide molecules have been omitted for clarity. [Symmetry codes: (ii) 1/2 − x, 1/2 + y, 1/2 − z; (iii) 1 − x, −y, −z; (iv) 1/2 + x, 1/2 − y, 1/2 + z; (v) 1 + x, y, z; (vi) 3/2 − x, 1/2 + y, 1/2 − z; (vii) 2 − x, −y, −z; (viii) 3/2 + x, 1/2 − y, 1/2 + z.]
[Figure 3] Fig. 3. A view of the structure of a single molecule of (II), with the two molecules of water solvate. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. A view of the unit cell of (II), showing the short Pt···Pt distances between pairs of [Pt(terpy)Cl]+ cations. Cl anions and water molecules have been omitted for clarity. [Symmetry codes: (i) x, y, z; (ii) −1/2 + x, 3/2 − y, 1/2 + z; (iii) 1 − x, 2 − y, z; (iv) 1/2 − x, −1/2 + y, 1/2 − z; (v) 1 + x, y, z; (vi) 1/2 + x, 3/2 − y, 1/2 + z; (vii) 2 − x, 2 − y, −z; (viii) 3/2 − x, −1/2 + y, 1/2 − z.]
(I) chloro(2,2':6',2''-terpyridine)platinum(II) chloride dimethyl sulfoxide solvate top
Crystal data top
[PtCl(C15H11N3)]Cl·C2H6OSF(000) = 1104
Mr = 577.39Dx = 2.042 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7404 (14) ÅCell parameters from 4990 reflections
b = 13.298 (3) Åθ = 2.5–27.5°
c = 20.954 (4) ŵ = 7.88 mm1
β = 90.331 (3)°T = 100 K
V = 1878.1 (7) Å3Rod, red
Z = 40.30 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4236 independent reflections
Radiation source: fine-focus sealed tube3215 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ϕ and ω scansθmax = 27.6°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.201, Tmax = 0.506k = 1617
13395 measured reflectionsl = 2726
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.021P)2]
where P = (Fo2 + 2Fc2)/3
4236 reflections(Δ/σ)max = 0.029
226 parametersΔρmax = 1.42 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[PtCl(C15H11N3)]Cl·C2H6OSV = 1878.1 (7) Å3
Mr = 577.39Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.7404 (14) ŵ = 7.88 mm1
b = 13.298 (3) ÅT = 100 K
c = 20.954 (4) Å0.30 × 0.10 × 0.10 mm
β = 90.331 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4236 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3215 reflections with I > 2σ(I)
Tmin = 0.201, Tmax = 0.506Rint = 0.035
13395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.068H-atom parameters constrained
S = 1.15Δρmax = 1.42 e Å3
4236 reflectionsΔρmin = 0.60 e Å3
226 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C1a0.1804 (9)0.0058 (4)0.2756 (3)0.0356 (14)
H1A0.18560.03790.23350.053*
H1B0.28100.03590.30330.053*
H1C0.04870.01580.29460.053*
C50.3134 (7)0.0992 (4)0.1144 (2)0.0228 (11)
C60.2887 (7)0.0077 (4)0.1318 (2)0.0202 (11)
C110.1980 (7)0.2158 (4)0.0229 (2)0.0193 (11)
C2a0.2076 (9)0.1564 (4)0.3504 (3)0.0383 (15)
H2A0.22960.22860.35630.057*
H2B0.07480.13860.36600.057*
H2C0.30730.11860.37440.057*
C10.3228 (7)0.2132 (4)0.0292 (2)0.0228 (11)
H10.31310.22650.01530.027*
C100.2351 (7)0.1683 (4)0.0859 (2)0.0194 (11)
C150.1582 (7)0.1862 (4)0.0865 (2)0.0205 (11)
H150.15660.14070.12140.025*
C20.3599 (7)0.2918 (4)0.0705 (3)0.0268 (12)
H20.37590.35820.05470.032*
C90.2507 (7)0.2141 (4)0.1441 (2)0.0233 (11)
H90.23810.28500.14800.028*
C140.1220 (7)0.2869 (4)0.0979 (2)0.0249 (12)
H140.09390.31020.13980.030*
C30.3735 (7)0.2729 (4)0.1351 (3)0.0280 (12)
H30.39910.32630.16420.034*
C80.2853 (7)0.1543 (4)0.1972 (2)0.0269 (12)
H80.29740.18490.23800.032*
C130.1275 (7)0.3533 (4)0.0469 (3)0.0266 (12)
H130.10580.42300.05380.032*
C40.3494 (7)0.1758 (4)0.1573 (2)0.0252 (12)
H40.35770.16190.20170.030*
C70.3028 (7)0.0499 (4)0.1920 (2)0.0246 (12)
H70.32370.00920.22870.030*
C120.1650 (7)0.3174 (4)0.0142 (2)0.0239 (11)
H120.16790.36210.04960.029*
N10.3002 (6)0.1187 (3)0.04998 (19)0.0175 (9)
N20.2586 (5)0.0673 (3)0.08160 (17)0.0147 (8)
N30.1951 (6)0.1510 (3)0.02814 (18)0.0170 (9)
O10.0511 (6)0.1698 (3)0.23432 (19)0.0473 (12)
S10.2279 (2)0.12576 (11)0.26738 (7)0.0359 (4)
Cl10.23454 (18)0.06766 (9)0.10200 (6)0.0227 (3)
Cl20.17449 (19)0.51363 (9)0.14397 (6)0.0267 (3)
Pt10.24548 (3)0.006195 (13)0.002391 (8)0.01711 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C1a0.038 (3)0.040 (4)0.030 (3)0.003 (3)0.007 (3)0.006 (3)
C50.010 (2)0.028 (3)0.030 (3)0.003 (2)0.002 (2)0.004 (2)
C60.011 (2)0.026 (3)0.024 (2)0.007 (2)0.0033 (19)0.002 (2)
C110.010 (2)0.022 (3)0.025 (3)0.002 (2)0.003 (2)0.004 (2)
C2a0.039 (4)0.036 (3)0.041 (4)0.008 (3)0.011 (3)0.010 (3)
C10.013 (3)0.028 (3)0.027 (3)0.005 (2)0.003 (2)0.002 (2)
C100.012 (2)0.025 (3)0.021 (3)0.004 (2)0.005 (2)0.001 (2)
C150.014 (3)0.031 (3)0.016 (2)0.000 (2)0.002 (2)0.002 (2)
C20.017 (3)0.020 (3)0.043 (3)0.002 (2)0.006 (2)0.004 (2)
C90.017 (3)0.026 (3)0.027 (3)0.001 (2)0.003 (2)0.005 (2)
C140.018 (3)0.029 (3)0.028 (3)0.004 (2)0.001 (2)0.008 (2)
C30.017 (3)0.028 (3)0.039 (3)0.001 (2)0.003 (2)0.010 (2)
C80.023 (3)0.040 (3)0.018 (3)0.003 (2)0.002 (2)0.006 (2)
C130.021 (3)0.024 (3)0.035 (3)0.001 (2)0.008 (2)0.002 (2)
C40.018 (3)0.036 (3)0.022 (3)0.003 (2)0.002 (2)0.007 (2)
C70.020 (3)0.033 (3)0.021 (3)0.001 (2)0.002 (2)0.006 (2)
C120.022 (3)0.025 (3)0.024 (3)0.002 (2)0.003 (2)0.001 (2)
N10.012 (2)0.018 (2)0.022 (2)0.0002 (17)0.0002 (17)0.0052 (17)
N20.010 (2)0.019 (2)0.015 (2)0.0038 (16)0.0003 (16)0.0026 (16)
N30.013 (2)0.022 (2)0.016 (2)0.0006 (17)0.0027 (16)0.0067 (17)
O10.050 (3)0.057 (3)0.035 (2)0.026 (2)0.002 (2)0.015 (2)
S10.0317 (8)0.0390 (9)0.0368 (8)0.0059 (7)0.0066 (7)0.0101 (7)
Cl10.0188 (6)0.0273 (7)0.0221 (6)0.0024 (5)0.0023 (5)0.0029 (5)
Cl20.0298 (7)0.0243 (7)0.0261 (6)0.0009 (6)0.0010 (5)0.0040 (5)
Pt10.01384 (10)0.02000 (11)0.01750 (10)0.00244 (9)0.00174 (7)0.00059 (9)
Geometric parameters (Å, º) top
C1a—S11.787 (5)C15—C141.381 (7)
C1a—H1A0.9800C15—H150.9500
C1a—H1B0.9800C2—C31.379 (7)
C1a—H1C0.9800C2—H20.9500
C5—N11.377 (6)C9—C81.388 (7)
C5—C41.378 (7)C9—H90.9500
C5—C61.477 (7)C14—C131.386 (7)
C6—N21.331 (6)C14—H140.9500
C6—C71.384 (7)C3—C41.382 (7)
C11—N31.374 (6)C3—H30.9500
C11—C121.380 (7)C8—C71.397 (7)
C11—C101.483 (7)C8—H80.9500
C2a—S11.792 (6)C13—C121.389 (7)
C2a—H2A0.9800C13—H130.9500
C2a—H2B0.9800C4—H40.9500
C2a—H2C0.9800C7—H70.9500
C1—N11.339 (6)C12—H120.9500
C1—C21.379 (7)N1—Pt12.023 (4)
C1—H10.9500N2—Pt11.940 (4)
C10—N21.356 (6)N3—Pt12.028 (4)
C10—C91.366 (6)O1—S11.501 (4)
C15—N31.332 (6)Cl1—Pt12.3074 (13)
S1—C1a—H1A109.5C13—C14—H14120.6
S1—C1a—H1B109.5C2—C3—C4119.5 (5)
H1A—C1a—H1B109.5C2—C3—H3120.3
S1—C1a—H1C109.5C4—C3—H3120.3
H1A—C1a—H1C109.5C9—C8—C7121.4 (5)
H1B—C1a—H1C109.5C9—C8—H8119.3
N1—C5—C4120.6 (5)C7—C8—H8119.3
N1—C5—C6114.6 (4)C14—C13—C12119.7 (5)
C4—C5—C6124.8 (5)C14—C13—H13120.1
N2—C6—C7119.3 (5)C12—C13—H13120.1
N2—C6—C5113.2 (4)C5—C4—C3119.5 (5)
C7—C6—C5127.4 (5)C5—C4—H4120.3
N3—C11—C12120.7 (5)C3—C4—H4120.3
N3—C11—C10115.2 (4)C6—C7—C8117.9 (5)
C12—C11—C10124.1 (4)C6—C7—H7121.0
S1—C2a—H2A109.5C8—C7—H7121.0
S1—C2a—H2B109.5C11—C12—C13119.1 (5)
H2A—C2a—H2B109.5C11—C12—H12120.4
S1—C2a—H2C109.5C13—C12—H12120.4
H2A—C2a—H2C109.5C1—N1—C5119.3 (4)
H2B—C2a—H2C109.5C1—N1—Pt1127.9 (3)
N1—C1—C2121.8 (5)C5—N1—Pt1112.8 (3)
N1—C1—H1119.1C6—N2—C10123.7 (4)
C2—C1—H1119.1C6—N2—Pt1118.3 (3)
N2—C10—C9119.5 (5)C10—N2—Pt1118.0 (3)
N2—C10—C11112.5 (4)C15—N3—C11119.7 (4)
C9—C10—C11128.0 (5)C15—N3—Pt1127.5 (3)
N3—C15—C14122.1 (5)C11—N3—Pt1112.8 (3)
N3—C15—H15118.9O1—S1—C1a106.5 (3)
C14—C15—H15118.9O1—S1—C2a107.6 (2)
C3—C2—C1119.3 (5)C1a—S1—C2a96.7 (3)
C3—C2—H2120.3N2—Pt1—N181.05 (16)
C1—C2—H2120.3N2—Pt1—N381.41 (15)
C10—C9—C8118.2 (5)N1—Pt1—N3162.45 (16)
C10—C9—H9120.9N2—Pt1—Cl1179.12 (11)
C8—C9—H9120.9N1—Pt1—Cl198.40 (12)
C15—C14—C13118.7 (5)N3—Pt1—Cl199.15 (11)
C15—C14—H14120.6
N1—C5—C6—N20.3 (6)C5—C6—N2—C10178.9 (4)
C4—C5—C6—N2178.9 (4)C7—C6—N2—Pt1178.6 (3)
N1—C5—C6—C7177.1 (5)C5—C6—N2—Pt11.6 (5)
C4—C5—C6—C72.2 (8)C9—C10—N2—C62.8 (7)
N3—C11—C10—N20.5 (6)C11—C10—N2—C6178.3 (4)
C12—C11—C10—N2178.6 (4)C9—C10—N2—Pt1177.6 (3)
N3—C11—C10—C9178.3 (5)C11—C10—N2—Pt11.2 (5)
C12—C11—C10—C92.7 (8)C14—C15—N3—Pt1178.6 (3)
N1—C1—C2—C30.2 (7)C12—C11—N3—C150.7 (7)
N2—C10—C9—C81.6 (7)C10—C11—N3—C15178.4 (4)
C11—C10—C9—C8179.7 (5)C12—C11—N3—Pt1179.5 (4)
N3—C15—C14—C131.0 (7)C10—C11—N3—Pt10.4 (5)
C1—C2—C3—C40.1 (7)C6—N2—Pt1—N11.7 (3)
C10—C9—C8—C70.4 (7)C10—N2—Pt1—N1178.8 (4)
C15—C14—C13—C121.3 (7)C6—N2—Pt1—N3178.4 (4)
N1—C5—C4—C30.4 (7)C10—N2—Pt1—N31.2 (3)
C6—C5—C4—C3178.9 (5)C1—N1—Pt1—N2178.9 (4)
C2—C3—C4—C50.4 (7)C5—N1—Pt1—N21.4 (3)
N2—C6—C7—C80.3 (7)C1—N1—Pt1—N3178.6 (4)
C5—C6—C7—C8176.3 (5)C5—N1—Pt1—N31.6 (7)
C9—C8—C7—C61.3 (7)C1—N1—Pt1—Cl10.5 (4)
N3—C11—C12—C130.4 (7)C5—N1—Pt1—Cl1179.3 (3)
C10—C11—C12—C13178.6 (4)C15—N3—Pt1—N2177.9 (4)
C14—C13—C12—C110.6 (8)C11—N3—Pt1—N20.8 (3)
C2—C1—N1—C50.2 (7)C15—N3—Pt1—N1178.1 (4)
C6—C5—N1—C1179.2 (4)C11—N3—Pt1—N10.6 (7)
C4—C5—N1—Pt1179.8 (4)C15—N3—Pt1—Cl12.8 (4)
C6—C5—N1—Pt11.0 (5)C11—N3—Pt1—Cl1178.5 (3)
C7—C6—N2—C101.8 (7)
(II) chloro(2,2':6',2''-terpyridine)platinum(II) chloride dihydrate top
Crystal data top
[PtCl(C15H11N3)]Cl·2H2OF(000) = 1016
Mr = 535.29Dx = 2.202 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.9085 (6) ÅCell parameters from 3241 reflections
b = 17.0822 (15) Åθ = 2.8–25.0°
c = 13.8402 (12) ŵ = 9.03 mm1
β = 98.586 (2)°T = 100 K
V = 1615.0 (2) Å3Needle, orange-yellow
Z = 40.30 × 0.04 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
10591 independent reflections
Radiation source: fine-focus sealed tube8684 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.125
ϕ and ω scansθmax = 25.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 88
Tmin = 0.173, Tmax = 0.714k = 2020
10591 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
10591 reflections(Δ/σ)max < 0.001
184 parametersΔρmax = 1.91 e Å3
0 restraintsΔρmin = 1.52 e Å3
Crystal data top
[PtCl(C15H11N3)]Cl·2H2OV = 1615.0 (2) Å3
Mr = 535.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.9085 (6) ŵ = 9.03 mm1
b = 17.0822 (15) ÅT = 100 K
c = 13.8402 (12) Å0.30 × 0.04 × 0.04 mm
β = 98.586 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
10591 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8684 reflections with I > 2σ(I)
Tmin = 0.173, Tmax = 0.714Rint = 0.125
10591 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.01Δρmax = 1.91 e Å3
10591 reflectionsΔρmin = 1.52 e Å3
184 parameters
Special details top

Experimental. The crystals are merohedrally twinned through a 2-fold rotation about the a* axis, which transforms the unit-cell dimensions by the matrix [1 0 0 / 0 − 1 0 / 0 0 − 1]. The twin law relating the hkl indices of the two twin domains is [1 0 0 / 0 − 1 0 / −1.41 0 − 1]. This relationship results in two non-coincident lattices of reflections, where many reflections from one lattice partially overlap with those from the other lattice. Data reduction was performed with SAINT (Bruker AXS, 2005) by indexing and integrating the reflections from both twin components using two orientation matrices and handling the overlapped and non-overlapped reflections in such a way as to enable the HKLF 5 instruction of SHELXL97 (Sheldrick, 1997) to be used for managing the data during structure refinement. The major twin component has a volume fraction of 0.51500.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2353 (10)1.1030 (4)0.1102 (5)0.0156 (16)
H10.24811.14570.06760.019*
C20.2127 (10)1.1177 (4)0.2031 (5)0.0195 (17)
H20.20881.17020.22530.023*
C30.1950 (10)1.0561 (4)0.2666 (5)0.0196 (17)
H30.18021.06560.33270.024*
C40.1994 (11)0.9811 (4)0.2311 (5)0.0232 (18)
H40.18890.93780.27310.028*
C50.2183 (10)0.9691 (4)0.1379 (5)0.0165 (16)
C60.2248 (11)0.8894 (4)0.0927 (5)0.0215 (10)
C70.2012 (10)0.8165 (4)0.1351 (5)0.0198 (17)
H70.18020.81220.20110.024*
C80.2093 (10)0.7508 (4)0.0775 (5)0.0215 (10)
H80.19840.70070.10590.026*
C90.2333 (10)0.7553 (4)0.0217 (5)0.0220 (17)
H90.23760.70940.06010.026*
C100.2501 (10)0.8281 (4)0.0607 (5)0.0215 (10)
C110.2734 (11)0.8478 (4)0.1629 (5)0.0202 (17)
C120.2686 (10)0.7934 (4)0.2344 (5)0.0212 (17)
H120.25850.73920.22010.025*
C130.2789 (10)0.8186 (4)0.3294 (5)0.0201 (16)
H130.27660.78180.38100.024*
C140.2924 (11)0.8978 (4)0.3476 (5)0.0245 (18)
H140.29970.91570.41200.029*
C150.2954 (11)0.9517 (4)0.2709 (5)0.0197 (17)
H150.30471.00610.28350.024*
N10.2406 (8)1.0272 (3)0.0743 (4)0.0140 (7)
N20.2450 (8)0.8926 (3)0.0036 (4)0.0140 (7)
N30.2853 (8)0.9269 (3)0.1810 (4)0.0140 (7)
O10.5357 (10)0.9352 (4)0.4458 (5)0.060 (2)
O20.0737 (12)0.9315 (4)0.4589 (7)0.091 (3)
Cl10.2907 (3)1.11515 (10)0.13288 (12)0.0195 (4)
Cl20.2168 (3)0.80737 (11)0.39897 (13)0.0271 (5)
Pt10.26937 (4)0.994197 (15)0.061820 (19)0.01374 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.010 (4)0.015 (4)0.021 (4)0.001 (3)0.002 (3)0.000 (3)
C20.014 (4)0.015 (4)0.028 (4)0.000 (3)0.002 (3)0.004 (3)
C30.018 (4)0.032 (4)0.008 (4)0.004 (3)0.002 (3)0.007 (3)
C40.022 (4)0.021 (4)0.025 (4)0.003 (3)0.002 (3)0.010 (3)
C50.007 (4)0.031 (4)0.009 (4)0.000 (3)0.004 (3)0.000 (3)
C60.019 (2)0.014 (2)0.030 (3)0.0001 (19)0.001 (2)0.0039 (18)
C70.022 (4)0.014 (4)0.026 (4)0.001 (3)0.011 (3)0.003 (3)
C80.019 (2)0.014 (2)0.030 (3)0.0001 (19)0.001 (2)0.0039 (18)
C90.026 (5)0.024 (4)0.019 (4)0.000 (3)0.013 (3)0.001 (3)
C100.019 (2)0.014 (2)0.030 (3)0.0001 (19)0.001 (2)0.0039 (18)
C110.020 (4)0.015 (4)0.026 (4)0.002 (3)0.006 (3)0.002 (3)
C120.028 (5)0.012 (4)0.025 (4)0.004 (3)0.009 (4)0.001 (3)
C130.017 (4)0.019 (4)0.025 (4)0.002 (3)0.006 (3)0.005 (3)
C140.020 (4)0.029 (4)0.024 (4)0.002 (3)0.001 (3)0.008 (3)
C150.024 (4)0.017 (4)0.019 (4)0.001 (3)0.008 (3)0.005 (3)
N10.020 (2)0.0130 (17)0.0098 (16)0.0012 (14)0.0059 (15)0.0008 (14)
N20.020 (2)0.0130 (17)0.0098 (16)0.0012 (14)0.0059 (15)0.0008 (14)
N30.020 (2)0.0130 (17)0.0098 (16)0.0012 (14)0.0059 (15)0.0008 (14)
O10.071 (5)0.057 (5)0.055 (4)0.028 (4)0.017 (4)0.004 (4)
O20.062 (5)0.058 (5)0.142 (7)0.027 (5)0.019 (6)0.028 (5)
Cl10.0228 (10)0.0152 (9)0.0204 (9)0.0006 (8)0.0024 (8)0.0039 (7)
Cl20.0380 (12)0.0240 (10)0.0198 (9)0.0022 (9)0.0057 (9)0.0003 (8)
Pt10.01453 (14)0.01051 (14)0.01618 (14)0.00033 (13)0.00229 (10)0.00092 (12)
Geometric parameters (Å, º) top
C1—C21.342 (9)C10—C111.485 (10)
C1—N11.389 (8)C11—C121.355 (9)
C1—H10.9500C11—N31.379 (8)
C2—C31.387 (9)C12—C131.396 (9)
C2—H20.9500C12—H120.9500
C3—C41.374 (10)C13—C141.382 (9)
C3—H30.9500C13—H130.9500
C4—C51.333 (10)C14—C151.403 (10)
C4—H40.9500C14—H140.9500
C5—N11.350 (9)C15—N31.326 (8)
C5—C61.501 (10)C15—H150.9500
C6—N21.361 (9)N1—Pt12.005 (5)
C6—C71.397 (9)N2—Pt11.932 (5)
C7—C81.382 (9)N3—Pt12.027 (5)
C7—H70.9500O1—Cl23.101 (6)
C8—C91.410 (9)O1—O24.241 (11)
C8—H80.9500O2—Cl23.115 (7)
C9—C101.366 (10)Cl1—Pt12.3025 (17)
C9—H90.9500Pt1—Pt1i3.3903 (5)
C10—N21.360 (9)
C2—C1—N1122.0 (7)N3—C11—C10114.4 (6)
C2—C1—H1119.0C11—C12—C13118.5 (7)
N1—C1—H1119.0C11—C12—H12120.8
C1—C2—C3119.9 (7)C13—C12—H12120.8
C1—C2—H2120.1C14—C13—C12119.3 (7)
C3—C2—H2120.1C14—C13—H13120.4
C4—C3—C2118.2 (6)C12—C13—H13120.4
C4—C3—H3120.9C13—C14—C15119.9 (7)
C2—C3—H3120.9C13—C14—H14120.1
C5—C4—C3120.0 (7)C15—C14—H14120.1
C5—C4—H4120.0N3—C15—C14120.3 (7)
C3—C4—H4120.0N3—C15—H15119.9
C4—C5—N1123.7 (7)C14—C15—H15119.9
C4—C5—C6123.8 (7)C5—N1—C1116.2 (6)
N1—C5—C6112.4 (6)C5—N1—Pt1116.3 (5)
N2—C6—C7118.8 (6)C1—N1—Pt1127.5 (5)
N2—C6—C5112.7 (6)C10—N2—C6123.5 (6)
C7—C6—C5128.4 (7)C10—N2—Pt1118.3 (4)
C8—C7—C6117.7 (7)C6—N2—Pt1118.1 (4)
C8—C7—H7121.2C15—N3—C11119.7 (6)
C6—C7—H7121.2C15—N3—Pt1126.9 (5)
C7—C8—C9122.6 (7)C11—N3—Pt1113.3 (4)
C7—C8—H8118.7Cl2—O1—O247.12 (14)
C9—C8—H8118.7Cl2—O2—O146.84 (14)
C10—C9—C8117.6 (7)O1—Cl2—O286.0 (2)
C10—C9—H9121.2N2—Pt1—N180.4 (2)
C8—C9—H9121.2N2—Pt1—N381.3 (2)
N2—C10—C9119.7 (7)N1—Pt1—N3161.7 (2)
N2—C10—C11112.6 (6)N2—Pt1—Cl1178.62 (17)
C9—C10—C11127.6 (7)N1—Pt1—Cl199.85 (16)
C12—C11—N3122.4 (7)N3—Pt1—Cl198.41 (15)
C12—C11—C10123.0 (6)
N1—C1—C2—C30.4 (11)C11—C10—N2—Pt10.4 (8)
C1—C2—C3—C40.6 (11)C7—C6—N2—C102.3 (11)
C2—C3—C4—C50.7 (11)C5—C6—N2—C10178.5 (6)
C3—C4—C5—N12.3 (11)C7—C6—N2—Pt1178.1 (5)
C3—C4—C5—C6179.9 (7)C5—C6—N2—Pt11.9 (8)
N1—C5—C6—N22.1 (9)C14—C15—N3—C110.5 (11)
C4—C5—C6—C74.3 (12)C14—C15—N3—Pt1175.7 (5)
N1—C5—C6—C7177.9 (7)C12—C11—N3—C151.0 (11)
N2—C6—C7—C83.1 (11)C10—C11—N3—C15176.3 (6)
C5—C6—C7—C8178.7 (7)C12—C11—N3—Pt1175.7 (6)
C6—C7—C8—C92.3 (11)C10—C11—N3—Pt10.4 (8)
C7—C8—C9—C100.4 (11)C10—N2—Pt1—N1179.5 (5)
C8—C9—C10—N20.6 (11)C6—N2—Pt1—N10.9 (5)
C8—C9—C10—C11179.0 (7)C10—N2—Pt1—N30.5 (5)
N2—C10—C11—C12175.3 (7)C6—N2—Pt1—N3179.9 (6)
C9—C10—C11—C124.3 (13)C5—N1—Pt1—N20.4 (5)
C9—C10—C11—N3179.6 (7)C1—N1—Pt1—N2178.4 (6)
N3—C11—C12—C130.9 (12)C5—N1—Pt1—N32.8 (10)
C10—C11—C12—C13175.8 (7)C1—N1—Pt1—N3175.2 (6)
C11—C12—C13—C140.3 (11)C5—N1—Pt1—Cl1178.3 (4)
C12—C13—C14—C150.1 (11)C1—N1—Pt1—Cl10.3 (6)
C4—C5—N1—C12.5 (10)C15—N3—Pt1—N2175.9 (6)
C6—C5—N1—C1179.7 (6)C11—N3—Pt1—N20.4 (5)
C2—C1—N1—C51.1 (10)C15—N3—Pt1—N1172.8 (6)
C2—C1—N1—Pt1179.1 (5)C11—N3—Pt1—N13.6 (10)
C9—C10—N2—C60.4 (11)C15—N3—Pt1—Cl12.7 (6)
C11—C10—N2—C6179.9 (7)C11—N3—Pt1—Cl1179.1 (5)
Symmetry code: (i) x+1, y+2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[PtCl(C15H11N3)]Cl·C2H6OS[PtCl(C15H11N3)]Cl·2H2O
Mr577.39535.29
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)100100
a, b, c (Å)6.7404 (14), 13.298 (3), 20.954 (4)6.9085 (6), 17.0822 (15), 13.8402 (12)
β (°) 90.331 (3) 98.586 (2)
V3)1878.1 (7)1615.0 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)7.889.03
Crystal size (mm)0.30 × 0.10 × 0.100.30 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.201, 0.5060.173, 0.714
No. of measured, independent and
observed [I > 2σ(I)] reflections
13395, 4236, 3215 10591, 10591, 8684
Rint0.0350.125
(sin θ/λ)max1)0.6510.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.068, 1.15 0.045, 0.133, 1.01
No. of reflections423610591
No. of parameters226184
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.42, 0.601.91, 1.52

Computer programs: SMART (Bruker, 2005), SMART, SAINT (Bruker, 2005), SHELXTL (Bruker, 2005), SHELXL97 (Sheldrick, 1997), SHELXTL.

Comparison of Pt···Pt distances (Å) in [Pt(terpy)Cl]X structures. CSD data from which version (Allen, 2002)? top
CSD entryAnionNeutral speciesPt···PtReference
LAVWUAO3SCF33.329 (1)Yip et al. (1993)
3.575
QUGGOO[PtCl3(DMSO)]3.338Cini et al. (2001)
3.419
TPTAMPAdenosine-5'-monophosphate2.25H2O3.699Wong & Lippard (1977)
VASYAQClO4[Pt(thioquinolate)2]3.353Tzeng et al. (2003)
ZEKTEOClO43.269Bailey et al. (1995)
4.197
(I)ClDMSO3.3155 (8)This work
3.4360 (8)
(II)Cl2H2O3.3903 (5)This work
4.3269 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds