Download citation
Download citation
link to html
Two one-dimensional zinc-based coordination polymers containing cyanate anions are reported. catena-Poly[sodium [[tricyanato­zinc(II)]-μ-1,4-diaza­bicyclo­[2.2.2]octane-κ2N:N′]], {Na[Zn(NCO)3(C6H12N2)]}n, consists of linear [tricyanato­zinc(II)]-μ-1,4-diaza­bicyclo­[2.2.2]octane strands in which the Zn2+ cations adopt trigonal–bipyramidal coordination on sites of \overline{6}m2 point symmetry. Na+ cations lie between the strands on sites of \overline{3}m point symmetry, coordinated in a distorted octa­hedral geometry by six O atoms of the cyanate anions. catena-Poly[[dicyanato­zinc(II)]-μ-4,4′-bipyridine-κ2N:N′], [Zn(NCO)2(C10H8N2)]n, crystallizes in the space group P21/n with Z′ = 5. The structure consists of zigzag strands formed by Zn2+ cations linked via 4,4′-bipyridine. Each Zn2+ cation adopts a tetra­hedral coordination, with two sites occupied by 4,4′-bipyridine and two cyanate anions completing the coordination sphere. The structure is closely comparable with the thio­cyanate and halide analogues [ZnX2(C10H8N2)] (X = NCS, Cl or Br).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105033962/fg1873sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105033962/fg1873Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105033962/fg1873IIsup3.hkl
Contains datablock II

CCDC references: 294312; 294313

Comment top

1,4-Diazobicyclo[2.2.2]octane (DABCO) and 4,4'-bipyridine (bipy) are commonly employed as `spacer' ligands for the construction of metal–organic frameworks (MOFs). With ZnII, the latter ligand in particular has been included in MOFs with three-dimensional (for example, Wang et al., 2004; Tao et al., 2000) and two-dimensional (Gable et al., 1990; Ng, 2003) architectures, and also in numerous one-dimensional coordination polymers (Kondo et al., 1999; Pan et al., 1999; Sampanthar & Vittal, 1999; Ma et al., 2000). MOFs incorporating DABCO are less prevalent, but two-dimensional (He et al., 2002) and three-dimensional (Dybtsev et al., 2004) frameworks have been reported in which DABCO is present in combination with terephthalic acid. Zn–DABCO complexes that incorporate monodentate or chelating ligands have been observed as discrete units (for example, Fronczek et al., 1990; Petrusenko et al., 1997) and as one-dimensional coordination polymers, with both linear (Petrusenko et al., 1997) and zigzag (Huang et al. 1996; Ng, 1999; Braga et al., 2004) geometries. Structures incorporating cyanate anions bonded to ZnII are rather more rare: only three examples (Choi et al., 1999; Secondo et al., 2000; Soldatov et al., 1999) exist in the Cambridge Structural Database (CSD, Version?; Allen, 2002), and there are no examples in the Inorganic Crystal Structure Database (ICSD, 2005).

In the title complex, Na[Zn(NCO)3(C6H12N2)], (I) (Fig. 1), one-dimensional linear strands are formed from Zn2+ cations linked via DABCO moieties. The coordination geometry of the Zn2+ cation is trigonal–bipyramidal, with three cyanate anions, coordinated through N, lying in the equatorial plane. The anionic [Zn(NCO)3(DABCO)] strands adopt a trigonal arrangement, with the cyanate anions lying in mirror planes at z = 1/4 and 3/4. Na+ cations (at z = 0 and 1/2) lie between the mirror planes (Fig. 2), coordinated by the O atoms of the cyanate anions. The single symmetry-independent cyanate anion in the structure is modelled as disordered, with one orientation (atoms C1 and O1) lying along the twofold rotation axis that passes through atoms Zn1 and N1, and a second orientation (atoms C1A and O1A) displaced slightly from the twofold axis. The disordered description was deemed to be more satisfactory than an ordered description incorporating displacement ellipsoids that are grossly distorted in the direction perpendicular to the twofold axis. On the basis of the O-atom sites lying on the twofold axes, the coordination geometry around Na+ may be described as distorted octahedral, the distortion being parallel to the threefold axis of the octahedron (the crystallographic c axis). Incorporation of Na+ at this coordination site must be consistent with the Zn···Zn separation imposed by the DABCO moiety. That is, the perpendicular separation of 3.54 Å between the mirror planes containing the Zn2+ cations and cyanate anions is consistent with an Na—O1 distance of 2.377 (6) Å. Inclusion of a larger spacer ligand such as bipy in a similar structure would provide a coordination site between the cyanate anions that is too large to accommodate Na+ efficiently.

The second compound, [Zn(NCO)2(C10H8N2)], (II) (Fig. 3), crystallizes in space group P21/n with Z' = 5. This is relatively unusual; only 32 examples exist at present in the CSD of structures in space group P21/c (or equivalent) with Z' 5. The structure of (II) comprises neutral one-dimensional strands in which the coordination geometry around Zn2+ is tetrahedral. The environment of atom Zn1 closely resembles that in the comparable mononuclear complex [Zn(NCO)2(4-N,N'-dimethylaminopyridine)2] (Secondo et al., 2000). The strands in (II) adopt a zigzag geometry and can be envisaged as lying in layers parallel to the bc plane at x = 1/4 and 3/4. Similar layered arrangements are observed in the thiocyanate and halide analogues [ZnX2(C10H8N2)], where X = NCS (Kondo et al., 1999; Pan et al., 1999), Cl or Br (Hu & Englert, 2001), the Cl derivative having been observed to be dimorphic (Fu et al., 2001). In each of these structures, the layers display regular planar geometry, having mirror or twofold rotation symmetry. In (II), the layers are rather more distorted, and the Zn2+ cations in adjacent strands are not strictly co-planar. This distortion appears to be driven to some extent by differing coordination arrangements of the cyanate ligands: on each of the five symmetry-independent Zn2+ cations, one cyanate ligand adopts an Zn—NCO geometry that is closer to linear [Zn—N—C angle in the range 158.4 (14)–177.3 (17)°], while the other is more bent at the N atom [Zn—N—C angle in the range 140.2 (14)–146.3 (11)°; Table 1 No values have been flagged in the CIF for inclusion in a table. Do you wish to add one?]. Within the layers, the Zn2+ cations in adjacent strands along the c direction lie alternately above and below the mean plane through all Zn2+ cations, apparently to optimize the packing arrangement of the cyanate moieties. The layers are stacked one upon the other with an offset that enables the cyanate moieties to project between the phenyl rings of the bipy units in adjacent layers (Fig. 4).

Experimental top

Compound (I) was prepared as follows. Sodium cyanate (0.26 g, 4 mmol) in water (4 ml) and 1,4-diazobicyclo[2.2.2]octane (0.234 g, 2 mmol) in methanol (1 ml) were added to a mixture of Zn(NO3)2·6H2O (0.15 g, 0.5 mmol) and concentrated nitric acid (14M, 0.07 ml, 1 mmol) in methanol (3 ml). Crystals of (I) were deposited from the colourless solution over several hours (yield 62 mg, 37%). IR ν(NCO): 2239, 2170 cm−1. Compound (II) was prepared as follows. Sodium cyanate (0.26 g, 4 mmol) in water (4 ml) and 4,4'-bipyridine (0.082 g, 0.53 mmol) in methanol (8 ml) were added to a mixture of Zn(NO3)2·6H2O (154 mg, 0.52 mmol) and concentrated nitric acid (14M, 0.07 ml, 1 mmol) in methanol (3 ml). Crystals of (II) were deposited from the colourless solution over several hours (yield 71 mg, 45%). IR ν(NCO): 2227 cm−1.

Refinement top

The disorder of the cyanate ligand in (I) was modelled with two pairs of C and O atoms. One pair (C1 and O1) lie exactly on the twofold axis that passes through atoms Zn1 and N1, and one pair (C1A and O1A) are displaced from it. Both pairs lie in the mirror plane at z = 1/4. The N—C, C—O and N···O distances within each component were restrained to equivalent refined values, with standard uncertainties of 0.01 Å. Initially, the atomic displacement parameters were fixed to 0.04 Å2 and the site occupancy factors (s.o.f) were refined with s.o.f·(C1/O1) + s.o.f·(C1A/O1A) = 0.25 (to account for the multiplicity of the atomic sites). The site occupancy factors were subsequently constrained to the refined values (C1 = O1 = 0.05, C1A = O1A =)/5 [Please correct], and two isotropic displacement parameters were refined, one common to both atoms in each component. The crystal of (II) is monoclinic with β ca 90°, and was twinned to appear orthorhombic: twin law (1 0 0, 0 − 1 0, 0 0 − 1), refined BASF 0.497 (3). Diffraction was relatively weak, with less than 50% of the data observed at the 2σ(I) level. The resulting structure is of relatively low precision. The anisotropic displacement parameters of the C, N and O atoms were restrained to be approximately isotropic with a standard uncertainty of 0.01 Å2. The largest peak and deepest hole in the residual electron density are associated with atoms Zn2 and Zn3, respectively. For both structures, H atoms bound to C were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.99 Å for the methylene group in the DABCO moiety in (I) and 0.95 Å for the bipy moieties in (II). In both cases, Uiso(H) = 1.2 Ueq(C).

Computing details top

For both compounds, data collection: APEX2 (Bruker Nonius, 2004); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The coordination environment of Zn1 in (I), showing displacement ellipsoids at the 50% probability levels. The disorder of the cyanate moiety is shown for only one ligand. [Symmetry codes: (i) x, x-y, z; (ii) 1 − y, x-y, z; (iii) 1 − x + y, 1 − x, z; (iv) x, y, 1/2 − z.]
[Figure 2] Fig. 2. A view of (I), (a) along the c direction and (b) along the a direction. For the cyanate anions, only the disordered components lying on the twofold axes are shown.
[Figure 3] Fig. 3. The asymmetric unit in (II), showing displacement ellipsoids at the 50% probability level. For clarity, C atoms are not labelled. The tetrahedral geometry around Zn is shown most clearly for atom Zn4, and the differing coordination modes of the cyanate anions are illustrated most clearly by N8 (linear) and N7 (bent).
[Figure 4] Fig. 4. A view of a single layer in (II), (a) along the a direction (perpendicular to the layer plane) and (b) along the b direction, showing Zn2+ cations lying above and below the mean plane of the layer.
(I) catena-Poly[sodium [[tricyanatozinc(II)]-µ-1,4-diazobicyclo[2.2.2]octane-κ2N:N']] top
Crystal data top
Na[Zn(NCO)3(C6H12N2)]Dx = 1.689 Mg m3
Mr = 326.60Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63/mmcCell parameters from 3837 reflections
Hall symbol: -P 6c 2cθ = 2.3–30.1°
a = 10.2345 (2) ŵ = 1.96 mm1
c = 7.0799 (3) ÅT = 180 K
V = 642.23 (3) Å3Block, colourless
Z = 20.35 × 0.25 × 0.20 mm
F(000) = 332
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
407 independent reflections
Radiation source: fine-focus sealed tube388 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
thin–slice ω and ϕ scansθmax = 30.6°, θmin = 3.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1014
Tmin = 0.580, Tmax = 0.675k = 1210
6400 measured reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0374P)2 + 0.743P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
407 reflectionsΔρmax = 0.63 e Å3
30 parametersΔρmin = 0.64 e Å3
6 restraintsExtinction correction: SHELXTL (Sheldrick, 2000), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (3)
Crystal data top
Na[Zn(NCO)3(C6H12N2)]Z = 2
Mr = 326.60Mo Kα radiation
Hexagonal, P63/mmcµ = 1.96 mm1
a = 10.2345 (2) ÅT = 180 K
c = 7.0799 (3) Å0.35 × 0.25 × 0.20 mm
V = 642.23 (3) Å3
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
407 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
388 reflections with I > 2σ(I)
Tmin = 0.580, Tmax = 0.675Rint = 0.024
6400 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0316 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.11Δρmax = 0.63 e Å3
407 reflectionsΔρmin = 0.64 e Å3
30 parameters
Special details top

Experimental. Apparent disorder in positions of NCO ligands.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.66670.33330.25000.0159 (2)
Na10.00000.00000.00000.0251 (5)
N20.66670.33330.5668 (4)0.0156 (6)
C20.58907 (13)0.41093 (13)0.6419 (3)0.0262 (5)
H2A0.48370.35960.59550.031*
N10.4425 (4)0.22125 (18)0.25000.0371 (8)
O10.1790 (11)0.0895 (5)0.25000.037 (3)*0.20
C10.3163 (12)0.1581 (6)0.25000.037 (3)*0.20
O1A0.1827 (5)0.1518 (5)0.25000.0280 (7)*0.40
C1A0.3175 (6)0.1905 (7)0.25000.0280 (7)*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0178 (2)0.0178 (2)0.0122 (3)0.00892 (12)0.0000.000
Na10.0217 (6)0.0217 (6)0.0318 (12)0.0109 (3)0.0000.000
N20.0168 (8)0.0168 (8)0.0131 (12)0.0084 (4)0.0000.000
C20.0400 (10)0.0400 (10)0.0143 (8)0.0318 (12)0.0004 (4)0.0004 (4)
N10.0219 (15)0.0608 (19)0.0157 (12)0.0110 (7)0.0000.000
Geometric parameters (Å, º) top
Zn1—N11.987 (3)Na1—O1Axi2.477 (3)
Zn1—N1i1.987 (3)Na1—O1Avi2.477 (3)
Zn1—N1ii1.987 (3)Na1—O1Avii2.477 (3)
Zn1—N22.243 (3)Na1—O1Aviii2.477 (3)
Zn1—N2iii2.243 (3)Na1—O1Axii2.477 (3)
Na1—O12.377 (6)Na1—O1Axiii2.477 (3)
Na1—O1iv2.377 (6)Na1—O1Axiv2.477 (3)
Na1—O1v2.377 (6)N2—C21.475 (2)
Na1—O1vi2.377 (6)N2—C2i1.475 (3)
Na1—O1vii2.377 (6)N2—C2ii1.475 (3)
Na1—O1viii2.377 (6)C2—C2xv1.531 (4)
Na1—O1A2.477 (3)C2—H2A0.990
Na1—O1Aiv2.477 (3)N1—C11.119 (11)
Na1—O1Av2.477 (3)N1—C1A1.154 (6)
Na1—O1Aix2.477 (3)O1—C11.217 (11)
Na1—O1Ax2.477 (3)O1A—C1A1.230 (7)
N1—Zn1—N1i120.0O1vii—Na1—O1Av99.76 (17)
N1—Zn1—N1ii120.0O1iv—Na1—O1Av80.24 (17)
N1i—Zn1—N1ii120.0O1viii—Na1—O1Av165.54 (10)
N2—Zn1—N190.0O1v—Na1—O1Av14.46 (10)
N2—Zn1—N1i90.0O1—Na1—O1Av62.74 (14)
N2—Zn1—N1ii90.0O1Axiv—Na1—O1Av52.38 (19)
N2—Zn1—N2iii180.0O1Axi—Na1—O1Av127.62 (19)
N1i—Zn1—N2iii90.0O1Aviii—Na1—O1Av180.00 (17)
N1—Zn1—N2iii90.0O1vi—Na1—O1Avi14.46 (10)
N1ii—Zn1—N2iii90.0O1vii—Na1—O1Avi62.74 (14)
O1—Na1—O1vi180.0O1iv—Na1—O1Avi117.26 (14)
O1—Na1—O1vii109.4 (3)O1viii—Na1—O1Avi80.24 (17)
O1—Na1—O1iv70.6 (3)O1v—Na1—O1Avi99.76 (17)
O1—Na1—O1viii109.4 (3)O1—Na1—O1Avi165.54 (10)
O1—Na1—O1v70.6 (3)O1Axiv—Na1—O1Avi151.1 (2)
O1vi—Na1—O1vii70.6 (3)O1Axi—Na1—O1Avi28.9 (2)
O1vi—Na1—O1iv109.4 (3)O1Aviii—Na1—O1Avi74.59 (11)
O1vii—Na1—O1iv180.0 (4)O1Av—Na1—O1Avi105.41 (11)
O1vi—Na1—O1viii70.6 (3)O1vi—Na1—O1Axii99.76 (17)
O1vii—Na1—O1viii70.6 (3)O1vii—Na1—O1Axii117.26 (14)
O1iv—Na1—O1viii109.4 (3)O1iv—Na1—O1Axii62.74 (14)
O1vi—Na1—O1v109.4 (3)O1viii—Na1—O1Axii165.54 (10)
O1vii—Na1—O1v109.4 (3)O1v—Na1—O1Axii14.46 (10)
O1iv—Na1—O1v70.6 (3)O1—Na1—O1Axii80.24 (17)
O1viii—Na1—O1v180.0 (4)O1Axiv—Na1—O1Axii74.59 (11)
O1vi—Na1—O1Axiv165.54 (10)O1Axi—Na1—O1Axii105.41 (11)
O1vii—Na1—O1Axiv99.76 (17)O1Aviii—Na1—O1Axii151.1 (2)
O1iv—Na1—O1Axiv80.24 (17)O1Av—Na1—O1Axii28.9 (2)
O1viii—Na1—O1Axiv117.26 (14)O1Avi—Na1—O1Axii92.60 (15)
O1v—Na1—O1Axiv62.74 (14)C2—N2—C2ii107.75 (14)
O1—Na1—O1Axiv14.46 (10)C2—N2—C2i107.75 (14)
O1vi—Na1—O1Axi14.46 (10)C2ii—N2—C2i107.75 (14)
O1vii—Na1—O1Axi80.24 (17)C2—N2—Zn1111.14 (13)
O1iv—Na1—O1Axi99.76 (17)C2ii—N2—Zn1111.14 (14)
O1viii—Na1—O1Axi62.74 (14)C2i—N2—Zn1111.14 (13)
O1v—Na1—O1Axi117.26 (14)N2—C2—C2xv111.14 (13)
O1—Na1—O1Axi165.54 (10)N2—C2—H2A109.4
O1Axiv—Na1—O1Axi180.00 (16)C2xv—C2—H2A109.4
O1vi—Na1—O1Aviii62.74 (14)C1—N1—Zn1180.0 (6)
O1vii—Na1—O1Aviii80.24 (17)C1A—N1—Zn1163.7 (3)
O1iv—Na1—O1Aviii99.76 (17)C1Axiv—N1—Zn1163.7 (3)
O1viii—Na1—O1Aviii14.46 (10)C1—O1—Na1131.87 (17)
O1v—Na1—O1Aviii165.54 (10)C1—O1—Na1xvi131.87 (17)
O1—Na1—O1Aviii117.26 (14)Na1—O1—Na1xvi96.3 (3)
O1Axiv—Na1—O1Aviii127.62 (19)N1—C1—O1180.0 (12)
O1Axi—Na1—O1Aviii52.38 (19)N1—C1A—O1A177.4 (6)
O1vi—Na1—O1Av117.26 (14)
N1i—Zn1—N2—C2180.0O1—Na1—O1A—C1A63.5 (8)
N1—Zn1—N2—C260.0O1Axiv—Na1—O1A—C1A61.2 (4)
N1ii—Zn1—N2—C260.0O1Axi—Na1—O1A—C1A118.8 (4)
N1i—Zn1—N2—C2ii60.0O1Aviii—Na1—O1A—C1A83.0 (5)
N1—Zn1—N2—C2ii180.0O1Av—Na1—O1A—C1A97.0 (5)
N1ii—Zn1—N2—C2ii60.0O1Axii—Na1—O1A—C1A123.3 (4)
N1i—Zn1—N2—C2i60.0O1vi—Na1—O1A—O1Axiv177.7 (7)
N1—Zn1—N2—C2i60.0O1vii—Na1—O1A—O1Axiv57.40 (16)
N1ii—Zn1—N2—C2i180.0O1iv—Na1—O1A—O1Axiv122.60 (16)
C2ii—N2—C2—C2xv58.01 (16)O1viii—Na1—O1A—O1Axiv130.55 (8)
C2i—N2—C2—C2xv58.01 (16)O1v—Na1—O1A—O1Axiv49.45 (8)
Zn1—N2—C2—C2xv180.0O1—Na1—O1A—O1Axiv2.3 (7)
N1i—Zn1—N1—C1A180.0O1Axi—Na1—O1A—O1Axiv180.0
N1ii—Zn1—N1—C1A0.0O1Aviii—Na1—O1A—O1Axiv144.20 (11)
N2iii—Zn1—N1—C1A90.0O1Av—Na1—O1A—O1Axiv35.80 (11)
N2—Zn1—N1—C1A90.0O1Axii—Na1—O1A—O1Axiv62.10 (9)
N1i—Zn1—N1—C1Axiv0.0O1vi—Na1—O1A—C1Axiv139.3 (7)
N1ii—Zn1—N1—C1Axiv180.0O1vii—Na1—O1A—C1Axiv19.1 (3)
N2iii—Zn1—N1—C1Axiv90.0O1iv—Na1—O1A—C1Axiv160.9 (3)
N2—Zn1—N1—C1Axiv90.0O1viii—Na1—O1A—C1Axiv92.2 (3)
O1vii—Na1—O1—C137.79 (7)O1v—Na1—O1A—C1Axiv87.8 (3)
O1iv—Na1—O1—C1142.21 (7)O1—Na1—O1A—C1Axiv40.7 (7)
O1viii—Na1—O1—C137.79 (7)O1Axiv—Na1—O1A—C1Axiv38.3 (3)
O1v—Na1—O1—C1142.21 (7)O1Axi—Na1—O1A—C1Axiv141.7 (3)
O1Axiv—Na1—O1—C187.7 (7)O1Aviii—Na1—O1A—C1Axiv105.9 (3)
O1Axi—Na1—O1—C192.3 (7)O1Av—Na1—O1A—C1Axiv74.1 (3)
O1Aviii—Na1—O1—C151.00 (12)O1Axii—Na1—O1A—C1Axiv100.4 (2)
O1Av—Na1—O1—C1129.00 (12)O1vi—Na1—O1A—Na1xvi107.6 (7)
O1Avi—Na1—O1—C192.3 (7)O1vii—Na1—O1A—Na1xvi132.15 (16)
O1Axii—Na1—O1—C1153.40 (10)O1iv—Na1—O1A—Na1xvi47.85 (16)
O1vii—Na1—O1—Na1xvi142.21 (7)O1viii—Na1—O1A—Na1xvi154.71 (12)
O1iv—Na1—O1—Na1xvi37.79 (7)O1v—Na1—O1A—Na1xvi25.29 (12)
O1viii—Na1—O1—Na1xvi142.21 (7)O1—Na1—O1A—Na1xvi72.4 (7)
O1v—Na1—O1—Na1xvi37.79 (7)O1Axiv—Na1—O1A—Na1xvi74.74 (11)
O1Axiv—Na1—O1—Na1xvi92.3 (7)O1Axi—Na1—O1A—Na1xvi105.26 (11)
O1Axi—Na1—O1—Na1xvi87.7 (7)O1Aviii—Na1—O1A—Na1xvi141.06 (3)
O1Aviii—Na1—O1—Na1xvi129.00 (12)O1Av—Na1—O1A—Na1xvi38.94 (3)
O1Av—Na1—O1—Na1xvi51.00 (12)O1Axii—Na1—O1A—Na1xvi12.6 (2)
O1Avi—Na1—O1—Na1xvi87.7 (7)C1—N1—C1A—O1Axiv0.0
O1Axii—Na1—O1—Na1xvi26.60 (10)C1Axiv—N1—C1A—O1Axiv0.0
O1vi—Na1—O1A—C1A116.5 (8)Zn1—N1—C1A—O1Axiv180.0
O1vii—Na1—O1A—C1A3.8 (4)O1Axiv—O1A—C1A—C1Axiv0.0
O1iv—Na1—O1A—C1A176.2 (4)Na1—O1A—C1A—C1Axiv60.9 (3)
O1viii—Na1—O1A—C1A69.4 (4)Na1xvi—O1A—C1A—C1Axiv60.9 (3)
O1v—Na1—O1A—C1A110.6 (4)C1Axiv—O1A—C1A—O1Axiv0.0
Symmetry codes: (i) y+1, xy, z; (ii) x+y+1, x+1, z; (iii) x, y, z+1/2; (iv) y, xy, z; (v) x+y, x, z; (vi) x, y, z; (vii) y, x+y, z; (viii) xy, x, z; (ix) y, x, z; (x) xy, y, z; (xi) x, x+y, z; (xii) y, x, z; (xiii) x+y, y, z; (xiv) x, xy, z; (xv) x, y, z+3/2; (xvi) x, y, z+1/2.
(II) catena-Poly[[dicyanatozinc(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Zn(NCO)2(C10H8N2)]F(000) = 3080
Mr = 305.59Dx = 1.619 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1757 reflections
a = 14.388 (1) Åθ = 3.2–22.8°
b = 16.483 (2) ŵ = 1.96 mm1
c = 26.438 (3) ÅT = 180 K
β = 90.024 (6)°Block, colourless
V = 6270.0 (11) Å30.25 × 0.10 × 0.10 mm
Z = 20
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
12763 independent reflections
Radiation source: fine-focus sealed tube5045 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.130
thin–slice ω and ϕ scansθmax = 26.4°, θmin = 3.6°
Absorption correction: multi-scan
(SADABS: Sheldrick, 2003)
h = 1717
Tmin = 0.423, Tmax = 0.828k = 2013
34766 measured reflectionsl = 3333
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.221H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
12763 reflections(Δ/σ)max < 0.001
857 parametersΔρmax = 1.31 e Å3
540 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Zn(NCO)2(C10H8N2)]V = 6270.0 (11) Å3
Mr = 305.59Z = 20
Monoclinic, P21/nMo Kα radiation
a = 14.388 (1) ŵ = 1.96 mm1
b = 16.483 (2) ÅT = 180 K
c = 26.438 (3) Å0.25 × 0.10 × 0.10 mm
β = 90.024 (6)°
Data collection top
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
12763 independent reflections
Absorption correction: multi-scan
(SADABS: Sheldrick, 2003)
5045 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.828Rint = 0.130
34766 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.071540 restraints
wR(F2) = 0.221H-atom parameters constrained
S = 0.89Δρmax = 1.31 e Å3
12763 reflectionsΔρmin = 0.90 e Å3
857 parameters
Special details top

Experimental. Crystal twinned to appear orthorhombic. Twin law: 1 0 0, 0 − 1 0, 0 0 − 1 Refined BASF 0.497 (3).

ISOR restraints applied to all O, N and C atoms.

Highest residual peak/hole in vicinity of Zn2/Zn3, respectively.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.22589 (18)0.13886 (16)0.49361 (7)0.0374 (6)
Zn20.27908 (18)0.63796 (15)0.21052 (7)0.0374 (6)
Zn30.28944 (14)0.13509 (13)0.69211 (7)0.0254 (5)
Zn40.20899 (13)0.63438 (12)0.41173 (6)0.0249 (5)
Zn50.29291 (11)0.63440 (10)0.60965 (8)0.0230 (4)
O10.4893 (9)0.1308 (8)0.5599 (5)0.084 (4)
O20.0155 (7)0.1531 (8)0.5972 (5)0.066 (4)
O30.5122 (7)0.6446 (7)0.1196 (5)0.071 (4)
O40.0367 (9)0.6415 (9)0.1198 (6)0.100 (5)
O50.0173 (9)0.1184 (8)0.7488 (5)0.075 (4)
O60.4877 (8)0.1453 (8)0.7995 (5)0.062 (3)
O70.0045 (7)0.6489 (8)0.3126 (4)0.058 (4)
O80.4701 (8)0.6261 (7)0.3403 (5)0.068 (4)
O90.0239 (9)0.6255 (9)0.5438 (6)0.081 (5)
O100.4971 (7)0.6466 (8)0.5038 (5)0.058 (3)
N10.3369 (8)0.1326 (7)0.5293 (4)0.034 (3)
N20.1039 (8)0.1434 (8)0.5213 (5)0.040 (3)
N30.4054 (9)0.6394 (9)0.1854 (5)0.048 (4)
N40.1663 (8)0.6389 (9)0.1710 (5)0.049 (4)
N50.1779 (11)0.1295 (10)0.7264 (6)0.059 (5)
N60.4136 (8)0.1358 (8)0.7220 (5)0.036 (3)
N70.0821 (7)0.6326 (8)0.3867 (6)0.035 (3)
N80.3169 (8)0.6335 (9)0.3732 (5)0.038 (4)
N90.1793 (8)0.6328 (8)0.5699 (4)0.024 (3)
N100.4128 (8)0.6341 (9)0.5819 (5)0.032 (3)
C10.4071 (15)0.1276 (12)0.5398 (8)0.062 (6)
C20.0577 (10)0.1470 (10)0.5591 (5)0.040 (4)
C30.4528 (11)0.6407 (12)0.1531 (6)0.049 (5)
C40.1026 (11)0.6374 (11)0.1503 (6)0.043 (4)
C50.0960 (12)0.1259 (11)0.7403 (7)0.041 (5)
C60.4470 (11)0.1376 (12)0.7589 (7)0.043 (5)
C70.0400 (10)0.6388 (11)0.3497 (6)0.033 (4)
C80.3918 (10)0.6335 (12)0.3544 (7)0.041 (4)
C90.1032 (11)0.6255 (10)0.5612 (7)0.035 (4)
C100.4543 (9)0.6439 (10)0.5421 (6)0.027 (4)
N110.2340 (9)0.2368 (9)0.4469 (5)0.032 (4)
N120.2679 (9)0.5381 (9)0.2574 (5)0.030 (3)
C110.1605 (11)0.2613 (9)0.4211 (5)0.030 (4)
H11A0.10220.23660.42780.036*
C120.1648 (11)0.3208 (10)0.3850 (7)0.037 (5)
H12A0.10930.33640.36810.045*
C130.2478 (7)0.3592 (12)0.3722 (7)0.023 (4)
C140.3231 (11)0.3335 (9)0.3981 (7)0.034 (4)
H14A0.38200.35740.39170.040*
C150.3147 (11)0.2706 (10)0.4352 (6)0.037 (5)
H15A0.36920.25230.45210.045*
C160.1873 (10)0.5231 (9)0.2803 (6)0.028 (4)
H16A0.13440.55390.27060.033*
C170.1768 (12)0.4651 (10)0.3173 (6)0.029 (4)
H17A0.11850.45700.33340.034*
C180.2528 (7)0.4192 (12)0.3303 (6)0.020 (4)
C190.3364 (11)0.4340 (10)0.3060 (6)0.031 (4)
H19A0.39030.40360.31450.037*
C1100.3403 (10)0.4920 (9)0.2702 (6)0.032 (4)
H11B0.39770.50060.25320.038*
N210.2654 (8)0.7364 (8)0.2588 (5)0.029 (4)
N220.2309 (9)1.0406 (8)0.4452 (5)0.030 (3)
C210.1837 (12)0.7565 (10)0.2773 (6)0.038 (5)
H21A0.13040.73000.26410.046*
C220.1706 (13)0.8141 (10)0.3151 (7)0.036 (5)
H22A0.11110.82570.32890.043*
C230.2526 (7)0.8544 (12)0.3316 (8)0.024 (4)
C240.3395 (13)0.8341 (11)0.3085 (7)0.042 (5)
H24A0.39490.86190.31760.050*
C250.3412 (9)0.7752 (9)0.2737 (5)0.028 (4)
H25A0.39910.76050.25920.034*
C260.1587 (13)1.0187 (11)0.4198 (7)0.058 (6)
H26A0.10091.04380.42720.070*
C270.1617 (11)0.9587 (10)0.3814 (6)0.043 (5)
H27A0.10640.94470.36370.052*
C280.2466 (9)0.9197 (15)0.3691 (8)0.042 (6)
C290.3220 (11)0.9487 (10)0.3987 (6)0.042 (5)
H29A0.38210.92630.39370.050*
C2100.3103 (11)1.0074 (10)0.4338 (6)0.042 (5)
H21B0.36381.02570.45150.051*
N310.2781 (9)0.2355 (8)0.6463 (5)0.026 (3)
N320.2225 (10)0.5381 (8)0.4595 (4)0.027 (3)
C310.1927 (12)0.2644 (10)0.6358 (6)0.040 (5)
H31A0.14050.24390.65380.047*
C320.1801 (11)0.3213 (9)0.6006 (7)0.029 (4)
H32A0.11940.34160.59420.034*
C330.2564 (8)0.3515 (12)0.5726 (6)0.021 (4)
C340.3436 (11)0.3244 (10)0.5838 (6)0.026 (4)
H34A0.39650.34480.56660.032*
C350.3522 (10)0.2655 (9)0.6215 (6)0.029 (4)
H35A0.41240.24600.62990.035*
C360.1512 (11)0.4907 (10)0.4728 (6)0.032 (4)
H36A0.09270.49890.45690.038*
C370.1593 (10)0.4289 (10)0.5094 (6)0.029 (4)
H37A0.10790.39510.51730.034*
C380.2437 (8)0.4185 (12)0.5336 (7)0.027 (5)
C390.3181 (12)0.4682 (10)0.5196 (6)0.032 (4)
H39A0.37670.46340.53580.038*
C3100.3045 (12)0.5239 (10)0.4820 (6)0.034 (4)
H31B0.35660.55460.47110.041*
N410.2211 (10)0.7341 (7)0.4589 (4)0.024 (3)
N420.2802 (9)1.0404 (8)0.6433 (4)0.023 (3)
C410.1478 (10)0.7684 (9)0.4827 (5)0.024 (4)
H41A0.08670.75130.47420.029*
C420.1593 (12)0.8274 (10)0.5188 (6)0.031 (4)
H42A0.10610.84900.53530.037*
C430.2439 (8)0.8552 (12)0.5315 (7)0.028 (5)
C440.3184 (12)0.8190 (11)0.5060 (6)0.036 (5)
H44A0.37970.83680.51330.043*
C450.3063 (12)0.7599 (10)0.4716 (6)0.038 (5)
H45A0.35910.73600.45610.046*
C460.1980 (13)1.0253 (10)0.6230 (7)0.047 (5)
H46A0.14631.05570.63470.057*
C470.1825 (11)0.9671 (10)0.5853 (5)0.033 (4)
H47A0.12310.96040.57010.040*
C480.2580 (8)0.9196 (11)0.5711 (6)0.020 (4)
C490.3418 (11)0.9323 (9)0.5929 (6)0.031 (4)
H49A0.39390.90020.58360.037*
C4100.3505 (10)0.9929 (9)0.6293 (5)0.028 (4)
H41B0.40941.00080.64490.034*
N510.2813 (9)0.5368 (7)0.6580 (4)0.021 (3)
N520.2194 (9)0.2320 (7)0.8448 (4)0.021 (3)
C510.3495 (10)0.4903 (10)0.6725 (6)0.027 (4)
H51A0.40870.49760.65730.032*
C520.3398 (10)0.4313 (9)0.7088 (6)0.029 (4)
H52A0.39280.40110.71890.035*
C530.2551 (7)0.4149 (12)0.7308 (6)0.018 (4)
C540.1838 (11)0.4638 (9)0.7137 (6)0.024 (4)
H54A0.12350.45680.72760.029*
C550.1970 (11)0.5219 (9)0.6776 (6)0.026 (4)
H55A0.14530.55250.66610.031*
C560.3010 (11)0.2645 (10)0.8332 (6)0.031 (4)
H56A0.35350.24500.85130.037*
C570.3171 (12)0.3240 (11)0.7974 (6)0.033 (5)
H57A0.37810.34400.79160.039*
C580.2422 (8)0.3538 (13)0.7699 (7)0.025 (5)
C590.1544 (12)0.3226 (11)0.7838 (7)0.031 (5)
H59A0.09940.34210.76800.038*
C5100.1499 (10)0.2628 (10)0.8210 (6)0.030 (4)
H51B0.08990.24300.82960.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0708 (13)0.0214 (13)0.0200 (10)0.0033 (13)0.0043 (9)0.0003 (9)
Zn20.0683 (13)0.0227 (12)0.0211 (10)0.0028 (14)0.0074 (9)0.0003 (8)
Zn30.0299 (11)0.0213 (12)0.0250 (10)0.0010 (11)0.0010 (10)0.0013 (10)
Zn40.0320 (12)0.0236 (12)0.0191 (9)0.0041 (11)0.0007 (9)0.0001 (9)
Zn50.0337 (9)0.0186 (9)0.0166 (8)0.0004 (9)0.0014 (13)0.0001 (10)
O10.076 (5)0.090 (6)0.087 (6)0.004 (4)0.002 (4)0.010 (4)
O20.064 (5)0.071 (5)0.064 (5)0.003 (4)0.001 (4)0.003 (4)
O30.062 (5)0.079 (5)0.071 (5)0.008 (4)0.002 (4)0.005 (4)
O40.091 (6)0.103 (6)0.106 (7)0.002 (4)0.003 (5)0.003 (5)
O50.062 (5)0.082 (6)0.082 (6)0.001 (4)0.006 (4)0.015 (4)
O60.058 (5)0.076 (5)0.052 (5)0.008 (4)0.017 (4)0.004 (4)
O70.052 (5)0.071 (5)0.050 (5)0.005 (4)0.011 (4)0.005 (4)
O80.048 (5)0.074 (5)0.080 (5)0.003 (4)0.021 (4)0.015 (4)
O90.064 (5)0.085 (6)0.094 (6)0.004 (4)0.011 (4)0.012 (4)
O100.055 (4)0.071 (5)0.048 (5)0.002 (4)0.014 (4)0.008 (4)
N10.029 (5)0.041 (6)0.032 (5)0.006 (6)0.003 (5)0.001 (5)
N20.042 (6)0.041 (7)0.037 (6)0.007 (6)0.010 (5)0.012 (6)
N30.066 (7)0.043 (7)0.035 (6)0.003 (6)0.021 (5)0.000 (6)
N40.047 (6)0.053 (7)0.048 (6)0.004 (6)0.019 (6)0.003 (6)
N50.074 (8)0.051 (8)0.053 (8)0.001 (7)0.002 (6)0.003 (6)
N60.024 (5)0.034 (7)0.050 (7)0.002 (5)0.012 (5)0.002 (6)
N70.031 (5)0.030 (6)0.044 (7)0.005 (5)0.005 (6)0.007 (6)
N80.041 (6)0.048 (7)0.024 (6)0.005 (6)0.007 (5)0.001 (5)
N90.037 (6)0.018 (6)0.016 (5)0.005 (5)0.003 (4)0.005 (5)
N100.029 (5)0.039 (7)0.027 (6)0.010 (6)0.006 (4)0.001 (6)
C10.071 (9)0.057 (9)0.059 (9)0.002 (8)0.010 (7)0.019 (7)
C20.051 (7)0.046 (8)0.023 (6)0.024 (7)0.012 (6)0.004 (6)
C30.055 (7)0.050 (8)0.044 (8)0.002 (7)0.014 (6)0.002 (7)
C40.049 (7)0.038 (7)0.044 (7)0.002 (7)0.014 (6)0.010 (7)
C50.043 (7)0.044 (9)0.035 (7)0.002 (7)0.001 (6)0.006 (6)
C60.046 (7)0.038 (8)0.046 (8)0.006 (7)0.004 (6)0.007 (7)
C70.033 (6)0.035 (7)0.030 (7)0.005 (6)0.006 (5)0.002 (7)
C80.032 (6)0.045 (8)0.047 (8)0.002 (7)0.004 (6)0.002 (7)
C90.031 (7)0.036 (8)0.037 (7)0.006 (6)0.015 (6)0.007 (6)
C100.020 (6)0.030 (7)0.031 (7)0.002 (6)0.005 (5)0.002 (6)
N110.046 (7)0.029 (7)0.021 (6)0.004 (5)0.003 (5)0.008 (5)
N120.046 (6)0.022 (6)0.020 (6)0.002 (5)0.004 (5)0.001 (5)
C110.038 (7)0.023 (7)0.028 (7)0.000 (6)0.009 (6)0.004 (6)
C120.044 (7)0.031 (8)0.037 (8)0.010 (6)0.010 (7)0.001 (6)
C130.037 (7)0.012 (7)0.021 (6)0.005 (6)0.001 (5)0.002 (6)
C140.036 (7)0.022 (7)0.043 (8)0.003 (5)0.006 (6)0.000 (6)
C150.039 (7)0.040 (8)0.034 (7)0.020 (6)0.004 (6)0.003 (6)
C160.028 (7)0.025 (7)0.030 (7)0.012 (5)0.008 (5)0.006 (6)
C170.032 (7)0.023 (8)0.031 (7)0.002 (6)0.002 (6)0.009 (6)
C180.028 (7)0.021 (8)0.011 (6)0.008 (5)0.004 (5)0.001 (6)
C190.032 (7)0.031 (7)0.030 (7)0.004 (6)0.004 (5)0.012 (6)
C1100.038 (7)0.026 (7)0.032 (7)0.003 (6)0.000 (6)0.005 (6)
N210.037 (6)0.018 (6)0.032 (6)0.001 (5)0.002 (5)0.001 (5)
N220.046 (6)0.024 (7)0.019 (6)0.015 (6)0.003 (5)0.004 (5)
C210.040 (8)0.044 (8)0.031 (7)0.004 (6)0.002 (6)0.008 (6)
C220.042 (8)0.022 (8)0.043 (8)0.001 (6)0.001 (6)0.001 (6)
C230.026 (7)0.016 (8)0.029 (7)0.007 (6)0.000 (5)0.008 (6)
C240.044 (8)0.040 (8)0.042 (8)0.010 (6)0.008 (6)0.001 (6)
C250.025 (7)0.026 (7)0.033 (7)0.007 (5)0.011 (5)0.010 (6)
C260.052 (8)0.063 (9)0.059 (9)0.009 (7)0.010 (7)0.008 (7)
C270.041 (7)0.043 (8)0.044 (8)0.008 (6)0.001 (6)0.009 (6)
C280.051 (9)0.039 (10)0.037 (9)0.003 (6)0.007 (6)0.009 (7)
C290.040 (7)0.046 (8)0.040 (8)0.005 (6)0.004 (6)0.001 (7)
C2100.038 (8)0.044 (8)0.046 (7)0.010 (6)0.002 (6)0.009 (6)
N310.037 (6)0.020 (6)0.020 (5)0.004 (6)0.002 (5)0.003 (5)
N320.044 (6)0.020 (6)0.016 (6)0.005 (6)0.006 (5)0.004 (5)
C310.043 (8)0.034 (8)0.041 (8)0.003 (7)0.001 (6)0.011 (6)
C320.027 (7)0.029 (7)0.030 (7)0.001 (5)0.006 (6)0.009 (6)
C330.025 (7)0.017 (8)0.020 (7)0.004 (5)0.003 (5)0.009 (6)
C340.033 (7)0.027 (8)0.019 (7)0.005 (6)0.001 (5)0.006 (6)
C350.034 (6)0.016 (7)0.037 (8)0.002 (5)0.010 (6)0.007 (6)
C360.035 (7)0.033 (8)0.027 (7)0.002 (6)0.008 (6)0.003 (6)
C370.032 (7)0.030 (7)0.024 (7)0.003 (6)0.001 (6)0.004 (6)
C380.034 (8)0.028 (8)0.018 (7)0.003 (6)0.001 (5)0.002 (6)
C390.042 (8)0.031 (8)0.022 (7)0.001 (6)0.004 (6)0.001 (6)
C3100.043 (7)0.033 (8)0.026 (7)0.000 (6)0.003 (6)0.012 (6)
N410.039 (6)0.013 (6)0.019 (5)0.003 (6)0.005 (5)0.003 (5)
N420.031 (5)0.020 (6)0.019 (5)0.003 (6)0.003 (5)0.008 (5)
C410.029 (6)0.019 (7)0.024 (6)0.004 (5)0.007 (5)0.006 (5)
C420.039 (7)0.031 (8)0.022 (7)0.006 (6)0.003 (6)0.008 (6)
C430.040 (8)0.020 (8)0.025 (7)0.007 (6)0.003 (5)0.001 (7)
C440.030 (8)0.031 (8)0.046 (8)0.006 (6)0.009 (6)0.003 (6)
C450.043 (8)0.040 (8)0.032 (7)0.001 (7)0.005 (6)0.007 (6)
C460.051 (8)0.042 (8)0.048 (8)0.008 (7)0.004 (7)0.001 (7)
C470.035 (7)0.038 (8)0.028 (7)0.006 (6)0.010 (6)0.006 (6)
C480.030 (7)0.007 (7)0.024 (7)0.003 (5)0.003 (5)0.002 (6)
C490.031 (7)0.031 (7)0.031 (7)0.004 (6)0.001 (5)0.007 (6)
C4100.031 (6)0.025 (7)0.029 (7)0.002 (6)0.010 (5)0.000 (6)
N510.025 (5)0.018 (6)0.020 (6)0.003 (5)0.004 (5)0.001 (5)
N520.029 (5)0.014 (6)0.021 (5)0.005 (5)0.001 (5)0.002 (5)
C510.033 (7)0.028 (8)0.020 (7)0.006 (6)0.010 (6)0.000 (6)
C520.032 (7)0.027 (7)0.028 (7)0.007 (6)0.000 (6)0.001 (6)
C530.022 (7)0.017 (8)0.014 (6)0.002 (5)0.002 (5)0.000 (6)
C540.025 (7)0.023 (7)0.024 (7)0.001 (6)0.002 (5)0.006 (6)
C550.025 (7)0.029 (7)0.022 (6)0.006 (6)0.002 (5)0.005 (6)
C560.029 (7)0.034 (8)0.030 (7)0.006 (6)0.011 (6)0.006 (6)
C570.022 (7)0.042 (8)0.033 (8)0.004 (6)0.008 (6)0.015 (6)
C580.030 (7)0.022 (8)0.025 (7)0.005 (6)0.002 (5)0.006 (7)
C590.026 (7)0.031 (8)0.037 (8)0.006 (6)0.001 (6)0.001 (6)
C5100.027 (7)0.024 (8)0.038 (7)0.002 (6)0.011 (6)0.008 (6)
Geometric parameters (Å, º) top
Zn1—N11.859 (11)C25—H25A0.950
Zn1—N21.904 (11)C26—C271.42 (2)
Zn1—N112.037 (15)C26—H26A0.950
Zn1—N22i2.067 (14)C27—C281.42 (2)
Zn2—N41.930 (12)C27—H27A0.950
Zn2—N31.935 (13)C28—C291.42 (2)
Zn2—N122.066 (14)C29—C2101.35 (2)
Zn2—N212.074 (14)C29—H29A0.950
Zn3—N51.846 (16)C210—H21B0.950
Zn3—N61.953 (12)N31—C351.346 (17)
Zn3—N42i2.030 (13)N31—C311.35 (2)
Zn3—N312.057 (13)N32—C361.337 (19)
Zn4—N81.858 (12)N32—C3101.34 (2)
Zn4—N71.941 (11)C31—C321.33 (2)
Zn4—N322.037 (13)C31—H31A0.950
Zn4—N412.070 (12)C32—C331.414 (19)
Zn5—N101.875 (12)C32—H32A0.950
Zn5—N91.943 (12)C33—C341.364 (19)
Zn5—N52ii2.017 (12)C33—C381.52 (3)
Zn5—N512.062 (12)C34—C351.396 (18)
O1—C11.30 (2)C34—H34A0.950
O2—C21.182 (17)C35—H35A0.950
O3—C31.233 (17)C36—C371.41 (2)
O4—C41.247 (18)C36—H36A0.950
O5—C51.161 (18)C37—C381.383 (18)
O6—C61.23 (2)C37—H37A0.950
O7—C71.182 (18)C38—C391.40 (2)
O8—C81.192 (17)C39—C3101.37 (2)
O9—C91.230 (18)C39—H39A0.950
O10—C101.186 (17)C310—H31B0.950
N1—C11.05 (2)N41—C451.34 (2)
N2—C21.201 (17)N41—C411.352 (17)
N3—C31.093 (19)N42—C461.32 (2)
N4—C41.066 (17)N42—C4101.332 (17)
N5—C51.24 (2)N42—Zn3iii2.030 (13)
N6—C61.09 (2)C41—C421.37 (2)
N7—C71.156 (19)C41—H41A0.950
N8—C81.187 (18)C42—C431.34 (2)
N9—C91.126 (17)C42—H42A0.950
N10—C101.219 (18)C43—C441.40 (2)
N11—C111.322 (18)C43—C481.50 (3)
N11—C151.324 (19)C44—C451.34 (2)
N12—C161.332 (18)C44—H44A0.950
N12—C1101.333 (17)C45—H45A0.950
C11—C121.37 (2)C46—C471.40 (2)
C11—H11A0.950C46—H46A0.950
C12—C131.39 (2)C47—C481.39 (2)
C12—H12A0.950C47—H47A0.950
C13—C141.35 (2)C48—C491.352 (19)
C13—C181.49 (2)C49—C4101.39 (2)
C14—C151.43 (2)C49—H49A0.950
C14—H14A0.950C410—H41B0.950
C15—H15A0.950N51—C511.302 (18)
C16—C171.38 (2)N51—C551.34 (2)
C16—H16A0.950N52—C5101.285 (18)
C17—C181.37 (2)N52—C561.33 (2)
C17—H17A0.950N52—Zn5iv2.017 (12)
C18—C191.385 (18)C51—C521.37 (2)
C19—C1101.35 (2)C51—H51A0.950
C19—H19A0.950C52—C531.377 (18)
C110—H11B0.950C52—H52A0.950
N21—C211.315 (18)C53—C541.38 (2)
N21—C251.324 (17)C53—C581.46 (3)
N22—C261.29 (2)C54—C551.37 (2)
N22—C2101.300 (19)C54—H54A0.950
N22—Zn1iii2.067 (14)C55—H55A0.950
C21—C221.39 (2)C56—C571.38 (2)
C21—H21A0.950C56—H56A0.950
C22—C231.42 (2)C57—C581.39 (2)
C22—H22A0.950C57—H57A0.950
C23—C241.43 (2)C58—C591.41 (2)
C23—C281.46 (3)C59—C5101.40 (2)
C24—C251.34 (2)C59—H59A0.950
C24—H24A0.950C510—H51B0.950
N1—Zn1—N2126.8 (5)C29—C28—C23125.1 (14)
N1—Zn1—N11107.6 (5)C210—C29—C28121.6 (15)
N2—Zn1—N11104.8 (5)C210—C29—H29A119.2
N1—Zn1—N22i103.9 (5)C28—C29—H29A119.2
N2—Zn1—N22i107.5 (6)N22—C210—C29124.7 (15)
N11—Zn1—N22i104.1 (5)N22—C210—H21B117.7
N4—Zn2—N3127.1 (6)C29—C210—H21B117.7
N4—Zn2—N12105.4 (5)C35—N31—C31119.5 (13)
N3—Zn2—N12106.8 (6)C35—N31—Zn3121.3 (10)
N4—Zn2—N21104.3 (5)C31—N31—Zn3118.6 (11)
N3—Zn2—N21106.9 (6)C36—N32—C310117.1 (13)
N12—Zn2—N21104.3 (5)C36—N32—Zn4123.1 (11)
N5—Zn3—N6126.6 (6)C310—N32—Zn4119.7 (12)
N5—Zn3—N42i102.6 (6)C32—C31—N31121.1 (16)
N6—Zn3—N42i108.8 (6)C32—C31—H31A119.5
N5—Zn3—N31105.1 (6)N31—C31—H31A119.5
N6—Zn3—N31107.8 (6)C31—C32—C33120.5 (15)
N42i—Zn3—N31103.9 (4)C31—C32—H32A119.8
N8—Zn4—N7126.8 (6)C33—C32—H32A119.8
N8—Zn4—N32104.7 (6)C34—C33—C32119.0 (15)
N7—Zn4—N32106.8 (6)C34—C33—C38119.6 (12)
N8—Zn4—N41105.4 (6)C32—C33—C38121.1 (12)
N7—Zn4—N41107.2 (6)C33—C34—C35117.7 (16)
N32—Zn4—N41103.7 (5)C33—C34—H34A121.2
N10—Zn5—N9124.2 (5)C35—C34—H34A121.2
N10—Zn5—N52ii108.5 (6)N31—C35—C34122.2 (14)
N9—Zn5—N52ii105.0 (5)N31—C35—H35A118.9
N10—Zn5—N51108.4 (6)C34—C35—H35A118.9
N9—Zn5—N51104.9 (5)N32—C36—C37122.7 (15)
N52ii—Zn5—N51104.2 (4)N32—C36—H36A118.7
C1—N1—Zn1164.7 (16)C37—C36—H36A118.7
C2—N2—Zn1146.3 (11)C38—C37—C36118.6 (15)
C3—N3—Zn2148.7 (15)C38—C37—H37A120.7
C4—N4—Zn2177.3 (17)C36—C37—H37A120.7
C5—N5—Zn3167.8 (15)C37—C38—C39118.5 (16)
C6—N6—Zn3140.2 (14)C37—C38—C33120.5 (14)
C7—N7—Zn4141.3 (12)C39—C38—C33120.9 (12)
C8—N8—Zn4171.5 (13)C310—C39—C38118.5 (16)
C9—N9—Zn5158.4 (14)C310—C39—H39A120.8
C10—N10—Zn5142.0 (11)C38—C39—H39A120.8
N1—C1—O1169 (2)N32—C310—C39124.4 (16)
O2—C2—N2177 (2)N32—C310—H31B117.8
N3—C3—O3174 (2)C39—C310—H31B117.8
N4—C4—O4169 (2)C45—N41—C41117.6 (13)
O5—C5—N5173 (2)C45—N41—Zn4118.7 (12)
N6—C6—O6175 (2)C41—N41—Zn4123.1 (10)
N7—C7—O7177 (2)C46—N42—C410117.2 (13)
N8—C8—O8171 (2)C46—N42—Zn3iii117.5 (12)
N9—C9—O9168 (2)C410—N42—Zn3iii125.3 (10)
O10—C10—N10174 (2)N41—C41—C42121.8 (15)
C11—N11—C15117.0 (14)N41—C41—H41A119.1
C11—N11—Zn1120.6 (10)C42—C41—H41A119.1
C15—N11—Zn1121.7 (11)C43—C42—C41121.6 (16)
C16—N12—C110117.3 (13)C43—C42—H42A119.2
C16—N12—Zn2119.3 (11)C41—C42—H42A119.2
C110—N12—Zn2123.1 (10)C42—C43—C44115.3 (17)
N11—C11—C12122.8 (15)C42—C43—C48122.5 (13)
N11—C11—H11A118.6C44—C43—C48122.2 (13)
C12—C11—H11A118.6C45—C44—C43122.4 (16)
C11—C12—C13122.2 (16)C45—C44—H44A118.8
C11—C12—H12A118.9C43—C44—H44A118.8
C13—C12—H12A118.9N41—C45—C44121.2 (16)
C14—C13—C12115.0 (16)N41—C45—H45A119.4
C14—C13—C18123.2 (12)C44—C45—H45A119.4
C12—C13—C18121.6 (13)N42—C46—C47124.1 (16)
C13—C14—C15120.5 (15)N42—C46—H46A118.0
C13—C14—H14A119.8C47—C46—H46A118.0
C15—C14—H14A119.8C48—C47—C46116.9 (15)
N11—C15—C14122.5 (14)C48—C47—H47A121.6
N11—C15—H15A118.8C46—C47—H47A121.5
C14—C15—H15A118.7C49—C48—C47119.6 (15)
N12—C16—C17123.3 (14)C49—C48—C43121.7 (14)
N12—C16—H16A118.4C47—C48—C43118.6 (12)
C17—C16—H16A118.4C48—C49—C410119.1 (15)
C18—C17—C16118.2 (15)C48—C49—H49A120.5
C18—C17—H17A120.9C410—C49—H49A120.5
C16—C17—H17A120.9N42—C410—C49123.0 (13)
C17—C18—C19118.6 (16)N42—C410—H41B118.5
C17—C18—C13120.9 (12)C49—C410—H41B118.5
C19—C18—C13120.3 (12)C51—N51—C55117.3 (13)
C110—C19—C18119.1 (15)C51—N51—Zn5125.5 (11)
C110—C19—H19A120.4C55—N51—Zn5117.1 (11)
C18—C19—H19A120.4C510—N52—C56114.6 (13)
N12—C110—C19123.4 (15)C510—N52—Zn5iv122.5 (11)
N12—C110—H11B118.3C56—N52—Zn5iv122.5 (11)
C19—C110—H11B118.3N51—C51—C52123.1 (14)
C21—N21—C25120.2 (14)N51—C51—H51A118.5
C21—N21—Zn2120.8 (11)C52—C51—H51A118.5
C25—N21—Zn2118.9 (9)C51—C52—C53121.7 (15)
C26—N22—C210118.1 (15)C51—C52—H52A119.2
C26—N22—Zn1iii120.9 (11)C53—C52—H52A119.2
C210—N22—Zn1iii120.2 (12)C52—C53—C54113.8 (15)
N21—C21—C22124.2 (16)C52—C53—C58123.4 (13)
N21—C21—H21A117.9C54—C53—C58122.7 (12)
C22—C21—H21A117.9C55—C54—C53122.3 (15)
C21—C22—C23115.2 (17)C55—C54—H54A118.9
C21—C22—H22A122.4C53—C54—H54A118.9
C23—C22—H22A122.4N51—C55—C54121.6 (15)
C22—C23—C24118.9 (18)N51—C55—H55A119.2
C22—C23—C28120.1 (13)C54—C55—H55A119.2
C24—C23—C28120.8 (14)N52—C56—C57126.4 (15)
C25—C24—C23118.6 (17)N52—C56—H56A116.8
C25—C24—H24A120.7C57—C56—H56A116.8
C23—C24—H24A120.7C56—C57—C58118.5 (16)
N21—C25—C24122.8 (15)C56—C57—H57A120.7
N21—C25—H25A118.6C58—C57—H57A120.7
C24—C25—H25A118.6C57—C58—C59115.5 (17)
N22—C26—C27122.9 (17)C57—C58—C53121.1 (12)
N22—C26—H26A118.5C59—C58—C53123.4 (13)
C27—C26—H26A118.5C510—C59—C58118.8 (16)
C26—C27—C28120.4 (17)C510—C59—H59A120.6
C26—C27—H27A119.8C58—C59—H59A120.6
C28—C27—H27A119.8N52—C510—C59126.0 (15)
C27—C28—C29112.2 (18)N52—C510—H51B117.0
C27—C28—C23122.6 (14)C59—C510—H51B117.0
N2—Zn1—N1—C1175 (6)N5—Zn3—N31—C3119.6 (13)
N11—Zn1—N1—C160 (7)N6—Zn3—N31—C31156.9 (12)
N22i—Zn1—N1—C150 (7)N42i—Zn3—N31—C3187.8 (12)
N1—Zn1—N2—C24 (3)N8—Zn4—N32—C36142.4 (13)
N11—Zn1—N2—C2122 (2)N7—Zn4—N32—C365.8 (14)
N22i—Zn1—N2—C2128 (2)N41—Zn4—N32—C36107.3 (13)
N4—Zn2—N3—C30 (3)N8—Zn4—N32—C31042.6 (12)
N12—Zn2—N3—C3125 (3)N7—Zn4—N32—C310179.2 (11)
N21—Zn2—N3—C3124 (3)N41—Zn4—N32—C31067.8 (12)
N6—Zn3—N5—C5178 (8)C35—N31—C31—C321 (2)
N42i—Zn3—N5—C553 (8)Zn3—N31—C31—C32169.8 (13)
N31—Zn3—N5—C555 (8)N31—C31—C32—C331 (3)
N5—Zn3—N6—C65 (3)C31—C32—C33—C343 (3)
N42i—Zn3—N6—C6128 (3)C31—C32—C33—C38177.8 (17)
N31—Zn3—N6—C6120 (3)C32—C33—C34—C352 (3)
N8—Zn4—N7—C710 (2)C38—C33—C34—C35177.1 (15)
N32—Zn4—N7—C7134 (2)C31—N31—C35—C342 (2)
N41—Zn4—N7—C7115 (2)Zn3—N31—C35—C34168.8 (11)
N10—Zn5—N9—C9164 (4)C33—C34—C35—N310 (2)
N52ii—Zn5—N9—C970 (4)C310—N32—C36—C371 (2)
N51—Zn5—N9—C939 (4)Zn4—N32—C36—C37173.9 (12)
N9—Zn5—N10—C1014 (2)N32—C36—C37—C382 (3)
N52ii—Zn5—N10—C10110 (2)C36—C37—C38—C392 (3)
N51—Zn5—N10—C10137 (2)C36—C37—C38—C33178.7 (16)
N1—Zn1—N11—C11172.3 (12)C34—C33—C38—C37158.6 (18)
N2—Zn1—N11—C1135.0 (14)C32—C33—C38—C3727 (3)
N22i—Zn1—N11—C1177.8 (13)C34—C33—C38—C3918 (3)
N1—Zn1—N11—C1518.1 (14)C32—C33—C38—C39156.6 (18)
N2—Zn1—N11—C15155.4 (13)C37—C38—C39—C3101 (3)
N22i—Zn1—N11—C1591.8 (13)C33—C38—C39—C310175.8 (16)
N4—Zn2—N12—C1643.1 (13)C36—N32—C310—C394 (2)
N3—Zn2—N12—C16179.4 (12)Zn4—N32—C310—C39170.8 (13)
N21—Zn2—N12—C1666.4 (12)C38—C39—C310—N324 (3)
N4—Zn2—N12—C110144.1 (13)N8—Zn4—N41—C4527.2 (13)
N3—Zn2—N12—C1106.6 (14)N7—Zn4—N41—C45164.7 (11)
N21—Zn2—N12—C110106.4 (13)N32—Zn4—N41—C4582.6 (12)
C15—N11—C11—C122 (2)N8—Zn4—N41—C41161.5 (11)
Zn1—N11—C11—C12172.4 (12)N7—Zn4—N41—C4124.1 (13)
N11—C11—C12—C131 (3)N32—Zn4—N41—C4188.7 (12)
C11—C12—C13—C140 (3)C45—N41—C41—C420 (2)
C11—C12—C13—C18175.3 (16)Zn4—N41—C41—C42171.1 (11)
C12—C13—C14—C151 (3)N41—C41—C42—C432 (3)
C18—C13—C14—C15174.7 (16)C41—C42—C43—C441 (3)
C11—N11—C15—C143 (2)C41—C42—C43—C48179.9 (16)
Zn1—N11—C15—C14172.8 (12)C42—C43—C44—C451 (3)
C13—C14—C15—N112 (3)C48—C43—C44—C45178.2 (17)
C110—N12—C16—C172 (2)C41—N41—C45—C441 (2)
Zn2—N12—C16—C17170.7 (13)Zn4—N41—C45—C44173.2 (13)
N12—C16—C17—C182 (3)C43—C44—C45—N412 (3)
C16—C17—C18—C191 (3)C410—N42—C46—C475 (2)
C16—C17—C18—C13176.1 (16)Zn3iii—N42—C46—C47173.8 (13)
C14—C13—C18—C17156.3 (18)N42—C46—C47—C484 (2)
C12—C13—C18—C1729 (3)C46—C47—C48—C491 (3)
C14—C13—C18—C1919 (3)C46—C47—C48—C43178.7 (16)
C12—C13—C18—C19156.1 (18)C42—C43—C48—C49162.5 (18)
C17—C18—C19—C1101 (3)C44—C43—C48—C4916 (3)
C13—C18—C19—C110176.1 (16)C42—C43—C48—C4718 (3)
C16—N12—C110—C192 (2)C44—C43—C48—C47163.7 (17)
Zn2—N12—C110—C19170.5 (12)C47—C48—C49—C4100 (3)
C18—C19—C110—N122 (3)C43—C48—C49—C410179.9 (15)
N4—Zn2—N21—C2135.6 (14)C46—N42—C410—C494 (2)
N3—Zn2—N21—C21172.4 (13)Zn3iii—N42—C410—C49175.3 (10)
N12—Zn2—N21—C2174.8 (14)C48—C49—C410—N421 (2)
N4—Zn2—N21—C25149.5 (12)N10—Zn5—N51—C519.4 (14)
N3—Zn2—N21—C2512.7 (14)N9—Zn5—N51—C51143.9 (13)
N12—Zn2—N21—C25100.2 (13)N52ii—Zn5—N51—C51106.0 (14)
C25—N21—C21—C224 (3)N10—Zn5—N51—C55173.2 (11)
Zn2—N21—C21—C22170.7 (13)N9—Zn5—N51—C5538.8 (11)
N21—C21—C22—C233 (3)N52ii—Zn5—N51—C5571.4 (11)
C21—C22—C23—C241 (3)C55—N51—C51—C524 (2)
C21—C22—C23—C28176.4 (17)Zn5—N51—C51—C52173.1 (12)
C22—C23—C24—C253 (3)N51—C51—C52—C533 (3)
C28—C23—C24—C25178.7 (17)C51—C52—C53—C541 (3)
C21—N21—C25—C242 (3)C51—C52—C53—C58178.9 (17)
Zn2—N21—C25—C24173.4 (13)C52—C53—C54—C551 (3)
C23—C24—C25—N212 (3)C58—C53—C54—C55178.8 (16)
C210—N22—C26—C272 (3)C51—N51—C55—C544 (2)
Zn1iii—N22—C26—C27171.5 (13)Zn5—N51—C55—C54173.5 (13)
N22—C26—C27—C280 (3)C53—C54—C55—N513 (3)
C26—C27—C28—C291 (3)C510—N52—C56—C573 (2)
C26—C27—C28—C23176.7 (18)Zn5iv—N52—C56—C57170.8 (14)
C22—C23—C28—C2716 (3)N52—C56—C57—C580 (3)
C24—C23—C28—C27160.1 (19)C56—C57—C58—C593 (3)
C22—C23—C28—C29161.5 (19)C56—C57—C58—C53178.3 (17)
C24—C23—C28—C2923 (3)C52—C53—C58—C5718 (3)
C27—C28—C29—C2100 (3)C54—C53—C58—C57159.5 (18)
C23—C28—C29—C210177.7 (18)C52—C53—C58—C59163.9 (18)
C26—N22—C210—C293 (3)C54—C53—C58—C5919 (3)
Zn1iii—N22—C210—C29172.8 (13)C57—C58—C59—C5103 (3)
C28—C29—C210—N222 (3)C53—C58—C59—C510178.5 (16)
N5—Zn3—N31—C35169.5 (12)C56—N52—C510—C593 (2)
N6—Zn3—N31—C3532.2 (14)Zn5iv—N52—C510—C59170.7 (13)
N42i—Zn3—N31—C3583.1 (13)C58—C59—C510—N520 (3)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x+1/2, y1/2, z+3/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaNa[Zn(NCO)3(C6H12N2)][Zn(NCO)2(C10H8N2)]
Mr326.60305.59
Crystal system, space groupHexagonal, P63/mmcMonoclinic, P21/n
Temperature (K)180180
a, b, c (Å)10.2345 (2), 10.2345 (2), 7.0799 (3)14.388 (1), 16.483 (2), 26.438 (3)
α, β, γ (°)90, 90, 12090, 90.024 (6), 90
V3)642.23 (3)6270.0 (11)
Z220
Radiation typeMo KαMo Kα
µ (mm1)1.961.96
Crystal size (mm)0.35 × 0.25 × 0.200.25 × 0.10 × 0.10
Data collection
DiffractometerBruker Nonius X8 APEXII CCD area-detector
diffractometer
Bruker Nonius X8 APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS: Sheldrick, 2003)
Tmin, Tmax0.580, 0.6750.423, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
6400, 407, 388 34766, 12763, 5045
Rint0.0240.130
(sin θ/λ)max1)0.7150.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.076, 1.11 0.071, 0.221, 0.89
No. of reflections40712763
No. of parameters30857
No. of restraints6540
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.641.31, 0.90

Computer programs: APEX2 (Bruker Nonius, 2004), SAINT (Bruker, 2003), SAINT, SHELXTL (Sheldrick, 2000), SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds