Download citation
Download citation
link to html
The crystal and mol­ecular structures of 4-ethyl-3,5-dimethyl­pyrrole-2-carbaldehyde, C10H15NO, (I), benzyl 3,5-dimethyl­pyrrole-2-carboxyl­ate, C14H15NO2, (II), benzyl 4-acetyl-3,5-dimethyl­pyrrole-2-carboxyl­ate, C16H17NO3, (III), dimethyl 3,5-dimethyl­pyrrole-2,4-dicarboxyl­ate, C10H13NO4, (IV), 4-ethyl-3,5-dimethyl-2-(p-tos­ylacet­yl)pyrrole, C17H21NO3S, (V), and ethyl 4-(2-ethoxy­carbonyl-2-hydroxy­acrylo­yl)-3,5-dimethyl­pyrrole-2-carboxyl­ate, C15H19NO6, (VI), were determined at 130 K. Compounds (I), (II), (IV), (V) and (VI) form hydrogen-bonded dimers [N—H...O=C = 1.97 (2)–2.03 (3) Å]. Four dimers, viz. (I) and (IV)–(VI), have inversion symmetry, while the dimer of (II) has twofold symmetry. Only (III) forms polymeric chains involving hydrogen bonds between the pyrrole H atom and the acetyl carbonyl group [H...O = 1.97 (2) Å] and is further stabilized by CH3...O inter­actions (C—H...O = 2.28–2.49 Å). Compound (VI) was found to occur as the enol ether in the crystal.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105023991/fg1869sup1.cif
Contains datablocks global, 1, 2, 3, 4, 5, 6b

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869IIsup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869IIIsup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869IVsup5.hkl
Contains datablock 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105023991/fg1869VIsup7.hkl
Contains datablock 6

CCDC references: 285658; 285659; 285660; 285661; 285662; 285663

Comment top

Pyrroles are both important natural products and crucial starting materials for the synthesis of porphyrins (Gossauer, 1974). Nevertheless, a brief survey of the crystallographic literature shows that few crystal structures of aromatic N-unsubstituted monopyrroles have been reported. Some representative and recent examples are Goddard et al. (1997), Despinoy et al. (1998), Senge et al. (2001), Light et al. (2001), Smith et al. (2001), Paixão et al. (2002), Ramos Silva et al. (2002) and Zhang et al. (2003). In an extension of ongoing studies on the hydrogen-bonding pattern in porphyrins (Senge et al., 1994; Senge & Kalisch, 1999; Senge, 2000) and dipyrromethanes (Senge, 2005), we were interested in the strengths and types of hydrogen bonding of isolated pyrrole units. For initial studies we choose a series of 2,4-dimethylpyrroles with different numbers and types of carbonyl acceptor groups.

The simplest compound is (I), with one potential hydrogen-bond donor and one acceptor group (Fig. 1). As expected, this compound forms strongly hydrogen-bonded dimers, held together by two N—H···O bonds. A similar type of hydrogen bonding with similar geometrical parameters is found for (II) (Fig. 2). Again, hydrogen-bonded dimers are the characteristic feature of the crystal structure. The structure also contains a second, weaker, H···O contact connecting the C31 methyl group with ether atom O2. Although the contact is short and within <2.7 Å as suggested by Steiner (1997) (H31B—O2 = 2.59 Å), the bond angle for this intramolecular contact is rather small (104°). An essentially identical structure of (II) at 150 K has been published by Thompson et al. (2000).

In contrast, compound (III), with carbonyl acceptor groups at both ends of the N–H vector, forms polymeric chains (Fig. 3). The main feature is a classical hydrogen bond involving the pyrrole H atom and the acetyl carbonyl group (N—H1···O3) (Fig. 4). This N—H···O bond is the shortest [1.971 (18) Å] found in the present structures. Carbonyl atom O3 is tightly coordinated by the C51 methyl group (H51C···O3 = 2.49 Å). Likewise, the acetyl methyl group C42 has a short H42C···O1 contact of 2.30 Å. Thus, each pyrrole unit in the polymeric structure in the crystal is held by six hydrogen-bonding interactions as defined by Steiner & Desiraju (1998). Additionally, a short intramolecular contact of 2.28 Å is observed for H31C···O2, involving the ether O atom of the benzyl ester. Note that simple exchange of the benzyl ester for an ethyl ester results in the formation of simple dimers (Paixão et al., 2002 or? 2003).

Compound (IV), despite having two ester groups on two ends of the pyrrole, forms only hydrogen-bonded dimers in the crystal structure (Fig. 5). Like (III), this compound has a short intramolecular contact, H31···O2 (2.31 Å). Pyrrole (V), with a bulkier group in the side chain (tosyl), forms crystals with a molecular arrangement dominated by the formation of standard hydrogen-bonded dimers involving N1—H1···O1 bonding [2.09 (4) Å and 161 (4)°; Fig. 6]. Compound (VI) again forms standard hydrogen-bonded dimers in the crystal structure (Fig. 7). Here, the pyrrole H atom is bonded to the carbonyl group of the 2-ethyl ester group [N1–H1···O1; 2.02 (3) Å and 169 (2)°]. Intriguingly, the butanoic acid side chain does not exist in the keto form (VIa) but rather as the enol ether (VIb). This is clearly evidenced by the longer C41—C42 bond length [1.440 (3) Å] compared with 1.371 (3) Å for C42—C43, differences in the C—O bond lengths [C41—O3 = 1.280 (3) Å and C43—O4 = 1.301 (3) Å] and the unequivocal location of the relevant H atoms. The regiochemistry of the enol ether formation is in line with chemical expectations and the hydroxy group forms an intramolecular hydrogen bond with the neighboring carbonyl group (O4–H4···O3; 1.72 Å and 145°). The six-membered ring system thus formed is almost flat, with an average deviation of the atoms from their least-squares plane by 0.019 (3) Å, and is almost coplanar with the pyrrole ring (the angle between the two planes is 5°). A weak intramolecular methyl (C31) O2 contact was also observed for this compound.

Some of the compounds discussed have served as important building blocks for porphyrins for more than a century (Fischer & Stern, 1940; Omote et al., 1997). They have been investigated for their herbicidal activity (Church et al., 1973 or????1977), used in cyclophane synthesis (Lai et al., 1994) and used as test cases in various physicochemical studies (Abraham et al., 1974; Tabba & Smith, 1984; Thompson et al., 2000).

Experimental top

Crystals were handled as described by Hope (1994). The compounds were prepared as described previosly (Küster, 1922; Fischer & Stern, 1940; Hayes et al., 1958; Johnson et al., 1958; Kenner et al., 1977) and crystallized from CH2Cl2/n-hexane.

Refinement top

H atoms were typically placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range of 0.95–0.99 Å, Uiso(H) = 1.2Ueq(C) for CH, OH and CH2 groups or pyrrole H atoms, and Uiso(H) = 1.5Ueq(C) for methyl groups. The pyrrole H atoms in all structures were refined with isotropic displacement parameters. The H atom at O4 in structure (VIb) was located in difference maps and refined using a standard riding model.

Computing details top

For all compounds, data collection: P3 (Siemens, 1995); cell refinement: P3; data reduction: XDISK (Siemens, 1995). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (1), (2), (3), (4), (6b); SIR92 (Altomare et al., 1994) for (5). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1995). Software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003) for (1), (2), (6b); SHELXL97 for (3), (4), (5).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
Fig. 1. A view of the dimers formed in (I). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines, and H atoms not involved in the motifs shown have been omitted.

Fig. 2. A view of the dimers formed in (II). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines, and H atoms not involved in the motifs shown have been omitted.

Fig. 3. A view of (III). Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted.

Fig. 4. A view of the hydrogen-bonded chains formed in (III) (view down the c axis). Heavy dashed lines indicate classical hydrogen bonds and dashed lines indicate C—H···O interactions. H atoms have been omitted.

Fig. 5. A view of the dimers formed in (IV). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines, and H atoms not involved in the motifs shown have been omitted.

Fig. 6. A view of the dimers formed in (V). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines, and H atoms not involved in the motifs shown have been omitted.

Fig. 7. A view of the dimers formed in (VIb). Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines, and H atoms not involved in the motifs shown have been omitted.

_publ_section_table_legends
(1) 4-ethyl-3,5-dimethylpyrrole-2-carbaldehyde top
Crystal data top
C10H15NOF(000) = 720
Mr = 165.23Dx = 1.161 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 42 reflections
a = 28.513 (12) Åθ = 18–24°
b = 9.007 (5) ŵ = 0.08 mm1
c = 7.471 (3) ÅT = 130 K
β = 99.83 (3)°Block, colorless
V = 1890.5 (15) Å30.55 × 0.41 × 0.40 mm
Z = 8
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.041
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.4°
Graphite monochromatorh = 3636
ω scansk = 011
2493 measured reflectionsl = 09
2174 independent reflections2 standard reflections every 198 reflections
1343 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0777P)2 + 0.1515P]
where P = (Fo2 + 2Fc2)/3
2174 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C10H15NOV = 1890.5 (15) Å3
Mr = 165.23Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.513 (12) ŵ = 0.08 mm1
b = 9.007 (5) ÅT = 130 K
c = 7.471 (3) Å0.55 × 0.41 × 0.40 mm
β = 99.83 (3)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.041
2493 measured reflections2 standard reflections every 198 reflections
2174 independent reflections intensity decay: none
1343 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.174H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.26 e Å3
2174 reflectionsΔρmin = 0.32 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18227 (7)0.7367 (2)0.0911 (3)0.0298 (5)
H10.2109 (9)0.699 (3)0.058 (3)0.039 (7)*
C20.17296 (7)0.8866 (3)0.0997 (3)0.0276 (5)
C210.21027 (8)0.9912 (3)0.0790 (3)0.0300 (5)
C220.20186 (9)1.1542 (3)0.1030 (4)0.0361 (6)
H22A0.23241.20690.12060.054*
H22B0.18651.16910.20940.054*
H22C0.18121.19270.00540.054*
O10.24881 (6)0.94767 (18)0.0434 (2)0.0385 (5)
C30.12588 (8)0.9012 (3)0.1291 (3)0.0287 (5)
C310.09805 (9)1.0416 (3)0.1394 (3)0.0376 (6)
H31A0.11151.09660.24940.056*
H31B0.06481.01690.14330.056*
H31C0.09971.10290.03230.056*
C40.10798 (8)0.7562 (3)0.1395 (3)0.0305 (5)
C410.05797 (8)0.7140 (3)0.1603 (3)0.0381 (6)
H41A0.04560.78830.23790.046*
H41B0.05860.61660.22210.046*
C420.02456 (8)0.7048 (4)0.0216 (4)0.0532 (8)
H42A0.02320.80170.08210.080*
H42B0.00730.67680.00160.080*
H42C0.03640.63010.09830.080*
C50.14365 (8)0.6567 (3)0.1157 (3)0.0311 (5)
C510.14405 (9)0.4907 (3)0.1144 (4)0.0386 (6)
H51A0.14720.45530.00700.058*
H51B0.11430.45340.14630.058*
H51C0.17100.45470.20310.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (9)0.0290 (11)0.0387 (11)0.0034 (8)0.0108 (8)0.0006 (9)
C20.0271 (11)0.0270 (12)0.0293 (12)0.0050 (9)0.0062 (9)0.0008 (10)
C210.0283 (11)0.0314 (12)0.0312 (12)0.0020 (10)0.0074 (9)0.0001 (10)
C220.0387 (13)0.0303 (13)0.0410 (14)0.0005 (11)0.0116 (11)0.0006 (11)
O10.0271 (8)0.0354 (9)0.0557 (12)0.0012 (7)0.0155 (8)0.0056 (8)
C30.0260 (11)0.0341 (13)0.0275 (12)0.0045 (9)0.0087 (9)0.0011 (10)
C310.0335 (12)0.0397 (15)0.0412 (14)0.0097 (11)0.0108 (11)0.0007 (12)
C40.0271 (12)0.0354 (13)0.0294 (12)0.0016 (10)0.0061 (9)0.0001 (10)
C410.0281 (12)0.0460 (15)0.0420 (14)0.0029 (11)0.0108 (10)0.0014 (12)
C420.0303 (13)0.077 (2)0.0520 (17)0.0088 (14)0.0075 (12)0.0091 (16)
C50.0287 (11)0.0335 (13)0.0321 (12)0.0017 (10)0.0083 (10)0.0015 (10)
C510.0396 (13)0.0316 (13)0.0459 (15)0.0006 (11)0.0109 (11)0.0008 (12)
Geometric parameters (Å, º) top
N1—C51.354 (3)C31—H31C0.9800
N1—C21.380 (3)C4—C51.390 (3)
N1—H10.95 (3)C4—C411.509 (3)
C2—C31.403 (3)C41—C421.523 (4)
C2—C211.449 (3)C41—H41A0.9900
C21—O11.238 (3)C41—H41B0.9900
C21—C221.503 (3)C42—H42A0.9800
C22—H22A0.9800C42—H42B0.9800
C22—H22B0.9800C42—H42C0.9800
C22—H22C0.9800C5—C511.495 (4)
C3—C41.410 (3)C51—H51A0.9800
C3—C311.502 (3)C51—H51B0.9800
C31—H31A0.9800C51—H51C0.9800
C31—H31B0.9800
C5—N1—C2110.31 (19)C5—C4—C3108.1 (2)
C5—N1—H1126.8 (15)C5—C4—C41125.2 (2)
C2—N1—H1122.5 (16)C3—C4—C41126.6 (2)
N1—C2—C3107.2 (2)C4—C41—C42112.3 (2)
N1—C2—C21118.7 (2)C4—C41—H41A109.1
C3—C2—C21134.0 (2)C42—C41—H41A109.1
O1—C21—C2120.8 (2)C4—C41—H41B109.1
O1—C21—C22120.0 (2)C42—C41—H41B109.1
C2—C21—C22119.2 (2)H41A—C41—H41B107.9
C21—C22—H22A109.5C41—C42—H42A109.5
C21—C22—H22B109.5C41—C42—H42B109.5
H22A—C22—H22B109.5H42A—C42—H42B109.5
C21—C22—H22C109.5C41—C42—H42C109.5
H22A—C22—H22C109.5H42A—C42—H42C109.5
H22B—C22—H22C109.5H42B—C42—H42C109.5
C2—C3—C4106.67 (19)N1—C5—C4107.7 (2)
C2—C3—C31128.0 (2)N1—C5—C51121.6 (2)
C4—C3—C31125.3 (2)C4—C5—C51130.7 (2)
C3—C31—H31A109.5C5—C51—H51A109.5
C3—C31—H31B109.5C5—C51—H51B109.5
H31A—C31—H31B109.5H51A—C51—H51B109.5
C3—C31—H31C109.5C5—C51—H51C109.5
H31A—C31—H31C109.5H51A—C51—H51C109.5
H31B—C31—H31C109.5H51B—C51—H51C109.5
C5—N1—C2—C30.7 (3)C31—C3—C4—C5177.1 (2)
C5—N1—C2—C21179.18 (19)C2—C3—C4—C41176.6 (2)
N1—C2—C21—O14.3 (3)C31—C3—C4—C410.9 (4)
C3—C2—C21—O1175.8 (2)C5—C4—C41—C4289.4 (3)
N1—C2—C21—C22175.2 (2)C3—C4—C41—C4286.2 (3)
C3—C2—C21—C224.7 (4)C2—N1—C5—C40.5 (3)
N1—C2—C3—C40.6 (2)C2—N1—C5—C51179.5 (2)
C21—C2—C3—C4179.2 (2)C3—C4—C5—N10.1 (3)
N1—C2—C3—C31176.7 (2)C41—C4—C5—N1176.2 (2)
C21—C2—C3—C313.4 (4)C3—C4—C5—C51179.9 (2)
C2—C3—C4—C50.4 (3)C41—C4—C5—C513.8 (4)
(2) benzyl 3,5-dimethylpyrrole-2-carboxylate top
Crystal data top
C14H15NO2F(000) = 976
Mr = 229.27Dx = 1.252 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 38 reflections
a = 31.793 (18) Åθ = 19–25°
b = 7.308 (2) ŵ = 0.08 mm1
c = 10.553 (3) ÅT = 130 K
β = 97.02 (3)°Plate, colorless
V = 2433.5 (17) Å30.50 × 0.50 × 0.08 mm
Z = 8
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.017
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.6°
Graphite monochromatorh = 041
ω scansk = 09
3086 measured reflectionsl = 1313
2799 independent reflections2 standard reflections every 198 reflections
2120 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0911P)2 + 0.3712P]
where P = (Fo2 + 2Fc2)/3
2799 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H15NO2V = 2433.5 (17) Å3
Mr = 229.27Z = 8
Monoclinic, C2/cMo Kα radiation
a = 31.793 (18) ŵ = 0.08 mm1
b = 7.308 (2) ÅT = 130 K
c = 10.553 (3) Å0.50 × 0.50 × 0.08 mm
β = 97.02 (3)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.017
3086 measured reflections2 standard reflections every 198 reflections
2799 independent reflections intensity decay: none
2120 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.31 e Å3
2799 reflectionsΔρmin = 0.28 e Å3
160 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45339 (4)0.25815 (18)0.36806 (12)0.0264 (3)
H10.4783 (7)0.215 (3)0.359 (2)0.048 (6)*
C20.41943 (4)0.2605 (2)0.27300 (14)0.0245 (3)
C30.38441 (4)0.3285 (2)0.32611 (15)0.0261 (3)
C40.39866 (5)0.3667 (2)0.45403 (15)0.0298 (4)
H40.38190.41590.51440.036*
C50.44121 (5)0.3213 (2)0.47845 (15)0.0286 (3)
C210.42567 (4)0.2006 (2)0.14662 (14)0.0250 (3)
C220.39524 (5)0.1512 (2)0.06526 (14)0.0299 (3)
H22A0.40540.02320.06600.036*
H22B0.41650.23070.09910.036*
C230.35339 (5)0.1677 (2)0.14755 (14)0.0275 (3)
C240.35349 (5)0.1689 (2)0.27889 (15)0.0319 (4)
H240.37960.16230.31370.038*
C250.31568 (6)0.1798 (2)0.36011 (17)0.0381 (4)
H250.31600.18080.45000.046*
C260.27753 (6)0.1890 (3)0.30964 (19)0.0450 (5)
H260.25160.19650.36490.054*
C270.27717 (5)0.1873 (3)0.17932 (18)0.0459 (5)
H270.25090.19320.14500.055*
C280.31487 (5)0.1768 (3)0.09756 (16)0.0359 (4)
H280.31440.17590.00770.043*
O10.45962 (3)0.14953 (16)0.11547 (10)0.0336 (3)
O20.39016 (3)0.20509 (15)0.06349 (10)0.0264 (3)
C310.33978 (5)0.3483 (2)0.26304 (16)0.0312 (4)
H31A0.32670.22710.25110.047*
H31B0.33990.40770.17980.047*
H31C0.32350.42310.31700.047*
C510.47072 (5)0.3277 (2)0.59968 (16)0.0363 (4)
H51A0.47980.20330.62450.054*
H51B0.45620.38250.66720.054*
H51C0.49560.40170.58700.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0173 (6)0.0307 (7)0.0312 (7)0.0022 (5)0.0022 (5)0.0002 (5)
C20.0164 (6)0.0252 (7)0.0318 (8)0.0016 (5)0.0027 (5)0.0016 (6)
C30.0196 (7)0.0233 (7)0.0360 (8)0.0014 (5)0.0057 (6)0.0014 (6)
C40.0255 (7)0.0296 (8)0.0355 (8)0.0001 (6)0.0085 (6)0.0017 (6)
C50.0262 (7)0.0284 (8)0.0312 (8)0.0056 (6)0.0040 (6)0.0002 (6)
C210.0173 (6)0.0250 (7)0.0324 (8)0.0025 (5)0.0022 (5)0.0006 (6)
C220.0216 (7)0.0366 (8)0.0312 (8)0.0041 (6)0.0023 (6)0.0030 (6)
C230.0223 (7)0.0262 (7)0.0334 (8)0.0011 (6)0.0005 (6)0.0005 (6)
C240.0285 (8)0.0316 (8)0.0349 (8)0.0012 (6)0.0018 (6)0.0012 (6)
C250.0380 (9)0.0416 (9)0.0330 (8)0.0015 (7)0.0033 (7)0.0001 (7)
C260.0280 (8)0.0573 (12)0.0465 (10)0.0059 (8)0.0087 (7)0.0044 (9)
C270.0208 (8)0.0687 (13)0.0475 (10)0.0055 (8)0.0009 (7)0.0067 (9)
C280.0239 (7)0.0494 (10)0.0343 (9)0.0024 (7)0.0029 (6)0.0036 (7)
O10.0166 (5)0.0459 (7)0.0379 (6)0.0027 (4)0.0025 (4)0.0072 (5)
O20.0171 (5)0.0331 (6)0.0287 (5)0.0015 (4)0.0018 (4)0.0005 (4)
C310.0194 (7)0.0324 (8)0.0419 (9)0.0031 (6)0.0048 (6)0.0000 (7)
C510.0346 (8)0.0412 (9)0.0322 (8)0.0057 (7)0.0005 (7)0.0012 (7)
Geometric parameters (Å, º) top
N1—C51.353 (2)C23—C281.393 (2)
N1—C21.3810 (19)C24—C251.391 (2)
N1—H10.87 (2)C24—H240.9500
C2—C31.398 (2)C25—C261.385 (3)
C2—C211.440 (2)C25—H250.9500
C3—C41.399 (2)C26—C271.377 (3)
C3—C311.499 (2)C26—H260.9500
C4—C51.386 (2)C27—C281.391 (2)
C4—H40.9500C27—H270.9500
C5—C511.492 (2)C28—H280.9500
C21—O11.2244 (18)C31—H31A0.9800
C21—O21.3430 (18)C31—H31B0.9800
C22—O21.4426 (18)C31—H31C0.9800
C22—C231.502 (2)C51—H51A0.9800
C22—H22A0.9900C51—H51B0.9800
C22—H22B0.9900C51—H51C0.9800
C23—C241.386 (2)
C5—N1—C2109.92 (13)C23—C24—H24119.7
C5—N1—H1125.7 (14)C25—C24—H24119.7
C2—N1—H1124.3 (14)C26—C25—C24119.83 (17)
N1—C2—C3107.66 (13)C26—C25—H25120.1
N1—C2—C21119.02 (13)C24—C25—H25120.1
C3—C2—C21133.31 (13)C27—C26—C25119.90 (16)
C2—C3—C4106.15 (13)C27—C26—H26120.0
C2—C3—C31127.86 (14)C25—C26—H26120.0
C4—C3—C31125.91 (14)C26—C27—C28120.55 (16)
C5—C4—C3108.97 (14)C26—C27—H27119.7
C5—C4—H4125.5C28—C27—H27119.7
C3—C4—H4125.5C27—C28—C23119.91 (16)
N1—C5—C4107.29 (13)C27—C28—H28120.0
N1—C5—C51122.20 (14)C23—C28—H28120.0
C4—C5—C51130.47 (15)C21—O2—C22115.24 (11)
O1—C21—O2122.04 (14)C3—C31—H31A109.5
O1—C21—C2124.54 (13)C3—C31—H31B109.5
O2—C21—C2113.42 (12)H31A—C31—H31B109.5
O2—C22—C23109.21 (12)C3—C31—H31C109.5
O2—C22—H22A109.8H31A—C31—H31C109.5
C23—C22—H22A109.8H31B—C31—H31C109.5
O2—C22—H22B109.8C5—C51—H51A109.5
C23—C22—H22B109.8C5—C51—H51B109.5
H22A—C22—H22B108.3H51A—C51—H51B109.5
C24—C23—C28119.19 (14)C5—C51—H51C109.5
C24—C23—C22117.93 (14)H51A—C51—H51C109.5
C28—C23—C22122.86 (15)H51B—C51—H51C109.5
C23—C24—C25120.61 (15)
C5—N1—C2—C30.11 (17)C3—C2—C21—O22.7 (2)
C5—N1—C2—C21179.21 (13)O2—C22—C23—C24163.48 (14)
N1—C2—C3—C40.30 (16)O2—C22—C23—C2818.3 (2)
C21—C2—C3—C4178.62 (15)C28—C23—C24—C250.2 (2)
N1—C2—C3—C31176.68 (14)C22—C23—C24—C25178.55 (14)
C21—C2—C3—C314.4 (3)C23—C24—C25—C260.2 (3)
C2—C3—C4—C50.60 (17)C24—C25—C26—C270.1 (3)
C31—C3—C4—C5176.46 (14)C25—C26—C27—C280.2 (3)
C2—N1—C5—C40.48 (17)C26—C27—C28—C230.1 (3)
C2—N1—C5—C51177.49 (14)C24—C23—C28—C270.1 (3)
C3—C4—C5—N10.67 (17)C22—C23—C28—C27178.32 (17)
C3—C4—C5—C51177.07 (16)O1—C21—O2—C221.9 (2)
N1—C2—C21—O11.3 (2)C2—C21—O2—C22178.28 (12)
C3—C2—C21—O1177.48 (16)C23—C22—O2—C21178.51 (12)
N1—C2—C21—O2178.50 (12)
(3) benzyl 4-acetyl-3,5-dimethylpyrrole-2-carboxylate top
Crystal data top
C16H17NO3F(000) = 576
Mr = 271.31Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 44 reflections
a = 13.473 (3) Åθ = 18–23°
b = 14.359 (3) ŵ = 0.09 mm1
c = 7.489 (2) ÅT = 143 K
β = 100.47 (2)°Cube, colorless
V = 1424.7 (6) Å30.35 × 0.35 × 0.35 mm
Z = 4
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.044
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 1717
ω scansk = 180
3519 measured reflectionsl = 09
3268 independent reflections2 standard reflections every 198 reflections
2871 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.120 w = 1/[σ2(Fo2) + (0.0692P)2 + 0.3279P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3268 reflectionsΔρmax = 0.41 e Å3
189 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C16H17NO3V = 1424.7 (6) Å3
Mr = 271.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.473 (3) ŵ = 0.09 mm1
b = 14.359 (3) ÅT = 143 K
c = 7.489 (2) Å0.35 × 0.35 × 0.35 mm
β = 100.47 (2)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.044
3519 measured reflections2 standard reflections every 198 reflections
3268 independent reflections intensity decay: none
2871 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.120H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
3268 reflectionsΔρmin = 0.22 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.55956 (7)0.46279 (7)0.17245 (13)0.0228 (2)
H10.5546 (12)0.3981 (13)0.161 (2)0.041 (4)*
C20.64089 (8)0.51757 (8)0.09509 (15)0.0230 (2)
C30.61709 (8)0.60974 (8)0.13657 (15)0.0226 (2)
C40.51770 (8)0.60948 (8)0.24428 (15)0.0223 (2)
C50.48492 (8)0.51618 (8)0.26261 (15)0.0217 (2)
C210.72660 (8)0.47072 (8)0.01540 (16)0.0241 (2)
C220.88392 (9)0.48559 (9)0.21436 (18)0.0299 (3)
H22A0.91810.43740.15290.036*
H22B0.85750.45610.31570.036*
C230.95594 (9)0.56237 (9)0.28383 (16)0.0275 (3)
C241.05350 (9)0.56252 (10)0.24823 (18)0.0325 (3)
H241.07530.51300.18060.039*
C251.11953 (10)0.63481 (11)0.31116 (19)0.0380 (3)
H251.18610.63440.28600.046*
C261.08883 (11)0.70677 (11)0.4096 (2)0.0403 (3)
H261.13400.75610.45180.048*
C270.99164 (11)0.70709 (10)0.4470 (2)0.0418 (3)
H270.97030.75650.51530.050*
C280.92589 (10)0.63522 (10)0.3847 (2)0.0359 (3)
H280.85950.63560.41090.043*
O10.72952 (7)0.38746 (6)0.04426 (14)0.0355 (2)
O20.80204 (6)0.52825 (6)0.08650 (12)0.0278 (2)
C310.68181 (10)0.69340 (8)0.08062 (18)0.0303 (3)
H31A0.64630.73600.01160.045*
H31B0.69610.72520.18900.045*
H31C0.74540.67370.00460.045*
C410.46209 (9)0.69209 (8)0.32033 (16)0.0249 (3)
C420.36115 (9)0.68132 (9)0.44217 (19)0.0328 (3)
H42A0.31110.66120.37020.049*
H42B0.36600.63460.53560.049*
H42C0.34040.74110.50020.049*
O30.49710 (7)0.77078 (6)0.28652 (14)0.0342 (2)
C510.39034 (9)0.47017 (8)0.35905 (17)0.0259 (3)
H51A0.38760.47390.49050.039*
H51B0.33150.50190.32750.039*
H51C0.39010.40470.32220.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0228 (5)0.0149 (5)0.0305 (5)0.0004 (3)0.0041 (4)0.0008 (4)
C20.0231 (5)0.0171 (5)0.0289 (6)0.0008 (4)0.0050 (4)0.0007 (4)
C30.0238 (5)0.0170 (5)0.0273 (5)0.0010 (4)0.0058 (4)0.0010 (4)
C40.0228 (5)0.0160 (5)0.0283 (5)0.0001 (4)0.0054 (4)0.0016 (4)
C50.0220 (5)0.0173 (5)0.0262 (5)0.0007 (4)0.0054 (4)0.0011 (4)
C210.0229 (5)0.0191 (5)0.0304 (6)0.0003 (4)0.0052 (4)0.0016 (4)
C220.0257 (6)0.0235 (6)0.0379 (6)0.0006 (5)0.0014 (5)0.0040 (5)
C230.0254 (6)0.0254 (6)0.0300 (6)0.0009 (4)0.0003 (4)0.0035 (5)
C240.0270 (6)0.0366 (7)0.0328 (6)0.0004 (5)0.0027 (5)0.0002 (5)
C250.0250 (6)0.0467 (8)0.0407 (7)0.0081 (6)0.0013 (5)0.0045 (6)
C260.0373 (7)0.0348 (7)0.0441 (8)0.0116 (6)0.0056 (6)0.0018 (6)
C270.0401 (7)0.0330 (7)0.0487 (8)0.0008 (6)0.0013 (6)0.0098 (6)
C280.0278 (6)0.0349 (7)0.0446 (7)0.0012 (5)0.0053 (5)0.0048 (6)
O10.0305 (5)0.0172 (4)0.0549 (6)0.0008 (3)0.0031 (4)0.0013 (4)
O20.0229 (4)0.0212 (4)0.0367 (5)0.0019 (3)0.0016 (3)0.0034 (3)
C310.0298 (6)0.0185 (5)0.0399 (7)0.0039 (4)0.0006 (5)0.0001 (5)
C410.0259 (5)0.0177 (5)0.0316 (6)0.0015 (4)0.0068 (4)0.0002 (4)
C420.0287 (6)0.0196 (6)0.0465 (7)0.0014 (4)0.0028 (5)0.0032 (5)
O30.0333 (5)0.0157 (4)0.0503 (6)0.0001 (3)0.0007 (4)0.0001 (4)
C510.0235 (5)0.0188 (5)0.0346 (6)0.0011 (4)0.0035 (4)0.0014 (4)
Geometric parameters (Å, º) top
N1—C51.3446 (14)C24—H240.9500
N1—C21.3872 (14)C25—C261.376 (2)
N1—H10.936 (18)C25—H250.9500
C2—C31.3838 (15)C26—C271.388 (2)
C2—C211.4573 (16)C26—H260.9500
C3—C41.4321 (16)C27—C281.3848 (19)
C3—C311.4987 (16)C27—H270.9500
C4—C51.4095 (15)C28—H280.9500
C4—C411.4622 (15)C31—H31A0.9800
C5—C511.4992 (15)C31—H31B0.9800
C21—O11.2143 (15)C31—H31C0.9800
C21—O21.3425 (14)C41—O31.2328 (15)
C22—O21.4578 (14)C41—C421.5017 (17)
C22—C231.4982 (17)C42—H42A0.9800
C22—H22A0.9900C42—H42B0.9800
C22—H22B0.9900C42—H42C0.9800
C23—C241.3879 (17)C51—H51A0.9800
C23—C281.3925 (19)C51—H51B0.9800
C24—C251.3923 (19)C51—H51C0.9800
C5—N1—C2110.38 (10)C24—C25—H25119.8
C5—N1—H1123.5 (10)C25—C26—C27119.81 (13)
C2—N1—H1126.0 (10)C25—C26—H26120.1
C3—C2—N1108.38 (10)C27—C26—H26120.1
C3—C2—C21134.14 (11)C28—C27—C26119.91 (14)
N1—C2—C21117.37 (10)C28—C27—H27120.0
C2—C3—C4106.18 (9)C26—C27—H27120.0
C2—C3—C31127.19 (11)C27—C28—C23120.76 (13)
C4—C3—C31126.63 (10)C27—C28—H28119.6
C5—C4—C3107.56 (9)C23—C28—H28119.6
C5—C4—C41127.15 (10)C21—O2—C22115.46 (9)
C3—C4—C41125.29 (10)C3—C31—H31A109.5
N1—C5—C4107.49 (9)C3—C31—H31B109.5
N1—C5—C51118.90 (10)H31A—C31—H31B109.5
C4—C5—C51133.60 (10)C3—C31—H31C109.5
O1—C21—O2122.52 (11)H31A—C31—H31C109.5
O1—C21—C2123.52 (11)H31B—C31—H31C109.5
O2—C21—C2113.94 (10)O3—C41—C4120.91 (11)
O2—C22—C23106.49 (10)O3—C41—C42119.32 (10)
O2—C22—H22A110.4C4—C41—C42119.77 (10)
C23—C22—H22A110.4C41—C42—H42A109.5
O2—C22—H22B110.4C41—C42—H42B109.5
C23—C22—H22B110.4H42A—C42—H42B109.5
H22A—C22—H22B108.6C41—C42—H42C109.5
C24—C23—C28118.81 (12)H42A—C42—H42C109.5
C24—C23—C22120.71 (12)H42B—C42—H42C109.5
C28—C23—C22120.49 (11)C5—C51—H51A109.5
C23—C24—C25120.35 (13)C5—C51—H51B109.5
C23—C24—H24119.8H51A—C51—H51B109.5
C25—C24—H24119.8C5—C51—H51C109.5
C26—C25—C24120.36 (13)H51A—C51—H51C109.5
C26—C25—H25119.8H51B—C51—H51C109.5
C5—N1—C2—C30.35 (13)N1—C2—C21—O2179.62 (10)
C5—N1—C2—C21177.07 (10)O2—C22—C23—C24115.76 (13)
N1—C2—C3—C40.45 (13)O2—C22—C23—C2863.91 (15)
C21—C2—C3—C4176.39 (12)C28—C23—C24—C250.6 (2)
N1—C2—C3—C31179.55 (11)C22—C23—C24—C25179.11 (12)
C21—C2—C3—C313.6 (2)C23—C24—C25—C260.1 (2)
C2—C3—C4—C50.39 (13)C24—C25—C26—C270.3 (2)
C31—C3—C4—C5179.61 (11)C25—C26—C27—C280.2 (2)
C2—C3—C4—C41179.44 (11)C26—C27—C28—C230.2 (2)
C31—C3—C4—C410.56 (19)C24—C23—C28—C270.6 (2)
C2—N1—C5—C40.09 (12)C22—C23—C28—C27179.06 (13)
C2—N1—C5—C51179.04 (10)O1—C21—O2—C225.41 (17)
C3—C4—C5—N10.19 (12)C2—C21—O2—C22173.27 (10)
C41—C4—C5—N1179.64 (11)C23—C22—O2—C21176.90 (10)
C3—C4—C5—C51179.14 (12)C5—C4—C41—O3176.17 (11)
C41—C4—C5—C510.7 (2)C3—C4—C41—O34.03 (18)
C3—C2—C21—O1174.71 (13)C5—C4—C41—C424.16 (18)
N1—C2—C21—O10.95 (17)C3—C4—C41—C42175.64 (11)
C3—C2—C21—O23.95 (19)
(4) dimethyl 3,5-dimethylpyrrole-2,4-dicarboxylate top
Crystal data top
C10H13NO4F(000) = 448
Mr = 211.21Dx = 1.363 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 41 reflections
a = 8.150 (4) Åθ = 20–25°
b = 16.040 (6) ŵ = 0.11 mm1
c = 7.908 (4) ÅT = 130 K
β = 95.31 (3)°Plate, colorless
V = 1029.3 (8) Å30.40 × 0.38 × 0.10 mm
Z = 4
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.084
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.5°
Graphite monochromatorh = 1010
ω scansk = 200
2521 measured reflectionsl = 010
2354 independent reflections2 standard reflections every 198 reflections
2214 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0783P)2 + 0.3875P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.006
2354 reflectionsΔρmax = 0.43 e Å3
145 parametersΔρmin = 0.29 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.046 (7)
Crystal data top
C10H13NO4V = 1029.3 (8) Å3
Mr = 211.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.150 (4) ŵ = 0.11 mm1
b = 16.040 (6) ÅT = 130 K
c = 7.908 (4) Å0.40 × 0.38 × 0.10 mm
β = 95.31 (3)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.084
2521 measured reflections2 standard reflections every 198 reflections
2354 independent reflections intensity decay: none
2214 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.134H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.43 e Å3
2354 reflectionsΔρmin = 0.29 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.27203 (13)0.47879 (7)0.12161 (14)0.0215 (3)
H10.339 (2)0.5107 (12)0.069 (2)0.036 (5)*
C20.29355 (15)0.39398 (7)0.15179 (15)0.0213 (3)
C30.16107 (15)0.36563 (8)0.23399 (15)0.0217 (3)
C40.05807 (15)0.43659 (8)0.25194 (15)0.0217 (3)
C50.13218 (15)0.50579 (8)0.18147 (15)0.0211 (3)
C210.43822 (15)0.35482 (8)0.09224 (16)0.0226 (3)
C220.59889 (19)0.23282 (9)0.0807 (2)0.0337 (3)
H22A0.59240.23270.04370.051*
H22B0.60270.17520.12240.051*
H22C0.69870.26240.12600.051*
O10.53606 (13)0.39121 (6)0.01090 (14)0.0315 (3)
O20.45520 (12)0.27437 (6)0.13602 (13)0.0276 (3)
C310.12926 (18)0.27863 (8)0.29091 (19)0.0310 (3)
H31A0.03080.25660.22540.046*
H31B0.11200.27900.41190.046*
H31C0.22420.24330.27270.046*
C410.10011 (16)0.43576 (8)0.32597 (16)0.0248 (3)
C420.32876 (18)0.51776 (11)0.3875 (2)0.0376 (4)
H42A0.40670.48180.31960.056*
H42B0.36760.57560.37990.056*
H42C0.32060.49960.50630.056*
O30.16547 (14)0.37520 (7)0.38211 (16)0.0398 (3)
O40.16906 (13)0.51227 (7)0.32388 (14)0.0336 (3)
C510.08542 (17)0.59587 (8)0.16938 (17)0.0251 (3)
H51A0.16350.62580.10440.038*
H51B0.08800.61960.28380.038*
H51C0.02590.60120.11200.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0231 (5)0.0165 (5)0.0248 (5)0.0003 (4)0.0017 (4)0.0012 (4)
C20.0238 (6)0.0167 (6)0.0231 (6)0.0010 (4)0.0001 (4)0.0014 (4)
C30.0234 (6)0.0198 (6)0.0214 (6)0.0017 (5)0.0009 (4)0.0009 (4)
C40.0221 (6)0.0214 (6)0.0213 (6)0.0018 (4)0.0000 (4)0.0009 (4)
C50.0218 (6)0.0207 (6)0.0204 (5)0.0007 (4)0.0006 (4)0.0015 (4)
C210.0245 (6)0.0186 (6)0.0240 (6)0.0002 (5)0.0005 (5)0.0005 (4)
C220.0317 (7)0.0248 (7)0.0450 (8)0.0081 (5)0.0050 (6)0.0011 (6)
O10.0309 (5)0.0235 (5)0.0419 (6)0.0021 (4)0.0123 (4)0.0049 (4)
O20.0281 (5)0.0191 (5)0.0360 (5)0.0040 (4)0.0044 (4)0.0038 (4)
C310.0340 (7)0.0215 (6)0.0382 (8)0.0023 (5)0.0067 (6)0.0063 (5)
C410.0233 (6)0.0280 (7)0.0230 (6)0.0030 (5)0.0011 (5)0.0028 (5)
C420.0237 (7)0.0507 (10)0.0389 (8)0.0046 (6)0.0056 (6)0.0076 (7)
O30.0345 (6)0.0357 (6)0.0516 (7)0.0073 (5)0.0162 (5)0.0032 (5)
O40.0271 (5)0.0338 (6)0.0411 (6)0.0037 (4)0.0105 (4)0.0006 (4)
C510.0271 (6)0.0190 (6)0.0291 (6)0.0019 (5)0.0013 (5)0.0016 (5)
Geometric parameters (Å, º) top
N1—C51.3457 (17)C22—H22B0.9800
N1—C21.3894 (16)C22—H22C0.9800
N1—H10.88 (2)C31—H31A0.9800
C2—C31.3875 (18)C31—H31B0.9800
C2—C211.4523 (18)C31—H31C0.9800
C3—C41.4291 (18)C41—O31.2117 (18)
C3—C311.4963 (18)C41—O41.3492 (17)
C4—C51.4034 (18)C42—O41.4408 (18)
C4—C411.4644 (19)C42—H42A0.9800
C5—C511.4951 (18)C42—H42B0.9800
C21—O11.2188 (17)C42—H42C0.9800
C21—O21.3398 (16)C51—H51A0.9800
C22—O21.4498 (18)C51—H51B0.9800
C22—H22A0.9800C51—H51C0.9800
C5—N1—C2110.63 (11)C21—O2—C22115.59 (11)
C5—N1—H1124.2 (13)C3—C31—H31A109.5
C2—N1—H1125.1 (13)C3—C31—H31B109.5
C3—C2—N1108.06 (11)H31A—C31—H31B109.5
C3—C2—C21134.46 (12)C3—C31—H31C109.5
N1—C2—C21117.46 (11)H31A—C31—H31C109.5
C2—C3—C4105.98 (11)H31B—C31—H31C109.5
C2—C3—C31127.63 (12)O3—C41—O4122.48 (13)
C4—C3—C31126.39 (12)O3—C41—C4125.94 (13)
C5—C4—C3108.19 (11)O4—C41—C4111.58 (11)
C5—C4—C41126.38 (12)O4—C42—H42A109.5
C3—C4—C41125.40 (11)O4—C42—H42B109.5
N1—C5—C4107.15 (11)H42A—C42—H42B109.5
N1—C5—C51120.51 (11)O4—C42—H42C109.5
C4—C5—C51132.31 (12)H42A—C42—H42C109.5
O1—C21—O2122.73 (12)H42B—C42—H42C109.5
O1—C21—C2123.67 (12)C41—O4—C42116.10 (12)
O2—C21—C2113.60 (11)C5—C51—H51A109.5
O2—C22—H22A109.5C5—C51—H51B109.5
O2—C22—H22B109.5H51A—C51—H51B109.5
H22A—C22—H22B109.5C5—C51—H51C109.5
O2—C22—H22C109.5H51A—C51—H51C109.5
H22A—C22—H22C109.5H51B—C51—H51C109.5
H22B—C22—H22C109.5
C5—N1—C2—C30.24 (14)C3—C4—C5—C51177.41 (13)
C5—N1—C2—C21179.08 (10)C41—C4—C5—C514.6 (2)
N1—C2—C3—C40.19 (13)C3—C2—C21—O1174.74 (13)
C21—C2—C3—C4178.36 (13)N1—C2—C21—O13.70 (19)
N1—C2—C3—C31179.40 (12)C3—C2—C21—O25.6 (2)
C21—C2—C3—C310.8 (2)N1—C2—C21—O2175.93 (10)
C2—C3—C4—C50.54 (13)O1—C21—O2—C220.21 (19)
C31—C3—C4—C5179.76 (12)C2—C21—O2—C22179.43 (11)
C2—C3—C4—C41177.51 (11)C5—C4—C41—O3177.72 (13)
C31—C3—C4—C411.7 (2)C3—C4—C41—O30.0 (2)
C2—N1—C5—C40.58 (14)C5—C4—C41—O41.74 (18)
C2—N1—C5—C51177.79 (11)C3—C4—C41—O4179.43 (11)
C3—C4—C5—N10.69 (14)O3—C41—O4—C421.98 (19)
C41—C4—C5—N1177.34 (11)C4—C41—O4—C42177.49 (11)
(5) 4-ethyl-3,5-dimethyl-2-[(2-p-tosyl)acetyl]pyrrole top
Crystal data top
C17H21NO3SF(000) = 680
Mr = 319.41Dx = 1.321 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 32 reflections
a = 5.179 (2) Åθ = 19–23°
b = 13.986 (4) ŵ = 0.21 mm1
c = 22.315 (13) ÅT = 130 K
β = 90.09 (4)°Block, colorless
V = 1616.4 (12) Å30.30 × 0.25 × 0.25 mm
Z = 4
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 27.6°, θmin = 1.7°
Graphite monochromatorh = 66
ω scansk = 018
4753 measured reflectionsl = 029
3730 independent reflections2 standard reflections every 198 reflections
2761 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.3777P]
where P = (Fo2 + 2Fc2)/3
3730 reflections(Δ/σ)max = 0.003
207 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C17H21NO3SV = 1616.4 (12) Å3
Mr = 319.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.179 (2) ŵ = 0.21 mm1
b = 13.986 (4) ÅT = 130 K
c = 22.315 (13) Å0.30 × 0.25 × 0.25 mm
β = 90.09 (4)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.025
4753 measured reflections2 standard reflections every 198 reflections
3730 independent reflections intensity decay: none
2761 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.31 e Å3
3730 reflectionsΔρmin = 0.35 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1660 (3)0.12872 (13)0.46468 (8)0.0227 (4)
H10.162 (5)0.080 (2)0.4896 (12)0.048 (8)*
C20.0100 (4)0.13922 (15)0.41496 (9)0.0214 (4)
C30.0735 (4)0.22725 (15)0.38840 (9)0.0219 (4)
C40.2707 (4)0.26807 (15)0.42328 (9)0.0234 (4)
C50.3257 (4)0.20458 (15)0.47016 (9)0.0238 (4)
C210.1761 (4)0.06612 (15)0.40306 (9)0.0222 (4)
C220.3212 (4)0.06581 (15)0.34414 (9)0.0232 (4)
H22A0.33990.13220.32930.028*
H22B0.49610.03900.35030.028*
C230.1875 (4)0.12431 (15)0.31164 (9)0.0224 (4)
C240.0052 (4)0.16606 (16)0.34897 (10)0.0275 (5)
H24A0.13270.12920.36480.033*
C250.0274 (4)0.26211 (17)0.36266 (10)0.0291 (5)
H25A0.09580.29080.38850.035*
C260.2261 (4)0.31777 (16)0.33940 (9)0.0258 (5)
C270.4080 (4)0.27445 (16)0.30287 (10)0.0281 (5)
H27A0.54640.31140.28730.034*
C280.3911 (4)0.17797 (16)0.28871 (9)0.0259 (5)
H28A0.51690.14890.26370.031*
C290.2449 (5)0.42250 (16)0.35499 (10)0.0334 (5)
H29A0.07420.45220.35120.050*
H29B0.36580.45400.32760.050*
H29C0.30680.42940.39630.050*
S10.15092 (10)0.00433 (4)0.28970 (2)0.02240 (14)
O10.2184 (3)0.00076 (11)0.43808 (7)0.0295 (4)
O20.2797 (3)0.00856 (11)0.23319 (6)0.0291 (4)
O30.1192 (3)0.01965 (11)0.29385 (7)0.0282 (4)
C310.0422 (4)0.27299 (16)0.33353 (9)0.0274 (5)
H31A0.02920.33740.32850.041*
H31B0.23010.27710.33820.041*
H31C0.00100.23430.29820.041*
C410.3855 (4)0.36645 (15)0.41722 (10)0.0289 (5)
H41B0.38350.38590.37460.035*
H41A0.56750.36520.43070.035*
C420.2348 (5)0.43920 (17)0.45433 (11)0.0359 (6)
H42A0.30930.50290.44850.054*
H42B0.24460.42190.49680.054*
H42C0.05390.43950.44150.054*
C510.5203 (4)0.21185 (17)0.51904 (10)0.0285 (5)
H51A0.54680.14870.53700.043*
H51B0.45810.25640.54970.043*
H51C0.68390.23530.50250.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0244 (9)0.0205 (9)0.0232 (9)0.0016 (7)0.0010 (7)0.0003 (7)
C20.0224 (10)0.0212 (10)0.0206 (9)0.0010 (8)0.0002 (8)0.0003 (8)
C30.0240 (10)0.0189 (10)0.0228 (10)0.0006 (8)0.0025 (8)0.0012 (8)
C40.0254 (11)0.0208 (11)0.0239 (10)0.0010 (9)0.0049 (8)0.0011 (8)
C50.0222 (10)0.0242 (11)0.0248 (10)0.0031 (9)0.0026 (8)0.0037 (8)
C210.0224 (10)0.0204 (10)0.0239 (10)0.0014 (8)0.0010 (8)0.0003 (8)
C220.0219 (10)0.0208 (10)0.0268 (10)0.0012 (8)0.0012 (8)0.0011 (8)
C230.0211 (10)0.0221 (10)0.0240 (10)0.0007 (8)0.0030 (8)0.0040 (8)
C240.0230 (11)0.0277 (12)0.0318 (11)0.0024 (9)0.0047 (9)0.0018 (9)
C250.0281 (12)0.0292 (12)0.0299 (11)0.0018 (9)0.0019 (9)0.0021 (9)
C260.0305 (12)0.0241 (11)0.0229 (10)0.0004 (9)0.0043 (9)0.0055 (8)
C270.0279 (11)0.0292 (12)0.0273 (11)0.0058 (9)0.0004 (9)0.0064 (9)
C280.0204 (10)0.0309 (12)0.0264 (11)0.0008 (9)0.0022 (8)0.0031 (9)
C290.0448 (14)0.0260 (12)0.0295 (11)0.0052 (11)0.0003 (10)0.0002 (9)
S10.0211 (3)0.0243 (3)0.0218 (2)0.0020 (2)0.00051 (18)0.0002 (2)
O10.0364 (9)0.0230 (8)0.0290 (8)0.0075 (7)0.0032 (6)0.0053 (6)
O20.0306 (8)0.0338 (9)0.0230 (7)0.0013 (7)0.0036 (6)0.0018 (6)
O30.0221 (8)0.0327 (9)0.0299 (8)0.0036 (6)0.0009 (6)0.0012 (7)
C310.0344 (12)0.0235 (11)0.0243 (10)0.0020 (9)0.0003 (9)0.0040 (9)
C410.0314 (12)0.0224 (11)0.0329 (11)0.0062 (9)0.0051 (9)0.0001 (9)
C420.0405 (14)0.0245 (12)0.0427 (14)0.0052 (10)0.0031 (11)0.0044 (10)
C510.0266 (11)0.0309 (12)0.0280 (11)0.0050 (9)0.0026 (9)0.0019 (9)
Geometric parameters (Å, º) top
N1—C51.351 (3)C26—C271.386 (3)
N1—C21.382 (3)C26—C291.509 (3)
N1—H10.88 (3)C27—C281.389 (3)
C2—C31.405 (3)C27—H27A0.9500
C2—C211.430 (3)C28—H28A0.9500
C3—C41.407 (3)C29—H29A0.9800
C3—C311.507 (3)C29—H29B0.9800
C4—C51.402 (3)C29—H29C0.9800
C4—C411.505 (3)S1—O21.4388 (17)
C5—C511.490 (3)S1—O31.4419 (16)
C21—O11.238 (2)C31—H31A0.9800
C21—C221.515 (3)C31—H31B0.9800
C22—S11.792 (2)C31—H31C0.9800
C22—H22A0.9900C41—C421.526 (3)
C22—H22B0.9900C41—H41B0.9900
C23—C241.389 (3)C41—H41A0.9900
C23—C281.392 (3)C42—H42A0.9800
C23—S11.758 (2)C42—H42B0.9800
C24—C251.382 (3)C42—H42C0.9800
C24—H24A0.9500C51—H51A0.9800
C25—C261.391 (3)C51—H51B0.9800
C25—H25A0.9500C51—H51C0.9800
C5—N1—C2110.37 (18)C27—C28—C23119.2 (2)
C5—N1—H1124.6 (18)C27—C28—H28A120.4
C2—N1—H1125.0 (18)C23—C28—H28A120.4
N1—C2—C3107.17 (18)C26—C29—H29A109.5
N1—C2—C21117.93 (18)C26—C29—H29B109.5
C3—C2—C21134.85 (19)H29A—C29—H29B109.5
C2—C3—C4106.97 (18)C26—C29—H29C109.5
C2—C3—C31128.45 (19)H29A—C29—H29C109.5
C4—C3—C31124.59 (19)H29B—C29—H29C109.5
C5—C4—C3107.73 (19)O2—S1—O3118.57 (10)
C5—C4—C41124.5 (2)O2—S1—C23108.28 (10)
C3—C4—C41127.48 (19)O3—S1—C23107.97 (10)
N1—C5—C4107.76 (18)O2—S1—C22107.29 (10)
N1—C5—C51122.32 (19)O3—S1—C22107.79 (10)
C4—C5—C51129.9 (2)C23—S1—C22106.32 (10)
O1—C21—C2122.78 (19)C3—C31—H31A109.5
O1—C21—C22117.26 (19)C3—C31—H31B109.5
C2—C21—C22119.89 (18)H31A—C31—H31B109.5
C21—C22—S1110.22 (14)C3—C31—H31C109.5
C21—C22—H22A109.6H31A—C31—H31C109.5
S1—C22—H22A109.6H31B—C31—H31C109.5
C21—C22—H22B109.6C4—C41—C42111.05 (18)
S1—C22—H22B109.6C4—C41—H41B109.4
H22A—C22—H22B108.1C42—C41—H41B109.4
C24—C23—C28120.7 (2)C4—C41—H41A109.4
C24—C23—S1119.67 (16)C42—C41—H41A109.4
C28—C23—S1119.57 (17)H41B—C41—H41A108.0
C25—C24—C23119.0 (2)C41—C42—H42A109.5
C25—C24—H24A120.5C41—C42—H42B109.5
C23—C24—H24A120.5H42A—C42—H42B109.5
C24—C25—C26121.5 (2)C41—C42—H42C109.5
C24—C25—H25A119.2H42A—C42—H42C109.5
C26—C25—H25A119.2H42B—C42—H42C109.5
C27—C26—C25118.6 (2)C5—C51—H51A109.5
C27—C26—C29121.1 (2)C5—C51—H51B109.5
C25—C26—C29120.3 (2)H51A—C51—H51B109.5
C26—C27—C28121.1 (2)C5—C51—H51C109.5
C26—C27—H27A119.5H51A—C51—H51C109.5
C28—C27—H27A119.5H51B—C51—H51C109.5
C5—N1—C2—C30.8 (2)C28—C23—C24—C250.5 (3)
C5—N1—C2—C21178.57 (18)S1—C23—C24—C25175.81 (17)
N1—C2—C3—C40.3 (2)C23—C24—C25—C260.7 (3)
C21—C2—C3—C4177.5 (2)C24—C25—C26—C271.5 (3)
N1—C2—C3—C31179.3 (2)C24—C25—C26—C29179.8 (2)
C21—C2—C3—C312.1 (4)C25—C26—C27—C281.1 (3)
C2—C3—C4—C50.3 (2)C29—C26—C27—C28179.8 (2)
C31—C3—C4—C5179.9 (2)C26—C27—C28—C230.1 (3)
C2—C3—C4—C41173.15 (19)C24—C23—C28—C270.9 (3)
C31—C3—C4—C416.4 (3)S1—C23—C28—C27175.41 (16)
C2—N1—C5—C41.1 (2)C24—C23—S1—O2153.68 (17)
C2—N1—C5—C51178.61 (19)C28—C23—S1—O222.7 (2)
C3—C4—C5—N10.9 (2)C24—C23—S1—O324.1 (2)
C41—C4—C5—N1172.88 (19)C28—C23—S1—O3152.25 (17)
C3—C4—C5—C51178.8 (2)C24—C23—S1—C2291.30 (19)
C41—C4—C5—C517.5 (4)C28—C23—S1—C2292.31 (18)
N1—C2—C21—O16.8 (3)C21—C22—S1—O2172.60 (14)
C3—C2—C21—O1170.2 (2)C21—C22—S1—O343.85 (17)
N1—C2—C21—C22170.08 (18)C21—C22—S1—C2371.71 (16)
C3—C2—C21—C2213.0 (4)C5—C4—C41—C4283.9 (3)
O1—C21—C22—S186.0 (2)C3—C4—C41—C4288.5 (3)
C2—C21—C22—S191.0 (2)
(6b) ethyl 4-(2-ethoxycarbonyl-2-hydroxyacryloyl)-3,5-dimethylpyrrole-2-carboxylate top
Crystal data top
C15H19NO6Z = 2
Mr = 309.31F(000) = 328
Triclinic, P1Dx = 1.370 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.281 (3) ÅCell parameters from 25 reflections
b = 10.363 (6) Åθ = 18–22°
c = 11.003 (7) ŵ = 0.11 mm1
α = 65.11 (5)°T = 130 K
β = 84.61 (5)°Parallelepiped, colorless
γ = 86.65 (4)°0.40 × 0.10 × 0.10 mm
V = 749.6 (8) Å3
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.073
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 2.1°
Graphite monochromatorh = 09
ω scansk = 1313
3686 measured reflectionsl = 1414
3414 independent reflections2 standard reflections every 198 reflections
2279 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.1091P)2 + 0.0847P]
where P = (Fo2 + 2Fc2)/3
3414 reflections(Δ/σ)max < 0.001
207 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C15H19NO6γ = 86.65 (4)°
Mr = 309.31V = 749.6 (8) Å3
Triclinic, P1Z = 2
a = 7.281 (3) ÅMo Kα radiation
b = 10.363 (6) ŵ = 0.11 mm1
c = 11.003 (7) ÅT = 130 K
α = 65.11 (5)°0.40 × 0.10 × 0.10 mm
β = 84.61 (5)°
Data collection top
Siemens R3m/V
diffractometer
Rint = 0.073
3686 measured reflections2 standard reflections every 198 reflections
3414 independent reflections intensity decay: none
2279 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.192H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.29 e Å3
3414 reflectionsΔρmin = 0.33 e Å3
207 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The C45, C46 ethyl ester group shows higher thermal libration.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2582 (2)0.6334 (2)0.4331 (2)0.0307 (4)
H10.147 (4)0.614 (3)0.475 (3)0.037*
C20.3483 (3)0.5620 (2)0.3624 (2)0.0294 (5)
C30.5221 (3)0.6191 (2)0.3152 (2)0.0283 (5)
C40.5336 (3)0.7299 (2)0.3601 (2)0.0292 (5)
C50.3658 (3)0.7336 (2)0.4353 (2)0.0301 (5)
C210.2465 (3)0.4493 (2)0.3548 (2)0.0306 (5)
C220.2375 (3)0.2755 (3)0.2666 (3)0.0401 (6)
H22A0.15060.22590.34570.048*
H22B0.32440.20360.25520.048*
C230.1327 (4)0.3473 (3)0.1442 (3)0.0522 (7)
H23A0.07620.27530.12450.078*
H23B0.21720.40400.06770.078*
H23C0.03610.40960.16000.078*
O10.0884 (2)0.42140 (18)0.40339 (18)0.0401 (4)
O20.3403 (2)0.38042 (18)0.28902 (17)0.0370 (4)
C310.6647 (3)0.5734 (3)0.2331 (3)0.0351 (5)
H31A0.62110.49060.22380.053*
H31B0.78010.54820.27790.053*
H31C0.68630.65150.14390.053*
C410.6816 (3)0.8259 (2)0.3389 (2)0.0323 (5)
C420.8489 (3)0.8312 (2)0.2562 (2)0.0346 (5)
H42A0.86910.76720.21460.042*
C430.9788 (3)0.9296 (3)0.2382 (3)0.0366 (6)
C441.1550 (3)0.9460 (3)0.1481 (3)0.0389 (6)
C451.3384 (3)0.8543 (3)0.0124 (3)0.0421 (6)
H45A1.34860.94640.06750.050*
H45B1.44620.84210.06510.050*
C461.3335 (4)0.7383 (4)0.0286 (4)0.0632 (9)
H46A1.44620.73810.08480.095*
H46B1.22580.75100.08000.095*
H46C1.32530.64760.05120.095*
O30.6631 (2)0.91189 (19)0.3956 (2)0.0462 (5)
O40.9632 (3)1.0192 (2)0.2933 (2)0.0509 (5)
H40.86701.00240.34560.061*
O51.2676 (3)1.0334 (2)0.1290 (2)0.0582 (6)
O61.1675 (2)0.85157 (19)0.09431 (19)0.0427 (5)
C510.2995 (3)0.8237 (3)0.5070 (3)0.0380 (6)
H51A0.17550.79470.55010.057*
H51B0.29550.92370.44250.057*
H51C0.38380.81180.57550.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0167 (8)0.0359 (10)0.0408 (11)0.0055 (7)0.0071 (7)0.0185 (9)
C20.0195 (10)0.0322 (11)0.0364 (12)0.0037 (8)0.0038 (8)0.0150 (10)
C30.0171 (9)0.0306 (11)0.0349 (11)0.0045 (8)0.0039 (8)0.0123 (9)
C40.0188 (10)0.0310 (11)0.0365 (12)0.0058 (8)0.0050 (8)0.0137 (9)
C50.0193 (10)0.0335 (11)0.0375 (12)0.0045 (8)0.0040 (8)0.0158 (10)
C210.0211 (10)0.0329 (11)0.0369 (12)0.0049 (8)0.0044 (9)0.0145 (10)
C220.0344 (12)0.0385 (13)0.0571 (16)0.0135 (10)0.0080 (11)0.0301 (12)
C230.0507 (16)0.0539 (16)0.0640 (18)0.0130 (13)0.0024 (14)0.0352 (15)
O10.0220 (8)0.0481 (10)0.0565 (11)0.0133 (7)0.0130 (7)0.0298 (9)
O20.0240 (8)0.0426 (9)0.0537 (10)0.0100 (7)0.0095 (7)0.0306 (8)
C310.0216 (10)0.0405 (13)0.0469 (14)0.0066 (9)0.0093 (9)0.0236 (11)
C410.0240 (11)0.0341 (12)0.0382 (12)0.0059 (9)0.0025 (9)0.0147 (10)
C420.0211 (10)0.0354 (12)0.0446 (13)0.0080 (9)0.0066 (9)0.0150 (11)
C430.0243 (11)0.0349 (12)0.0477 (14)0.0064 (9)0.0022 (10)0.0148 (11)
C440.0218 (11)0.0389 (13)0.0519 (15)0.0072 (9)0.0031 (10)0.0153 (12)
C450.0218 (11)0.0458 (14)0.0477 (15)0.0048 (10)0.0125 (10)0.0115 (12)
C460.0394 (16)0.084 (2)0.070 (2)0.0093 (15)0.0103 (14)0.0380 (19)
O30.0338 (9)0.0513 (11)0.0648 (12)0.0177 (8)0.0154 (8)0.0372 (10)
O40.0354 (10)0.0557 (11)0.0722 (14)0.0215 (9)0.0145 (9)0.0383 (11)
O50.0311 (10)0.0567 (12)0.0900 (16)0.0233 (9)0.0177 (9)0.0354 (11)
O60.0212 (8)0.0466 (10)0.0567 (11)0.0110 (7)0.0143 (7)0.0205 (9)
C510.0266 (11)0.0401 (13)0.0529 (15)0.0061 (9)0.0082 (10)0.0264 (12)
Geometric parameters (Å, º) top
N1—C51.346 (3)C31—H31C0.9800
N1—C21.383 (3)C41—O31.280 (3)
N1—H10.88 (3)C41—C421.440 (3)
C2—C31.387 (3)C42—C431.371 (3)
C2—C211.456 (3)C42—H42A0.9500
C3—C41.437 (3)C43—O41.301 (3)
C3—C311.498 (3)C43—C441.517 (3)
C4—C51.418 (3)C44—O51.197 (3)
C4—C411.446 (3)C44—O61.335 (3)
C5—C511.491 (3)C45—C461.455 (4)
C21—O11.220 (3)C45—O61.461 (3)
C21—O21.335 (3)C45—H45A0.9900
C22—O21.470 (3)C45—H45B0.9900
C22—C231.494 (4)C46—H46A0.9800
C22—H22A0.9900C46—H46B0.9800
C22—H22B0.9900C46—H46C0.9800
C23—H23A0.9800O4—H40.8400
C23—H23B0.9800C51—H51A0.9800
C23—H23C0.9800C51—H51B0.9800
C31—H31A0.9800C51—H51C0.9800
C31—H31B0.9800
C5—N1—C2111.10 (18)H31A—C31—H31C109.5
C5—N1—H1123.5 (17)H31B—C31—H31C109.5
C2—N1—H1125.3 (17)O3—C41—C42118.0 (2)
N1—C2—C3108.47 (19)O3—C41—C4118.6 (2)
N1—C2—C21116.16 (18)C42—C41—C4123.5 (2)
C3—C2—C21135.4 (2)C43—C42—C41119.3 (2)
C2—C3—C4105.81 (19)C43—C42—H42A120.4
C2—C3—C31126.1 (2)C41—C42—H42A120.4
C4—C3—C31128.10 (19)O4—C43—C42124.2 (2)
C5—C4—C3107.88 (18)O4—C43—C44113.3 (2)
C5—C4—C41122.0 (2)C42—C43—C44122.5 (2)
C3—C4—C41130.1 (2)O5—C44—O6125.0 (2)
N1—C5—C4106.7 (2)O5—C44—C43123.2 (3)
N1—C5—C51121.06 (19)O6—C44—C43111.8 (2)
C4—C5—C51132.2 (2)C46—C45—O6107.6 (2)
O1—C21—O2123.2 (2)C46—C45—H45A110.2
O1—C21—C2122.6 (2)O6—C45—H45A110.2
O2—C21—C2114.25 (18)C46—C45—H45B110.2
O2—C22—C23110.3 (2)O6—C45—H45B110.2
O2—C22—H22A109.6H45A—C45—H45B108.5
C23—C22—H22A109.6C45—C46—H46A109.5
O2—C22—H22B109.6C45—C46—H46B109.5
C23—C22—H22B109.6H46A—C46—H46B109.5
H22A—C22—H22B108.1C45—C46—H46C109.5
C22—C23—H23A109.5H46A—C46—H46C109.5
C22—C23—H23B109.5H46B—C46—H46C109.5
H23A—C23—H23B109.5C43—O4—H4109.5
C22—C23—H23C109.5C44—O6—C45115.36 (19)
H23A—C23—H23C109.5C5—C51—H51A109.5
H23B—C23—H23C109.5C5—C51—H51B109.5
C21—O2—C22116.36 (17)H51A—C51—H51B109.5
C3—C31—H31A109.5C5—C51—H51C109.5
C3—C31—H31B109.5H51A—C51—H51C109.5
H31A—C31—H31B109.5H51B—C51—H51C109.5
C3—C31—H31C109.5
C5—N1—C2—C30.6 (3)C3—C2—C21—O21.4 (4)
C5—N1—C2—C21179.12 (19)O1—C21—O2—C225.4 (3)
N1—C2—C3—C40.3 (2)C2—C21—O2—C22174.0 (2)
C21—C2—C3—C4179.9 (2)C23—C22—O2—C2183.8 (3)
N1—C2—C3—C31179.7 (2)C5—C4—C41—O33.5 (3)
C21—C2—C3—C310.7 (4)C3—C4—C41—O3176.4 (2)
C2—C3—C4—C51.0 (2)C5—C4—C41—C42175.9 (2)
C31—C3—C4—C5179.6 (2)C3—C4—C41—C424.2 (4)
C2—C3—C4—C41179.2 (2)O3—C41—C42—C431.8 (4)
C31—C3—C4—C410.2 (4)C4—C41—C42—C43177.6 (2)
C2—N1—C5—C41.2 (3)C41—C42—C43—O41.2 (4)
C2—N1—C5—C51179.3 (2)C41—C42—C43—C44177.5 (2)
C3—C4—C5—N11.3 (3)O4—C43—C44—O50.6 (4)
C41—C4—C5—N1178.8 (2)C42—C43—C44—O5178.3 (3)
C3—C4—C5—C51179.2 (2)O4—C43—C44—O6179.3 (2)
C41—C4—C5—C510.6 (4)C42—C43—C44—O61.8 (4)
N1—C2—C21—O12.5 (3)O5—C44—O6—C453.4 (4)
C3—C2—C21—O1177.9 (3)C43—C44—O6—C45176.5 (2)
N1—C2—C21—O2178.18 (19)C46—C45—O6—C44175.7 (2)

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formulaC10H15NOC14H15NO2C16H17NO3C10H13NO4
Mr165.23229.27271.31211.21
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)130130143130
a, b, c (Å)28.513 (12), 9.007 (5), 7.471 (3)31.793 (18), 7.308 (2), 10.553 (3)13.473 (3), 14.359 (3), 7.489 (2)8.150 (4), 16.040 (6), 7.908 (4)
α, β, γ (°)90, 99.83 (3), 9090, 97.02 (3), 9090, 100.47 (2), 9090, 95.31 (3), 90
V3)1890.5 (15)2433.5 (17)1424.7 (6)1029.3 (8)
Z8844
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.090.11
Crystal size (mm)0.55 × 0.41 × 0.400.50 × 0.50 × 0.080.35 × 0.35 × 0.350.40 × 0.38 × 0.10
Data collection
DiffractometerSiemens R3m/V
diffractometer
Siemens R3m/V
diffractometer
Siemens R3m/V
diffractometer
Siemens R3m/V
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2493, 2174, 1343 3086, 2799, 2120 3519, 3268, 2871 2521, 2354, 2214
Rint0.0410.0170.0440.084
(sin θ/λ)max1)0.6500.6500.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.174, 1.04 0.050, 0.144, 1.01 0.043, 0.120, 1.04 0.047, 0.134, 1.08
No. of reflections2174279932682354
No. of parameters117160189145
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.320.31, 0.280.41, 0.220.43, 0.29


(5)(6b)
Crystal data
Chemical formulaC17H21NO3SC15H19NO6
Mr319.41309.31
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)130130
a, b, c (Å)5.179 (2), 13.986 (4), 22.315 (13)7.281 (3), 10.363 (6), 11.003 (7)
α, β, γ (°)90, 90.09 (4), 9065.11 (5), 84.61 (5), 86.65 (4)
V3)1616.4 (12)749.6 (8)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.210.11
Crystal size (mm)0.30 × 0.25 × 0.250.40 × 0.10 × 0.10
Data collection
DiffractometerSiemens R3m/V
diffractometer
Siemens R3m/V
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4753, 3730, 2761 3686, 3414, 2279
Rint0.0250.073
(sin θ/λ)max1)0.6510.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.123, 1.05 0.066, 0.192, 1.02
No. of reflections37303414
No. of parameters207207
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.350.29, 0.33

Computer programs: P3 (Siemens, 1995), P3, XDISK (Siemens, 1995), SHELXS97 (Sheldrick, 1990), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1995), SHELXL97 and PLATON (Spek, 2003), SHELXL97.

Hydrogen-bond parameters (Å, °) for compounds (I)–(VIb) top
CompoundD—H···AD—HH···AD···AD—H···A
(1)N1—H1···O1i0.95 (3)1.99 (3)2.882 (3)156 (2)
(2)N1—H1···O1ii0.87 (2)2.02 (3)2.862 (3)164 (2)
(3)N1—H1···O3iii0.936 (18)1.971 (18)2.8624 (14)158.5 (15)
C51—H51C···O3iii0.982.493.3292 (16)143
C42—H42C···O1iv0.982.303.2401 (16)160
C31—H31C···O20.982.283.0127 (16)130
(4)N1—H1···O1v0.88 (2)2.01 (2)2.8628 (17)163.6 (18)
C31—H31C···O20.982.313.027 (2)129
(5)N1—H1···O1vi0.88 (3)1.98 (3)2.826 (3)161 (3)
C29—H29B···O2vii0.982.343.299 (4)164
(6 b)N1—H1···O1viii0.88 (3)2.03 (3)2.895 (3)169 (2)
O4—H4···O30.841.722.459 (3)145
C31—H31A···O20.982.303.034 (3)131
Symmetry codes: (i) 1/2 − x, 3/2 − y, −z; (ii) 1 − x, y, 1/2 − z; (iii) 1 − x, y − 1/2, −1/2 − z; (iv) 1 − x, 1/2 + y, −1/2 − z; (v) 1 − x, 1 − y, −z; (vi) −x, −y, 1 − z; (vii) 1 − x, 1/2 + y, 1/2 − z; (viii) −x, 1 − y, 1 − z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds