Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, C8H6O4·2C6H7N, consists of two crystallographically independent 1:2 clusters of benzene-1,3-­dicarboxylic acid and 4-methyl­pyridine. Each cluster, the components of which are linked by O—H...N hydrogen bonds, is almost planar by alignment of C—H...O hydrogen bonds. Herring-bone ribbons of clusters are formed by other C—H...O hydrogen bonds, and these ribbons are further packed to form a laminar structure by π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105026181/fg1861sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105026181/fg1861Isup2.hkl
Contains datablock I

CCDC reference: 288626

Comment top

Supramolecular aggregate design is an active field (Zaworotko, 2001; Bis & Zaworotko, 2005; Shattock et al., 2005; Turkington et al., 2005). Some cases have been reported using 1,3-benzenedicarboxylic acid (BDA) as a building block (Bielawski et al., 1998; Shan et al., 2002; Trivedi et al., 2003; Dale et al., 2004) to build supramolecular architectures. We have recently synthesized the title complex, (I), and describe here the cooperation of O—H···N and C—H···O hydrogen bonds and ππ interactions in forming the novel laminar structure.

There are two crystallographically independent 1:2 clusters of 1,3-benzenedicarboxylic acid (BDA) and 4-methylpyridine (MP) in the asymmetric unit (Fig. 1); one cluster is labelled A for the three molecules with atoms O1, N1 and N2 and the other is labelled B for the three molecules with atoms O5, N3 and N4.

The A cluster is built up by two nearly linear O2—H2···N1 and O4—H4···N2 hydrogen bonds (Table 1). The dihedral angles between the aromatic ring and the carboxyl groups of the BDA molecule are 3.0 (3) and 2.4 (4)° for the carboxyl groups with atoms O1 and O3, repectively. This conformation differs from those observed in a nickel 1,3-benzenedicarboxylate and a cobalt 1,3-benzenedicarboxylate (Bourne et al., 2001), where the phenyl rings are skewed at large angles with respect to the carboxylate groups. The carboxylic acid groups are almost coplanar with the MP rings, allowing weak C17—H17···O1 and C23—H23···O3 hydrogen bonds (Steiner & Desiraju, 1998). Furthermore, there are short C1—H1···O2, C1—H1···O4, C3—H3···O1 and C5—H5···O3 contacts, with H···O distances in the range 2.44–2.50 Å. The coplanar arrangment is different from the situation in a BDA–pyridine (1:1) complex (Dale et al., 2004), where the dihedral angle between the carboxylic acid group and the pyridine is large [28.6 (2)°] and allows no similar C—H···O hydrogen bonds. However, the coplanar arrangment in (I) resembles the situations observed in other BDA complexes, namely BDA and a pyridylamine derivative (Bielawski et al., 1998), and BDA:benzimidazole (1:1) (Trivedi et al., 2003). In a general view, therefore, the molecules in the A cluster of (I) are almost coplanar with one another, which is indicated by an r.m.s deviation of 0.119 (6) Å for the atoms from the plane of the A cluster.

The BDA molecule in the B cluster is less coplanar than that in the A cluster, as indicated by the two dihedral angles between the aromatic ring and the carboxyl groups of 4.9 (4) and 10.4 (4)° for the carboxyl groups with atoms O5 and O7, repectively. However, similar to what was observed in the A cluster, due to O—H···N and C—H···O hydrogen bonds (Table 1), the molecules in the B cluster are also almost coplanar, as indicated by an r.m.s deviation of 0.105 (7) Å for the atoms from the mean plane of the B cluster.

Viewed along the c axis (Fig. 2), the structure of (I) is characterized by layers of BDA and MP molecules, with a stratum equal to a quarter of the c axis. A ribbon of A-cluster molecules parallel to the (001) plane is formed by C21—H21···O1i and C27—H27···O3i hydrogen bonds [symmetry code: (i) x + 1, y, z]. The hydrogen-bonding patterns of this A-cluster ribbon can be described in graph-set terminolgy as C21(6), C22(7), R22(7), R44(22) and R44(24) (Etter, 1990; Grell et al., 2000). Another similar ribbon for the B cluster parallel to the (001) plane is created by the C39—H39···O7ii hydrogen bond [symmetry code: (ii) x − 1, y, z]. [Please check added symmetry codes]

The A– and B-cluster ribbons between neighbouring layers are associated by a number of ππ interactions (Sharma et al., 1993; Pedireddi et al., 1996), the shortest of which has a distance of 3.683 (4) Å between the centroids of the MP molecule with atom N2 in cluster A and the MP molecule with atom N3 in cluster B at (1 + x, y, z); the angle between these two ring planes is 1.2°.

Experimental top

BDA (0.01 mol) and MP (0.04 mol) were mixed and heated to a temperature of 353 K, upon which a clear solution resulted. Single crystals of (I) were formed by gradual evaporation of excess MP in the resulting solution for a week at 293 K.

Refinement top

H atoms were placed in calculated positions and allowed to ride on their parent atoms at distances of 0.82 (hydroxy), 0.93 (C—H aromatic) and 0.96 Å (methyl), with isotropic displacement parameters 1.2–1.5 times Ueq of their parent atoms. As the compound contains no heavy atoms, Friedel reflections were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The formula unit of (I), with the atom-labelling scheme, showing 35% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii. Hydrogen bonds are illustrated as dashed lines.
[Figure 2] Fig. 2. A view of the ribbons in (a) the A cluster and (b) the B cluster, extending along the a direction and viewed down the c axis. Intermolecular hydrogen bonds are shown as dashed lines. Atoms labelled with an asterisk (*) or hash (#) are at the symmetry positions (x + 1, y, z) and (x − 1, y, z), respectively.
Benzene-1,3-dicarboxylic acid–4-methylpyridine (1/2) top
Crystal data top
C8H6O4·2C6H7NF(000) = 1488.0
Mr = 352.38Dx = 1.269 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 239 reflections
a = 6.863 (6) Åθ = 2.8–24.9°
b = 39.81 (3) ŵ = 0.09 mm1
c = 13.527 (11) ÅT = 273 K
β = 93.276 (15)°Sheet, colourless
V = 3690 (5) Å30.30 × 0.25 × 0.20 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3370 independent reflections
Radiation source: fine-focus sealed tube2692 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 25.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
h = 88
Tmin = 0.974, Tmax = 0.982k = 4822
9779 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0929P)2 + 1.2415P]
where P = (Fo2 + 2Fc2)/3
3370 reflections(Δ/σ)max < 0.001
476 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.30 e Å3
Crystal data top
C8H6O4·2C6H7NV = 3690 (5) Å3
Mr = 352.38Z = 8
Monoclinic, CcMo Kα radiation
a = 6.863 (6) ŵ = 0.09 mm1
b = 39.81 (3) ÅT = 273 K
c = 13.527 (11) Å0.30 × 0.25 × 0.20 mm
β = 93.276 (15)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3370 independent reflections
Absorption correction: multi-scan
(SADABS, Bruker, 2000)
2692 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.982Rint = 0.021
9779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0652 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.07Δρmax = 0.17 e Å3
3370 reflectionsΔρmin = 0.30 e Å3
476 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2147 (6)0.33835 (9)0.0019 (4)0.1012 (14)
O20.4830 (5)0.36691 (8)0.0152 (3)0.0812 (10)
H2O0.52750.34820.02510.122*
O30.2247 (7)0.51441 (9)0.0713 (4)0.1042 (14)
O40.4901 (6)0.48775 (8)0.0365 (3)0.0899 (11)
H4O0.53630.50670.04160.135*
C10.3002 (6)0.42725 (10)0.0228 (3)0.0519 (10)
H10.43190.42790.01000.062*
C20.2020 (6)0.39680 (11)0.0198 (3)0.0551 (10)
C30.0045 (7)0.39670 (14)0.0367 (4)0.0713 (13)
H30.06360.37650.03510.086*
C40.0911 (8)0.42577 (15)0.0556 (4)0.0784 (15)
H40.22390.42540.06590.094*
C50.0076 (8)0.45523 (13)0.0593 (4)0.0716 (14)
H50.05850.47500.07210.086*
C60.2048 (7)0.45638 (12)0.0443 (3)0.0590 (11)
C70.3056 (9)0.48884 (13)0.0515 (4)0.0731 (14)
C80.2998 (7)0.36443 (13)0.0007 (4)0.0672 (13)
O50.3772 (7)0.66089 (9)0.1996 (4)0.1077 (15)
O60.1199 (6)0.68873 (9)0.2399 (3)0.0911 (13)
H6O0.07480.66970.24390.137*
O70.3832 (6)0.83852 (10)0.2210 (4)0.1106 (16)
O80.1101 (5)0.81067 (8)0.2217 (3)0.0807 (10)
H8O0.06660.82960.22930.121*
C90.2976 (7)0.74981 (10)0.2137 (3)0.0563 (11)
H90.16670.74970.22810.068*
C100.3968 (7)0.72003 (12)0.2036 (3)0.0594 (11)
C110.5924 (7)0.72041 (14)0.1840 (4)0.0716 (14)
H110.65970.70030.17910.086*
C120.6866 (8)0.74981 (14)0.1718 (4)0.0778 (15)
H120.81740.74970.15720.093*
C130.5903 (7)0.77967 (14)0.1807 (4)0.0711 (14)
H130.65550.79990.17250.085*
C140.3947 (7)0.77966 (12)0.2022 (3)0.0592 (11)
C150.2970 (7)0.81222 (13)0.2159 (4)0.0689 (13)
C160.2970 (8)0.68695 (13)0.2134 (4)0.0709 (13)
N10.6286 (7)0.30605 (10)0.0410 (3)0.0731 (11)
C170.5080 (8)0.28102 (14)0.0314 (4)0.0767 (14)
H170.37920.28550.01800.092*
C180.5683 (10)0.24759 (14)0.0407 (5)0.0828 (18)
H180.48020.23010.03390.099*
C190.7606 (9)0.24083 (13)0.0603 (4)0.0707 (14)
C200.8765 (8)0.26817 (14)0.0687 (4)0.0739 (13)
H201.00710.26510.08130.089*
C210.8092 (8)0.29907 (14)0.0594 (4)0.0774 (14)
H210.89530.31690.06630.093*
C220.8317 (12)0.20595 (15)0.0709 (5)0.110 (2)
H22A0.86040.20200.13850.164*
H22B0.73290.19050.05210.164*
H22C0.94770.20280.02890.164*
N20.6291 (10)0.55001 (13)0.0338 (4)0.0918 (14)
C230.5144 (8)0.57432 (17)0.0448 (4)0.0846 (16)
H230.38670.56970.06000.102*
C240.5725 (12)0.6087 (2)0.0348 (5)0.112 (3)
H240.48650.62640.04220.135*
C250.7725 (9)0.61386 (13)0.0127 (4)0.0750 (14)
C260.8768 (9)0.58590 (15)0.0059 (5)0.0856 (15)
H261.00820.58780.00660.103*
C270.8035 (10)0.55586 (17)0.0161 (5)0.0976 (18)
H270.88610.53760.00970.117*
C280.8604 (16)0.64784 (17)0.0010 (6)0.143 (4)
H28A1.00010.64620.00560.214*
H28B0.81620.66290.04840.214*
H28C0.82150.65620.06560.214*
N30.0249 (7)0.62792 (11)0.2657 (3)0.0777 (12)
C290.0890 (9)0.60250 (16)0.2555 (5)0.0857 (16)
H290.21740.60640.24030.103*
C300.0269 (11)0.56907 (16)0.2665 (5)0.0931 (19)
H300.11190.55120.25960.112*
C310.1649 (9)0.56391 (13)0.2881 (4)0.0784 (15)
C320.2749 (10)0.59173 (16)0.2988 (5)0.0855 (16)
C330.2040 (9)0.62238 (15)0.2874 (5)0.0866 (16)
H330.28590.64070.29530.104*
C340.2474 (13)0.5293 (2)0.3007 (7)0.125 (3)
H34A0.37740.53100.32290.188*
H34B0.16690.51710.34870.188*
H34C0.25060.51760.23850.188*
N40.0301 (7)0.87121 (11)0.2544 (3)0.0757 (12)
C350.0856 (7)0.89657 (15)0.2559 (4)0.0749 (14)
H350.21600.89270.24410.090*
C360.0285 (10)0.92941 (15)0.2739 (4)0.0861 (18)
H360.11730.94710.27410.103*
C370.1700 (9)0.93494 (13)0.2918 (3)0.0740 (15)
C380.2830 (8)0.90716 (14)0.2877 (4)0.0735 (13)
H380.41550.90910.29780.088*
C390.2087 (9)0.87673 (14)0.2694 (4)0.0812 (15)
H390.29340.85850.26760.097*
C400.2492 (15)0.96900 (16)0.3115 (5)0.124 (3)
H40A0.26270.98140.25070.186*
H40B0.16140.98060.35750.186*
H40C0.37440.96690.33910.186*
H320.404 (12)0.589 (2)0.315 (6)0.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.081 (3)0.057 (2)0.166 (4)0.014 (2)0.013 (2)0.010 (2)
O20.065 (2)0.0588 (19)0.122 (3)0.0002 (16)0.0245 (19)0.0053 (19)
O30.128 (4)0.054 (2)0.133 (4)0.013 (2)0.026 (3)0.004 (2)
O40.092 (3)0.056 (2)0.122 (3)0.0162 (19)0.011 (2)0.005 (2)
C10.047 (2)0.057 (3)0.051 (2)0.0004 (19)0.0002 (17)0.0019 (19)
C20.051 (2)0.057 (3)0.057 (2)0.0005 (19)0.0019 (18)0.005 (2)
C30.057 (3)0.079 (3)0.078 (3)0.013 (3)0.000 (2)0.004 (3)
C40.052 (3)0.098 (4)0.085 (3)0.007 (3)0.005 (2)0.008 (3)
C50.071 (3)0.073 (3)0.071 (3)0.024 (3)0.000 (2)0.004 (2)
C60.058 (3)0.066 (3)0.053 (2)0.004 (2)0.0045 (19)0.009 (2)
C70.094 (4)0.056 (3)0.069 (3)0.003 (3)0.004 (3)0.006 (2)
C80.066 (3)0.065 (3)0.071 (3)0.006 (2)0.006 (2)0.005 (2)
O50.100 (3)0.057 (2)0.169 (4)0.009 (2)0.032 (3)0.012 (2)
O60.081 (3)0.054 (2)0.141 (4)0.0035 (18)0.035 (2)0.004 (2)
O70.089 (3)0.063 (2)0.182 (5)0.014 (2)0.029 (3)0.015 (3)
O80.073 (2)0.0539 (19)0.116 (3)0.0023 (17)0.012 (2)0.0016 (18)
C90.049 (3)0.058 (3)0.063 (3)0.002 (2)0.0049 (19)0.001 (2)
C100.064 (3)0.061 (3)0.053 (2)0.005 (2)0.005 (2)0.0013 (19)
C110.065 (3)0.079 (4)0.071 (3)0.021 (3)0.009 (2)0.002 (2)
C120.050 (3)0.101 (4)0.083 (3)0.002 (3)0.011 (2)0.006 (3)
C130.068 (3)0.079 (4)0.066 (3)0.017 (3)0.003 (2)0.002 (2)
C140.061 (3)0.060 (3)0.056 (3)0.005 (2)0.004 (2)0.0003 (19)
C150.063 (3)0.067 (3)0.078 (3)0.007 (2)0.012 (2)0.000 (2)
C160.075 (4)0.062 (3)0.076 (3)0.007 (3)0.009 (3)0.004 (2)
N10.082 (3)0.059 (2)0.078 (3)0.012 (2)0.007 (2)0.006 (2)
C170.061 (3)0.085 (4)0.086 (3)0.001 (3)0.017 (2)0.004 (3)
C180.100 (5)0.066 (3)0.083 (4)0.026 (3)0.009 (3)0.001 (3)
C190.094 (4)0.062 (3)0.057 (3)0.013 (3)0.005 (2)0.006 (2)
C200.066 (3)0.077 (4)0.079 (3)0.002 (3)0.008 (2)0.006 (3)
C210.068 (3)0.076 (3)0.089 (4)0.015 (3)0.011 (3)0.005 (3)
C220.164 (7)0.071 (4)0.095 (4)0.029 (4)0.020 (4)0.006 (3)
N20.111 (4)0.081 (3)0.083 (3)0.001 (3)0.004 (3)0.001 (3)
C230.065 (3)0.102 (5)0.088 (4)0.011 (3)0.012 (3)0.008 (3)
C240.141 (7)0.114 (5)0.081 (4)0.060 (5)0.001 (4)0.022 (4)
C250.102 (4)0.056 (3)0.067 (3)0.007 (3)0.003 (3)0.002 (2)
C260.075 (3)0.081 (4)0.100 (4)0.007 (3)0.002 (3)0.002 (3)
C270.086 (5)0.085 (4)0.120 (5)0.005 (4)0.009 (4)0.003 (4)
C280.230 (11)0.082 (5)0.116 (6)0.058 (6)0.002 (6)0.006 (4)
N30.094 (3)0.060 (2)0.078 (3)0.003 (2)0.002 (2)0.004 (2)
C290.075 (4)0.079 (4)0.103 (4)0.002 (3)0.007 (3)0.010 (3)
C300.115 (5)0.070 (4)0.095 (4)0.027 (3)0.008 (4)0.006 (3)
C310.096 (4)0.059 (3)0.080 (4)0.009 (3)0.001 (3)0.002 (2)
C320.087 (4)0.081 (4)0.089 (4)0.002 (3)0.005 (3)0.000 (3)
C330.084 (4)0.067 (3)0.109 (5)0.005 (3)0.006 (3)0.008 (3)
C340.125 (6)0.125 (6)0.125 (6)0.000 (5)0.007 (5)0.000 (5)
N40.071 (3)0.068 (3)0.088 (3)0.003 (2)0.005 (2)0.006 (2)
C350.062 (3)0.075 (4)0.088 (4)0.003 (3)0.006 (2)0.012 (3)
C360.099 (5)0.077 (4)0.080 (4)0.036 (3)0.012 (3)0.011 (3)
C370.101 (4)0.070 (3)0.051 (3)0.014 (3)0.005 (3)0.002 (2)
C380.067 (3)0.076 (3)0.077 (3)0.001 (3)0.001 (2)0.001 (3)
C390.081 (4)0.063 (3)0.099 (4)0.008 (3)0.002 (3)0.007 (3)
C400.202 (9)0.080 (4)0.088 (4)0.033 (5)0.003 (4)0.011 (3)
Geometric parameters (Å, º) top
O1—C81.192 (6)C21—H210.9300
O2—C81.292 (6)C22—H22A0.9600
O2—H2O0.8200C22—H22B0.9600
O3—C71.197 (6)C22—H22C0.9600
O4—C71.294 (7)N2—C271.255 (8)
O4—H4O0.8200N2—C231.262 (8)
C1—C61.372 (6)C23—C241.433 (10)
C1—C21.387 (6)C23—H230.9300
C1—H10.9300C24—C251.436 (10)
C2—C31.387 (7)C24—H240.9300
C2—C81.482 (7)C25—C261.330 (8)
C3—C41.362 (7)C25—C281.497 (8)
C3—H30.9300C26—C271.308 (8)
C4—C51.354 (7)C26—H260.9300
C4—H40.9300C27—H270.9300
C5—C61.381 (7)C28—H28A0.9600
C5—H50.9300C28—H28B0.9600
C6—C71.466 (7)C28—H28C0.9600
O5—C161.194 (6)N3—C291.291 (7)
O6—C161.289 (6)N3—C331.299 (8)
O6—H6O0.8200C29—C301.408 (9)
O7—C151.203 (6)C29—H290.9300
O8—C151.291 (6)C30—C311.380 (9)
O8—H8O0.8200C30—H300.9300
C9—C141.376 (6)C31—C321.353 (8)
C9—C101.378 (6)C31—C341.504 (9)
C9—H90.9300C32—C331.326 (8)
C10—C111.383 (7)C32—H320.93 (8)
C10—C161.494 (7)C33—H330.9300
C11—C121.352 (7)C34—H34A0.9600
C11—H110.9300C34—H34B0.9600
C12—C131.369 (7)C34—H34C0.9600
C12—H120.9300N4—C391.273 (7)
C13—C141.390 (7)N4—C351.284 (7)
C13—H130.9300C35—C361.390 (8)
C14—C151.476 (7)C35—H350.9300
N1—C171.306 (6)C36—C371.415 (9)
N1—C211.308 (7)C36—H360.9300
C17—C181.402 (8)C37—C381.350 (8)
C17—H170.9300C37—C401.490 (8)
C18—C191.387 (9)C38—C391.343 (8)
C18—H180.9300C38—H380.9300
C19—C201.356 (8)C39—H390.9300
C19—C221.481 (8)C40—H40A0.9600
C20—C211.322 (8)C40—H40B0.9600
C20—H200.9300C40—H40C0.9600
C8—O2—H2O109.5H22A—C22—H22B109.5
C7—O4—H4O109.5C19—C22—H22C109.5
C6—C1—C2120.5 (4)H22A—C22—H22C109.5
C6—C1—H1119.7H22B—C22—H22C109.5
C2—C1—H1119.7C27—N2—C23119.2 (6)
C1—C2—C3118.4 (4)N2—C23—C24122.8 (6)
C1—C2—C8122.7 (4)N2—C23—H23118.6
C3—C2—C8118.9 (4)C24—C23—H23118.6
C4—C3—C2120.9 (5)C23—C24—C25115.5 (5)
C4—C3—H3119.5C23—C24—H24122.2
C2—C3—H3119.5C25—C24—H24122.2
C5—C4—C3119.9 (5)C26—C25—C24114.8 (5)
C5—C4—H4120.1C26—C25—C28121.7 (7)
C3—C4—H4120.1C24—C25—C28123.5 (7)
C4—C5—C6121.1 (5)C27—C26—C25123.1 (6)
C4—C5—H5119.5C27—C26—H26118.4
C6—C5—H5119.5C25—C26—H26118.4
C1—C6—C5119.2 (5)N2—C27—C26124.5 (7)
C1—C6—C7122.0 (4)N2—C27—H27117.7
C5—C6—C7118.8 (5)C26—C27—H27117.7
O3—C7—O4122.3 (5)C25—C28—H28A109.5
O3—C7—C6122.8 (5)C25—C28—H28B109.5
O4—C7—C6115.0 (5)H28A—C28—H28B109.5
O1—C8—O2123.4 (5)C25—C28—H28C109.5
O1—C8—C2121.9 (5)H28A—C28—H28C109.5
O2—C8—C2114.7 (4)H28B—C28—H28C109.5
C16—O6—H6O109.5C29—N3—C33118.5 (5)
C15—O8—H8O109.5N3—C29—C30122.8 (5)
C14—C9—C10119.1 (4)N3—C29—H29118.6
C14—C9—H9120.4C30—C29—H29118.6
C10—C9—H9120.4C31—C30—C29117.5 (5)
C9—C10—C11120.0 (5)C31—C30—H30121.3
C9—C10—C16121.2 (4)C29—C30—H30121.3
C11—C10—C16118.8 (5)C32—C31—C30116.4 (5)
C12—C11—C10120.6 (5)C32—C31—C34121.5 (6)
C12—C11—H11119.7C30—C31—C34122.0 (6)
C10—C11—H11119.7C33—C32—C31122.0 (6)
C11—C12—C13120.3 (5)C33—C32—H32119 (5)
C11—C12—H12119.8C31—C32—H32119 (5)
C13—C12—H12119.8N3—C33—C32122.7 (6)
C12—C13—C14119.7 (5)N3—C33—H33118.6
C12—C13—H13120.2C32—C33—H33118.6
C14—C13—H13120.2C31—C34—H34A109.5
C9—C14—C13120.3 (5)C31—C34—H34B109.5
C9—C14—C15121.2 (4)H34A—C34—H34B109.5
C13—C14—C15118.5 (4)C31—C34—H34C109.5
O7—C15—O8121.7 (5)H34A—C34—H34C109.5
O7—C15—C14123.1 (5)H34B—C34—H34C109.5
O8—C15—C14115.2 (4)C39—N4—C35117.5 (5)
O5—C16—O6122.8 (5)N4—C35—C36124.2 (5)
O5—C16—C10122.3 (5)N4—C35—H35117.9
O6—C16—C10114.9 (4)C36—C35—H35117.9
C17—N1—C21118.0 (5)C35—C36—C37117.4 (5)
N1—C17—C18121.6 (5)C35—C36—H36121.3
N1—C17—H17119.2C37—C36—H36121.3
C18—C17—H17119.2C38—C37—C36115.0 (5)
C19—C18—C17119.4 (5)C38—C37—C40122.6 (6)
C19—C18—H18120.3C36—C37—C40122.4 (6)
C17—C18—H18120.3C39—C38—C37121.6 (5)
C20—C19—C18115.4 (5)C39—C38—H38119.2
C20—C19—C22123.1 (6)C37—C38—H38119.2
C18—C19—C22121.5 (6)N4—C39—C38124.4 (5)
C21—C20—C19122.0 (5)N4—C39—H39117.8
C21—C20—H20119.0C38—C39—H39117.8
C19—C20—H20119.0C37—C40—H40A109.5
N1—C21—C20123.7 (5)C37—C40—H40B109.5
N1—C21—H21118.1H40A—C40—H40B109.5
C20—C21—H21118.1C37—C40—H40C109.5
C19—C22—H22A109.5H40A—C40—H40C109.5
C19—C22—H22B109.5H40B—C40—H40C109.5
C6—C1—C2—C31.6 (6)C9—C10—C16—O65.7 (7)
C6—C1—C2—C8177.6 (4)C11—C10—C16—O6174.3 (4)
C1—C2—C3—C40.1 (7)C21—N1—C17—C180.3 (8)
C8—C2—C3—C4179.3 (5)N1—C17—C18—C190.2 (9)
C2—C3—C4—C50.9 (8)C17—C18—C19—C200.1 (8)
C3—C4—C5—C60.1 (8)C17—C18—C19—C22180.0 (5)
C2—C1—C6—C52.5 (6)C18—C19—C20—C210.5 (8)
C2—C1—C6—C7177.8 (4)C22—C19—C20—C21179.7 (5)
C4—C5—C6—C11.8 (7)C17—N1—C21—C200.0 (8)
C4—C5—C6—C7178.5 (5)C19—C20—C21—N10.4 (9)
C1—C6—C7—O3179.2 (5)C27—N2—C23—C242.1 (9)
C5—C6—C7—O31.1 (7)N2—C23—C24—C250.9 (9)
C1—C6—C7—O40.3 (6)C23—C24—C25—C260.9 (8)
C5—C6—C7—O4180.0 (4)C23—C24—C25—C28179.7 (6)
C1—C2—C8—O1177.3 (5)C24—C25—C26—C271.6 (9)
C3—C2—C8—O11.9 (8)C28—C25—C26—C27179.0 (7)
C1—C2—C8—O21.5 (7)C23—N2—C27—C261.5 (11)
C3—C2—C8—O2179.3 (4)C25—C26—C27—N20.5 (11)
C14—C9—C10—C111.2 (7)C33—N3—C29—C300.3 (9)
C14—C9—C10—C16178.8 (4)N3—C29—C30—C310.7 (9)
C9—C10—C11—C121.9 (7)C29—C30—C31—C321.4 (8)
C16—C10—C11—C12178.1 (5)C29—C30—C31—C34179.6 (6)
C10—C11—C12—C131.4 (8)C30—C31—C32—C331.2 (9)
C11—C12—C13—C140.2 (8)C34—C31—C32—C33179.7 (6)
C10—C9—C14—C130.1 (7)C29—N3—C33—C320.5 (9)
C10—C9—C14—C15177.7 (4)C31—C32—C33—N30.3 (10)
C12—C13—C14—C90.4 (7)C39—N4—C35—C360.8 (8)
C12—C13—C14—C15177.3 (5)N4—C35—C36—C370.2 (8)
C9—C14—C15—O7168.6 (5)C35—C36—C37—C381.0 (7)
C13—C14—C15—O79.1 (8)C35—C36—C37—C40179.7 (5)
C9—C14—C15—O811.6 (7)C36—C37—C38—C391.1 (7)
C13—C14—C15—O8170.7 (4)C40—C37—C38—C39179.7 (5)
C9—C10—C16—O5175.8 (5)C35—N4—C39—C380.8 (9)
C11—C10—C16—O54.1 (8)C37—C38—C39—N40.2 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.821.832.652 (6)177
O4—H4O···N20.821.842.657 (6)172
O6—H6O···N30.821.832.648 (6)175
O8—H8O···N40.821.822.642 (6)176
C17—H17···O10.932.413.093 (7)130
C21—H21···O1i0.932.483.258 (7)141
C23—H23···O30.932.483.139 (8)128
C27—H27···O3i0.932.593.375 (9)142
C29—H29···O50.932.503.171 (8)129
C35—H35···O70.932.473.138 (7)129
C39—H39···O7ii0.932.413.221 (8)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC8H6O4·2C6H7N
Mr352.38
Crystal system, space groupMonoclinic, Cc
Temperature (K)273
a, b, c (Å)6.863 (6), 39.81 (3), 13.527 (11)
β (°) 93.276 (15)
V3)3690 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Bruker, 2000)
Tmin, Tmax0.974, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
9779, 3370, 2692
Rint0.021
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.173, 1.07
No. of reflections3370
No. of parameters476
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.30

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SHELXTL (Bruker, 2000), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected bond lengths (Å) top
O1—C81.192 (6)C5—C61.381 (7)
O2—C81.292 (6)C6—C71.466 (7)
O3—C71.197 (6)N1—C171.306 (6)
O4—C71.294 (7)N1—C211.308 (7)
C1—C61.372 (6)C17—C181.402 (8)
C1—C21.387 (6)C18—C191.387 (9)
C2—C31.387 (7)C19—C201.356 (8)
C2—C81.482 (7)C19—C221.481 (8)
C3—C41.362 (7)C20—C211.322 (8)
C4—C51.354 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N10.821.832.652 (6)177
O4—H4O···N20.821.842.657 (6)172
O6—H6O···N30.821.832.648 (6)175
O8—H8O···N40.821.822.642 (6)176
C17—H17···O10.932.413.093 (7)130
C21—H21···O1i0.932.483.258 (7)141
C23—H23···O30.932.483.139 (8)128
C27—H27···O3i0.932.593.375 (9)142
C29—H29···O50.932.503.171 (8)129
C35—H35···O70.932.473.138 (7)129
C39—H39···O7ii0.932.413.221 (8)146
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds