Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the title compounds, C17H20BrClN2O3, (I), and C17H19ClN2O3, (II), are stabilized by intramolecular C—H...O and C—H...π interactions. The stability of the molecular packing in (I) and (II) arises from a diverse set of weak intermolecular C—H...O, C—H...π and C—halogen...π interactions. In the crystal structure of (I), mol­ecules aggregate in dimeric subunits via C—Br...π interactions. The dimers are interlinked by C—H...O hydrogen bonds. The halogens cluster together and form a channel along the b axis. In (II), the packing is mainly governed by intermolecular C—H...O and C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105001794/fg1810sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001794/fg1810Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001794/fg1810IIsup3.hkl
Contains datablock II

CCDC references: 268121; 268122

Comment top

The molecular assembly in a crystal is predominantly governed by intermolecular forces, conventionally described by strong and directional N—H···O, O—H···O and O—H···N hydrogen-bonds (Desiraju, 2002). In molecules having an imbalance of hydrogen-bond donors and acceptors, the deficiency in either donor or acceptor is fulfilled by other types of weak and less-directional forces. Interactions involving the π cloud in aromatic compounds also belong to this category. The presence of several types of aromatic, X—H···π, X—halogen (Hal)···π and ππ interactions have been established and characterized in many different molecular systems (Desiraju & Steiner, 1999; Desiraju, 2002). The motivation for understanding these interaction arises from their potential importance in generating supramolecular architectures for the design of molecular solids with novel properties. Organic molecules with such characteristics provide an excellent means of exploring the roles of non-conventional intermolecular forces in crystal engineering and supramolecular chemistry. In the present work, we report the syntheses and structures of two imidazole derivatives, and discuss the relevance of weak intermolecular interactions in molecular packing. The title compounds, (I) and (II), are intermediates in the synthesis of biologically active isoxazoles and isoxazoline (Pruitt et al., 2000).

In the crystal structure, the planar moieties are formed by group of atoms attached to the aromatic imidazole (Imd) ring, namely atoms C1–C4, C8, C9, Cl1, N1 and N2 in both (I) and (II), and to the phenyl (Ph) ring, i.e. atoms C9–C17, O2 and O3 in (II) and atoms C9–C17, O2, O3 and Br1 in (I). The dihedral angles between these planar groups are 82.8 (1) and 85.5 (1)° in (I) and (II), respectively. The overall structures of (I) and (II) can be inferred from the ellipsoid plots shown in Fig. 1. The molecular conformation is essentially gauche about the N2—C9 bond and trans about the C9—C10 bond. The C1—N2—C9—C10 torsion angle is 105.2 (4)° in (I) and 93.9 (2)° in (II), and the N2—C9—C10—C11 angle is 164.5 (3) and 172.30 (18)° in (I) and (II), respectively. The sign of the torsion angle, which otherwise has no meaning for centrosymmetric crystals, corresponds to the reported coordinates of the structure. The non-planar part of the molecules, i.e. the butyl chain attached to the imidazole ring, is characterized by the N1—C1—C4—C5, C1—C4—C5—C6 and C4—C5—C6—C7 torsion angles. These angles are −15.6 (10), −176.9 (7) and 97.6 (10)° in (I), and −4.2 (3), 174.3 (2) and −176.4 (3)° in (II), indicating that the conformation of butyl-chain is bent in (I) and fully extended in (II). The geometric parameters for the inter- and intramolecular interactions are given in Tables 1 and 2. The molecular structures are primarily stabilized by intramolecular C15—H15···π(Imd) and C9—H9B···O1 interactions. The C9—H9B···O1 contact forms an S6 hydrogen-bonded pattern (Bernstein et al., 1995) in both molecules. As observed in a similar compound (Gaonkar et al., 2004), and the very few related structures found in the Cambridge Structural Database (CSD; Allen, 2002), these two interactions appear to play a predominant role in shaping the molecular structure.

The crystal packing is described by a diverse set of weak intermolecular interactions (Tables 1 and 2). The molecules of (I) and (II) contain no amino donor atoms. This deficiency is partially compensated by interactions involving halogen atoms and the aromatic rings. Short intermolecular C—Hal···π contacts stabilize the dimeric subunits in (I) (Fig 2). A dimer is formed by a C11—Br1···π(Imd)(−x + 1, −y, −z + 1) contact. The Br1···Cg1 distance (Cg1 is the centroid of the Imd ring) and C11—Br1···Cg1 angle are 3.857 (4) Å and 123.6 (2)°, respectively, whereas the minimum atomic distance, Br1···π, is 3.51 Å. The Br···π interaction is less well documented, among both small and macromolecules, than the F···π and Cl···π interactions (Prasanna & Guru Row, 2000; Saraogi et al., 2003). The average value of the minimum atomic distance in intermolecular C—Br···π contacts reported in the CSD is 3.625 (9) Å (Prasanna & Guru Row, 2000). The C—Hal···π dimer interactions, which have also been referred to as PHD (π–halogen-dimer) interactions, have recently been shown to play an important role in host–guest chemistry (Nomen et al., 2004). The dimeric subunits are interlinked by intermolecular a C16—H16A···O1 contact, contributing further to the stability of the crystal packing. In the crystal structure, the halogen atoms, Cl and Br, cluster together and form a channel along the b axis. The closest Hal···Hal contacts were Cl1···Cl1(−x + 2,-y + 1,-z + 1) [3.503 (2) Å] and Cl1···Br1(−x + 1,-y,-z + 1) [3.555 (6) Å]. However, the halogen atoms fail to form a network similar to that reported for tetrakis(4-iodophenyl)methane (Thaimattam et al., 1998). It is not clear if such clustering is the result of characteristic intermolecular forces among halogens (Price et al., 1994). Packing in (II) is mainly governed by intermolecular C—H···O and C—H···π interactions other than van der Waals forces. These interactions were observed in the C9—H9A···O1 and C17—H17A···π(Ph) contacts (Table 2). The crystal packing of (II) is shown in Fig. 3.

In summary, the role of weak intermolecular interactions in the stability of the crystal packing in the two examples, which lack strong amine and O donor atoms, have been highlighted. The C—H···O, C—Hal···π and C—H···π interactions govern the packing in (I) and (II). The identification of such motifs signifies the importance of non-conventional weak intermolecular interactions in ordering the crystal packing arrangements. It will be of particular interest to examine the occurrences and roles of C—Hal···π dimer interactions in organic compounds.

Experimental top

Compound (I) was synthesized by condensing an equimolar mixture of 2-butyl-5-chloro-3H-imidazole-4-carboxaldehyde and 2-bromo-4,5-di-methoxybenzyl bromide with potassium carbonate in a dimethylformamide medium with stirring at room temperature for 10 h (yield, 90%, m.p. 360 K). Compound (II) was prepared by condensing an equimolar mixture of 2-butyl-5-chloro-3H-imidazole- 4-carboxaldehyde and 6-methyl-benzo[1,3]dioxol-5-ylmethyl chloride under the same conditions (yield, 90%, m.p. 385 K). The materials were recrystallized from acetonitrile.

Refinement top

The H atoms were refined with fixed geometry, riding on their carrier atoms with Uiso set at 1.2 (1.5 for the methyl H-atoms) Ueq of the parent atom (C—H = 0.95–0.99 Å). In (I), the Br atom is statistically disordered over two adjacent sites; the partial occupancies refined to 0.54 (4) and 0.46 (4). Atoms Br1 and Br2, which occupy the former and the latter positions, lie, respectively, −0.16 and 0.11 Å from the mean aromatic plane formed by atoms C10–C15. The C4—C5 bond length in (I) was restrained to 1.54 (1) Å because of thermal disorder.

Computing details top

For both compounds, data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS86 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. ORTEP-3 plots of (a) (I) and (b) (II), in comparable orientations, with the atom-numbering schemes. Displacement ellipsoids are shown at the 30% probability level. H atoms are shown as small spheres of arbitrary radii and the dashed lines represent intramolecular C—H···O and C—H···π interactions. [In the online version of the journal, the color scheme for the atoms for all figures is as follows: C: black or gray; H: white; Br: yellow; Cl: green; N: blue; O: red.]
[Figure 2] Fig. 2. The crystal packing in (I), showing a chain of molecules along the [101] direction. For clarity intermolecular interactions are represented by dark dashed lines, whereas intramolecular interactions are shown as light dashed lines. The symbols * and # indicate atoms associated with molecules related by the symmetry operations (−x + 1, −y, −z + 1) and (−x, −y, −z), respectively.
[Figure 3] Fig. 3. The crystal packing in (II), showing a sheet structure formed by molecules about the (20–2) plane. The intermolecular contacts are represented by dashed lines. The symbols * and # refer to atoms associated with molecules related by the symmetry operations (−x + 1, −y + 1, −z) and (−x + 3/2, y + 1/2, −z + 1/2), respectively.
(I) 1-(2-bromo-4,5-dimethoxybenzyl)-2-butyl-4-chloro-1H-imidazole-5-carboxaldehyde top
Crystal data top
C17H20BrClN2O3Z = 2
Mr = 415.72F(000) = 424
Triclinic, P1Dx = 1.507 Mg m3
Hall symbol: -P 1Melting point: 360 K
a = 8.547 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.308 (2) ÅCell parameters from 1017 reflections
c = 10.611 (2) Åθ = 2.4–25.6°
α = 91.654 (4)°µ = 2.41 mm1
β = 100.667 (4)°T = 193 K
γ = 93.623 (3)°Block, colorless
V = 916.2 (4) Å30.14 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4087 independent reflections
Radiation source: fine-focus sealed tube2655 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.73, Tmax = 0.79k = 1313
7830 measured reflectionsl = 1411
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055H-atom parameters constrained
wR(F2) = 0.170 w = 1/[σ2(Fo2) + (0.0839P)2 + 0.3943P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
4087 reflectionsΔρmax = 0.88 e Å3
231 parametersΔρmin = 0.66 e Å3
1 restraintExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C17H20BrClN2O3γ = 93.623 (3)°
Mr = 415.72V = 916.2 (4) Å3
Triclinic, P1Z = 2
a = 8.547 (2) ÅMo Kα radiation
b = 10.308 (2) ŵ = 2.41 mm1
c = 10.611 (2) ÅT = 193 K
α = 91.654 (4)°0.14 × 0.10 × 0.10 mm
β = 100.667 (4)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4087 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2655 reflections with I > 2σ(I)
Tmin = 0.73, Tmax = 0.79Rint = 0.030
7830 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.170H-atom parameters constrained
S = 1.04Δρmax = 0.88 e Å3
4087 reflectionsΔρmin = 0.66 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.75592(0.00099) m2 = −0.21347(0.00147) m3 = −0.61888(0.00115) D = −1.92240(0.00379) Atom d s d/s (d/s)**2 C10 * 0.0120 0.0032 3.715 13.804 C11 * −0.0120 0.0036 − 3.336 11.126 C12 * −0.0022 0.0037 − 0.597 0.356 C13 * 0.0126 0.0036 3.517 12.371 C14 * −0.0082 0.0034 − 2.423 5.872 C15 * −0.0035 0.0033 − 1.070 1.144 Br1 − 0.1604 0.0052 − 30.668 940.545 Br2 0.1073 0.0116 9.274 86.011 ============ Sum((d/s)**2) for starred atoms 44.673 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 2 m1 = −0.45965(0.00053) m2 = 0.65546(0.00073) m3 = −0.59925(0.00099) D = −2.94159(0.00612) Atom d s d/s (d/s)**2 Cl1 * −0.0095 0.0015 − 6.452 41.634 N1 * 0.0237 0.0035 6.714 45.077 N2 * 0.0196 0.0028 7.036 49.510 C1 * 0.0025 0.0041 0.614 0.377 C2 * 0.0401 0.0035 11.331 128.397 C3 * 0.0516 0.0040 12.911 166.686 C8 * −0.0379 0.0049 − 7.813 61.050 C9 * −0.0354 0.0039 − 9.128 83.322 C4 * −0.1029 0.0062 − 16.550 273.918 O1 − 0.2160 0.0039 − 55.056 3031.110 C10 1.2996 0.0033 393.176 154587.703 ============ Sum((d/s)**2) for starred atoms 849.971 Chi-squared at 95% for 6 degrees of freedom: 12.60 The group of atoms deviates significantly from planarity

Plane 3 m1 = 0.76820(0.00047) m2 = −0.20680(0.00062) m3 = −0.60589(0.00053) D = −1.87715(0.00186) Atom d s d/s (d/s)**2 O2 * 0.0087 0.0030 2.905 8.441 O3 * −0.0189 0.0029 − 6.596 43.509 C9 * 0.0921 0.0039 23.913 571.818 C10 * 0.0308 0.0032 9.516 90.555 C11 * −0.0166 0.0036 − 4.603 21.189 C12 * −0.0296 0.0037 − 7.988 63.802 C13 * −0.0144 0.0036 − 4.034 16.277 C14 * −0.0117 0.0034 − 3.459 11.962 C15 * 0.0154 0.0033 4.674 21.849 C16 * 0.1249 0.0048 26.248 688.975 C17 * −0.0718 0.0049 − 14.534 211.246 Br1 * −0.1662 0.0052 − 32.132 1032.488 Br2 0.1000 0.0115 8.724 76.109 N2 0.4948 0.0027 182.023 33132.480 ============ Sum((d/s)**2) for starred atoms 2782.111 Chi-squared at 95% for 9 degrees of freedom: 16.90 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 83.31 (0.08) 96.69 (0.08) 1 3 1.09 (0.07) 178.91 (0.07) 2 3 82.79 (0.05) 97.21 (0.05)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.0700 (4)0.1262 (4)0.3665 (7)0.0788 (9)0.54 (4)
Br20.0819 (9)0.1312 (4)0.3440 (15)0.0959 (15)0.46 (4)
Cl10.83053 (15)0.39614 (15)0.44068 (14)0.1025 (5)
O10.5146 (5)0.0499 (4)0.2644 (3)0.1066 (13)
O20.1722 (4)0.2052 (3)0.0256 (3)0.0812 (9)
O30.0200 (3)0.3958 (3)0.1277 (3)0.0719 (8)
N10.5973 (4)0.3778 (3)0.5747 (3)0.0723 (9)
N20.4390 (3)0.2127 (3)0.4793 (3)0.0512 (7)
C10.4662 (5)0.3029 (4)0.5763 (4)0.0670 (11)
C20.5617 (4)0.2294 (3)0.4108 (3)0.0552 (8)
C30.6535 (4)0.3328 (4)0.4741 (4)0.0633 (10)
C40.3631 (6)0.3078 (7)0.6732 (5)0.114 (2)
H4A0.33310.21730.69280.137*
H4B0.26380.34720.63420.137*
C50.4301 (8)0.3802 (10)0.7964 (5)0.172 (4)
H5A0.53220.34410.83400.207*
H5B0.45410.47220.77820.207*
C60.3252 (9)0.3762 (10)0.8928 (6)0.146 (3)
H6A0.33380.46320.93660.175*
H6B0.21350.35920.84710.175*
C70.3581 (14)0.2809 (8)0.9889 (10)0.184 (5)
H7A0.28110.28451.04660.276*
H7B0.46640.29931.03830.276*
H7C0.34920.19400.94710.276*
C80.5881 (6)0.1491 (5)0.3057 (4)0.0795 (13)
H80.67300.17760.26440.095*
C90.3077 (4)0.1116 (4)0.4542 (4)0.0631 (10)
H9A0.26050.10310.53230.076*
H9B0.35100.02750.43670.076*
C100.1769 (4)0.1385 (3)0.3419 (3)0.0488 (8)
C110.0670 (4)0.0400 (3)0.2882 (4)0.0550 (8)
C120.0517 (4)0.0570 (4)0.1833 (4)0.0619 (10)
H120.12460.01380.14800.074*
C130.0632 (4)0.1755 (4)0.1313 (4)0.0577 (9)
C140.0436 (4)0.2812 (3)0.1857 (3)0.0525 (8)
C150.1617 (4)0.2602 (3)0.2896 (3)0.0504 (8)
H150.23430.33080.32620.060*
C160.2736 (5)0.0993 (5)0.0395 (5)0.0901 (15)
H16A0.33790.12960.11800.135*
H16B0.34430.06520.01650.135*
H16C0.20830.03040.06170.135*
C170.1186 (6)0.5066 (4)0.1806 (4)0.0800 (13)
H17A0.08850.58210.12980.120*
H17B0.23030.49110.17950.120*
H17C0.10550.52340.26930.120*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.054 (2)0.080 (2)0.0945 (16)0.0195 (6)0.0002 (12)0.0140 (9)
Br20.108 (3)0.0490 (14)0.111 (3)0.0190 (10)0.0227 (16)0.0116 (11)
Cl10.0737 (7)0.1256 (11)0.1004 (10)0.0447 (7)0.0133 (7)0.0075 (8)
O10.103 (3)0.113 (3)0.091 (2)0.010 (2)0.001 (2)0.049 (2)
O20.0664 (17)0.0859 (19)0.0706 (18)0.0042 (14)0.0359 (14)0.0105 (15)
O30.0709 (17)0.0625 (15)0.0666 (17)0.0052 (12)0.0238 (13)0.0000 (12)
N10.0586 (18)0.080 (2)0.069 (2)0.0112 (16)0.0035 (17)0.0221 (17)
N20.0411 (14)0.0628 (16)0.0430 (15)0.0070 (12)0.0052 (12)0.0034 (12)
C10.050 (2)0.094 (3)0.049 (2)0.0032 (19)0.0043 (17)0.018 (2)
C20.0479 (18)0.063 (2)0.048 (2)0.0057 (15)0.0044 (15)0.0021 (16)
C30.0490 (19)0.073 (2)0.061 (2)0.0141 (17)0.0032 (17)0.0028 (19)
C40.063 (3)0.180 (6)0.094 (4)0.007 (3)0.015 (3)0.056 (4)
C50.079 (4)0.368 (14)0.068 (4)0.003 (6)0.017 (3)0.017 (5)
C60.103 (5)0.254 (10)0.083 (4)0.001 (6)0.030 (4)0.024 (5)
C70.274 (12)0.129 (6)0.197 (9)0.014 (7)0.171 (10)0.007 (6)
C80.072 (3)0.105 (3)0.056 (3)0.001 (2)0.003 (2)0.016 (2)
C90.0509 (19)0.071 (2)0.057 (2)0.0178 (17)0.0093 (16)0.0063 (18)
C100.0375 (15)0.0601 (18)0.0446 (18)0.0062 (13)0.0007 (13)0.0037 (15)
C110.0450 (17)0.0546 (18)0.060 (2)0.0055 (14)0.0017 (16)0.0007 (16)
C120.0447 (18)0.064 (2)0.067 (2)0.0115 (16)0.0064 (17)0.0188 (18)
C130.0379 (16)0.070 (2)0.055 (2)0.0037 (15)0.0104 (15)0.0157 (17)
C140.0446 (17)0.0611 (19)0.0449 (19)0.0040 (14)0.0056 (14)0.0083 (15)
C150.0430 (16)0.0579 (18)0.0440 (18)0.0096 (14)0.0020 (14)0.0093 (14)
C160.066 (3)0.103 (3)0.080 (3)0.005 (2)0.031 (2)0.034 (3)
C170.089 (3)0.060 (2)0.075 (3)0.013 (2)0.017 (2)0.003 (2)
Geometric parameters (Å, º) top
Br1—C111.925 (5)C6—H6A0.9900
Br2—C111.883 (5)C6—H6B0.9900
Cl1—C31.712 (4)C7—H7A0.9800
O1—C81.193 (6)C7—H7B0.9800
O2—C131.375 (4)C7—H7C0.9800
O2—C161.427 (5)C8—H80.9500
O3—C141.357 (4)C9—C101.521 (5)
O3—C171.413 (5)C9—H9A0.9900
N1—C11.323 (5)C9—H9B0.9900
N1—C31.332 (5)C10—C111.374 (4)
N2—C11.345 (5)C10—C151.390 (5)
N2—C21.387 (5)C11—C121.383 (5)
N2—C91.463 (4)C12—C131.357 (6)
C1—C41.474 (7)C12—H120.9500
C2—C31.364 (5)C13—C141.412 (5)
C2—C81.430 (6)C14—C151.382 (5)
C4—C51.486 (4)C15—H150.9500
C4—H4A0.9900C16—H16A0.9800
C4—H4B0.9900C16—H16B0.9800
C5—C61.479 (8)C16—H16C0.9800
C5—H5A0.9900C17—H17A0.9800
C5—H5B0.9900C17—H17B0.9800
C6—C71.439 (12)C17—H17C0.9800
C13—O2—C16116.4 (3)O1—C8—H8116.7
C14—O3—C17118.1 (3)C2—C8—H8116.7
C1—N1—C3104.9 (3)N2—C9—C10113.6 (3)
C1—N2—C2107.5 (3)N2—C9—H9A108.8
C1—N2—C9126.1 (3)C10—C9—H9A108.8
C2—N2—C9126.3 (3)N2—C9—H9B108.8
N1—C1—N2111.4 (4)C10—C9—H9B108.8
N1—C1—C4126.7 (4)H9A—C9—H9B107.7
N2—C1—C4121.8 (4)C11—C10—C15117.3 (3)
C3—C2—N2103.2 (3)C11—C10—C9119.8 (3)
C3—C2—C8129.7 (4)C15—C10—C9123.0 (3)
N2—C2—C8127.0 (3)C10—C11—C12122.7 (3)
N1—C3—C2112.9 (3)C10—C11—Br2121.3 (3)
N1—C3—Cl1120.9 (3)C12—C11—Br2115.8 (3)
C2—C3—Cl1126.0 (3)C10—C11—Br1119.1 (3)
C1—C4—C5117.1 (5)C12—C11—Br1118.2 (3)
C1—C4—H4A108.0C13—C12—C11119.5 (3)
C5—C4—H4A108.0C13—C12—H12120.2
C1—C4—H4B108.0C11—C12—H12120.2
C5—C4—H4B108.0C12—C13—O2125.7 (3)
H4A—C4—H4B107.3C12—C13—C14120.1 (3)
C6—C5—C4114.9 (6)O2—C13—C14114.3 (3)
C6—C5—H5A108.5O3—C14—C15125.9 (3)
C4—C5—H5A108.5O3—C14—C13115.3 (3)
C6—C5—H5B108.5C15—C14—C13118.8 (3)
C4—C5—H5B108.5C14—C15—C10121.7 (3)
H5A—C5—H5B107.5C14—C15—H15119.2
C7—C6—C5115.7 (8)C10—C15—H15119.2
C7—C6—H6A108.4O2—C16—H16A109.5
C5—C6—H6A108.4O2—C16—H16B109.5
C7—C6—H6B108.4H16A—C16—H16B109.5
C5—C6—H6B108.4O2—C16—H16C109.5
H6A—C6—H6B107.4H16A—C16—H16C109.5
C6—C7—H7A109.5H16B—C16—H16C109.5
C6—C7—H7B109.5O3—C17—H17A109.5
H7A—C7—H7B109.5O3—C17—H17B109.5
C6—C7—H7C109.5H17A—C17—H17B109.5
H7A—C7—H7C109.5O3—C17—H17C109.5
H7B—C7—H7C109.5H17A—C17—H17C109.5
O1—C8—C2126.7 (5)H17B—C17—H17C109.5
C3—N1—C1—N20.1 (5)N2—C9—C10—C1515.7 (5)
C3—N1—C1—C4176.6 (5)C15—C10—C11—C122.4 (5)
C2—N2—C1—N10.6 (5)C9—C10—C11—C12177.8 (4)
C9—N2—C1—N1178.1 (3)C15—C10—C11—Br2176.4 (7)
C2—N2—C1—C4176.3 (4)C9—C10—C11—Br23.8 (8)
C9—N2—C1—C41.2 (7)C15—C10—C11—Br1174.3 (3)
C1—N2—C2—C30.8 (4)C9—C10—C11—Br15.5 (5)
C9—N2—C2—C3178.2 (3)C10—C11—C12—C131.0 (6)
C1—N2—C2—C8174.9 (4)Br2—C11—C12—C13175.3 (7)
C9—N2—C2—C82.5 (6)Br1—C11—C12—C13175.7 (4)
C1—N1—C3—C20.4 (5)C11—C12—C13—O2178.3 (4)
C1—N1—C3—Cl1176.3 (3)C11—C12—C13—C141.2 (6)
N2—C2—C3—N10.8 (4)C16—O2—C13—C124.8 (6)
C8—C2—C3—N1174.8 (4)C16—O2—C13—C14174.7 (4)
N2—C2—C3—Cl1176.4 (3)C17—O3—C14—C153.4 (6)
C8—C2—C3—Cl10.8 (7)C17—O3—C14—C13177.5 (4)
N1—C1—C4—C515.6 (10)C12—C13—C14—O3178.9 (4)
N2—C1—C4—C5160.8 (6)O2—C13—C14—O31.5 (5)
C1—C4—C5—C6176.9 (7)C12—C13—C14—C151.9 (6)
C4—C5—C6—C797.6 (10)O2—C13—C14—C15177.7 (3)
C3—C2—C8—O1169.7 (5)O3—C14—C15—C10179.5 (3)
N2—C2—C8—O14.9 (8)C13—C14—C15—C100.4 (5)
C1—N2—C9—C10105.2 (4)C11—C10—C15—C141.6 (5)
C2—N2—C9—C1077.8 (5)C9—C10—C15—C14178.6 (3)
N2—C9—C10—C11164.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.992.512.996 (6)110
C15—H15···Cg10.953.003.602 (3)122
C16—H16A···O1i0.982.593.142 (6)115
Symmetry code: (i) x, y, z.
(II) 2-butyl-4-chloro-1-(6-methyl-1,3-benzodioxol-5-ylmethyl)-1H-imidazole- 5-carboxaldehyde top
Crystal data top
C17H19ClN2O3F(000) = 704
Mr = 334.79Dx = 1.330 Mg m3
Monoclinic, P21/nMelting point: 385 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.4899 (5) ÅCell parameters from 1237 reflections
b = 9.4887 (3) Åθ = 5.5–23.6°
c = 14.1018 (5) ŵ = 0.25 mm1
β = 94.319 (1)°T = 130 K
V = 1666.5 (1) Å3Block, colorless
Z = 40.11 × 0.10 × 0.08 mm
Data collection top
Siemens SMART CCD area-detector
diffractometer
2401 independent reflections
Radiation source: fine-focus sealed tube2090 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
w scansθmax = 23.3°, θmin = 2.1°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 1313
Tmin = 0.934, Tmax = 0.982k = 105
6694 measured reflectionsl = 1515
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0354P)2 + 0.5705P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2401 reflectionsΔρmax = 0.18 e Å3
211 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0166 (15)
Crystal data top
C17H19ClN2O3V = 1666.5 (1) Å3
Mr = 334.79Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.4899 (5) ŵ = 0.25 mm1
b = 9.4887 (3) ÅT = 130 K
c = 14.1018 (5) Å0.11 × 0.10 × 0.08 mm
β = 94.319 (1)°
Data collection top
Siemens SMART CCD area-detector
diffractometer
2401 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2090 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.982Rint = 0.058
6694 measured reflectionsθmax = 23.3°
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.09Δρmax = 0.18 e Å3
2401 reflectionsΔρmin = 0.17 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = −0.54059(0.00123) m2 = 0.79593(0.00041) m3 = −0.27248(0.00265) D = −3.23610(0.00638) Atom d s d/s (d/s)**2 C1 * 0.0322 0.0021 15.651 244.954 C4 * −0.0150 0.0024 − 6.165 38.008 C5 * −0.0683 0.0023 − 29.333 860.435 C6 * 0.0215 0.0030 7.270 52.850 C7 * 0.0549 0.0033 16.648 277.157 N1 0.1098 0.0018 61.659 3801.892 N2 0.0328 0.0016 20.331 413.332 ============ Sum((d/s)**2) for starred atoms 1473.404 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity

Plane 2 m1 = −0.53197(0.00048) m2 = 0.77864(0.00033) m3 = −0.33274(0.00024) D = −3.48495(0.00474) Atom d s d/s (d/s)**2 Cl1 * −0.0036 0.0006 − 5.619 31.570 N1 * −0.0004 0.0018 − 0.228 0.052 N2 * 0.0103 0.0016 6.383 40.748 C1 * 0.0027 0.0021 1.320 1.742 C2 * 0.0175 0.0020 8.793 77.316 C3 * 0.0037 0.0021 1.782 3.176 C8 * 0.0436 0.0023 18.790 353.058 C9 * −0.0646 0.0021 − 30.113 906.819 C4 * 0.0289 0.0024 11.928 142.274 O1 0.0848 0.0018 47.741 2279.189 C10 1.2843 0.0019 660.899 436787.625 ============ Sum((d/s)**2) for starred atoms 1556.755 Chi-squared at 95% for 6 degrees of freedom: 12.60 The group of atoms deviates significantly from planarity

Plane 3 m1 = −0.51060(0.00042) m2 = −0.67604(0.00026) m3 = −0.53128(0.00048) D = −8.24660(0.00269) Atom d s d/s (d/s)**2 O2 * −0.0044 0.0018 − 2.422 5.867 O3 * −0.0131 0.0018 − 7.174 51.461 C9 * 0.0363 0.0021 17.180 295.166 C10 * −0.0158 0.0019 − 8.258 68.194 C11 * −0.0099 0.0021 − 4.813 23.166 C12 * −0.0076 0.0023 − 3.301 10.898 C13 * 0.0043 0.0022 1.970 3.881 C14 * −0.0058 0.0021 − 2.741 7.514 C15 * −0.0182 0.0021 − 8.793 77.314 C16 * 0.0074 0.0026 2.805 7.866 C17 * 0.0727 0.0029 25.239 636.991 N2 − 0.1525 0.0016 − 95.360 9093.444 ============ Sum((d/s)**2) for starred atoms 1188.319 Chi-squared at 95% for 8 degrees of freedom: 15.50 The group of atoms deviates significantly from planarity

Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 3.63 (0.15) 176.37 (0.15) 1 3 83.26 (0.10) 96.74 (0.10) 2 3 85.53 (0.03) 94.47 (0.03)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57999 (5)0.38185 (7)0.59703 (4)0.0745 (3)
O10.82630 (14)0.50150 (19)0.39261 (12)0.0766 (5)
O20.58305 (17)0.71783 (18)0.01039 (12)0.0800 (5)
O30.47714 (15)0.68771 (19)0.11624 (13)0.0814 (5)
N10.52146 (14)0.24137 (19)0.43849 (12)0.0552 (5)
N20.64549 (13)0.29981 (17)0.34053 (11)0.0474 (4)
C10.55578 (16)0.2244 (2)0.35181 (14)0.0496 (5)
C20.67150 (16)0.3713 (2)0.42515 (14)0.0482 (5)
C30.59277 (17)0.3303 (2)0.48201 (14)0.0509 (5)
C40.49993 (19)0.1356 (3)0.27625 (16)0.0626 (6)
H4A0.55160.06650.25360.075*
H4B0.47570.19650.22180.075*
C50.40416 (18)0.0573 (2)0.30956 (16)0.0604 (6)
H5A0.42940.01060.35960.072*
H5B0.35610.12550.33830.072*
C60.3411 (2)0.0211 (3)0.2308 (2)0.0849 (8)
H6A0.38810.09330.20480.102*
H6B0.32000.04590.17890.102*
C70.2414 (3)0.0924 (3)0.2619 (2)0.1031 (11)
H7A0.20440.14080.20740.155*
H7B0.19350.02160.28640.155*
H7C0.26160.16120.31190.155*
C80.75959 (19)0.4656 (2)0.44581 (17)0.0605 (6)
H80.76650.50420.50810.073*
C90.70788 (17)0.2990 (2)0.25658 (14)0.0538 (5)
H9A0.69830.20670.22440.065*
H9B0.78490.30900.27760.065*
C100.67716 (15)0.4144 (2)0.18554 (13)0.0449 (5)
C110.74152 (17)0.4317 (2)0.10945 (14)0.0514 (5)
C120.7141 (2)0.5334 (2)0.04015 (15)0.0611 (6)
H120.75740.54740.01160.073*
C130.6244 (2)0.6119 (2)0.04838 (14)0.0569 (6)
C140.56169 (17)0.5946 (2)0.12356 (15)0.0540 (5)
C150.58636 (17)0.4971 (2)0.19294 (14)0.0511 (5)
H150.54270.48600.24480.061*
C160.8396 (2)0.3412 (3)0.10041 (19)0.0737 (7)
H16A0.87660.37170.04510.111*
H16B0.81780.24250.09230.111*
H16C0.88820.35070.15800.111*
C170.4865 (2)0.7597 (3)0.0286 (2)0.0811 (8)
H17A0.42420.73690.01640.097*
H17B0.48720.86280.03950.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0843 (5)0.0918 (5)0.0485 (4)0.0050 (3)0.0125 (3)0.0107 (3)
O10.0709 (11)0.0800 (12)0.0793 (11)0.0178 (9)0.0085 (9)0.0166 (9)
O20.1118 (15)0.0665 (11)0.0610 (10)0.0006 (10)0.0024 (10)0.0165 (8)
O30.0869 (12)0.0754 (12)0.0820 (12)0.0272 (10)0.0086 (9)0.0176 (10)
N10.0558 (11)0.0634 (11)0.0479 (10)0.0041 (9)0.0131 (8)0.0008 (9)
N20.0493 (10)0.0494 (10)0.0445 (9)0.0045 (8)0.0097 (7)0.0043 (8)
C10.0523 (12)0.0499 (12)0.0472 (11)0.0019 (10)0.0079 (9)0.0022 (9)
C20.0505 (12)0.0463 (11)0.0474 (11)0.0029 (9)0.0025 (9)0.0043 (9)
C30.0548 (12)0.0535 (12)0.0447 (11)0.0026 (10)0.0064 (9)0.0011 (10)
C40.0680 (15)0.0664 (15)0.0538 (13)0.0022 (12)0.0084 (11)0.0055 (11)
C50.0617 (14)0.0581 (13)0.0606 (13)0.0003 (11)0.0003 (11)0.0026 (11)
C60.093 (2)0.0785 (18)0.0804 (17)0.0088 (16)0.0093 (15)0.0160 (15)
C70.104 (2)0.088 (2)0.112 (2)0.0362 (19)0.0307 (19)0.0138 (18)
C80.0674 (14)0.0551 (13)0.0584 (13)0.0006 (12)0.0000 (11)0.0102 (11)
C90.0549 (12)0.0564 (13)0.0520 (12)0.0084 (10)0.0169 (9)0.0046 (10)
C100.0468 (11)0.0466 (11)0.0420 (10)0.0034 (9)0.0081 (8)0.0046 (9)
C110.0542 (12)0.0514 (12)0.0500 (11)0.0073 (10)0.0138 (9)0.0087 (10)
C120.0785 (16)0.0585 (14)0.0489 (12)0.0126 (13)0.0229 (11)0.0024 (11)
C130.0790 (16)0.0478 (12)0.0433 (11)0.0118 (12)0.0002 (10)0.0004 (10)
C140.0598 (13)0.0484 (12)0.0532 (12)0.0018 (11)0.0009 (10)0.0015 (10)
C150.0540 (12)0.0541 (12)0.0466 (11)0.0015 (10)0.0139 (9)0.0007 (10)
C160.0693 (16)0.0729 (16)0.0840 (17)0.0001 (13)0.0389 (13)0.0079 (14)
C170.0868 (19)0.0673 (16)0.0851 (18)0.0060 (15)0.0211 (15)0.0197 (14)
Geometric parameters (Å, º) top
Cl1—C31.713 (2)C6—H6B0.9900
O1—C81.211 (3)C7—H7A0.9800
O2—C131.378 (3)C7—H7B0.9800
O2—C171.419 (3)C7—H7C0.9800
O3—C141.375 (3)C8—H80.9500
O3—C171.425 (3)C9—C101.514 (3)
N1—C11.335 (3)C9—H9A0.9900
N1—C31.341 (3)C9—H9B0.9900
N2—C11.349 (3)C10—C151.389 (3)
N2—C21.390 (3)C10—C111.398 (3)
N2—C91.466 (2)C11—C121.398 (3)
C1—C41.490 (3)C11—C161.510 (3)
C2—C31.371 (3)C12—C131.357 (3)
C2—C81.431 (3)C12—H120.9500
C4—C51.513 (3)C13—C141.375 (3)
C4—H4A0.9900C14—C151.365 (3)
C4—H4B0.9900C15—H150.9500
C5—C61.509 (3)C16—H16A0.9800
C5—H5A0.9900C16—H16B0.9800
C5—H5B0.9900C16—H16C0.9800
C6—C71.511 (4)C17—H17A0.9900
C6—H6A0.9900C17—H17B0.9900
C13—O2—C17105.22 (18)O1—C8—C2127.2 (2)
C14—O3—C17105.11 (19)O1—C8—H8116.4
C1—N1—C3104.29 (17)C2—C8—H8116.4
C1—N2—C2107.47 (16)N2—C9—C10114.03 (16)
C1—N2—C9126.12 (17)N2—C9—H9A108.7
C2—N2—C9126.29 (17)C10—C9—H9A108.7
N1—C1—N2111.76 (18)N2—C9—H9B108.7
N1—C1—C4123.90 (19)C10—C9—H9B108.7
N2—C1—C4124.33 (18)H9A—C9—H9B107.6
C3—C2—N2103.42 (17)C15—C10—C11120.75 (19)
C3—C2—C8129.2 (2)C15—C10—C9121.75 (17)
N2—C2—C8127.33 (19)C11—C10—C9117.45 (18)
N1—C3—C2113.06 (18)C12—C11—C10119.5 (2)
N1—C3—Cl1120.45 (15)C12—C11—C16119.44 (19)
C2—C3—Cl1126.49 (17)C10—C11—C16121.0 (2)
C1—C4—C5113.21 (18)C13—C12—C11118.6 (2)
C1—C4—H4A108.9C13—C12—H12120.7
C5—C4—H4A108.9C11—C12—H12120.7
C1—C4—H4B108.9C12—C13—C14121.5 (2)
C5—C4—H4B108.9C12—C13—O2128.5 (2)
H4A—C4—H4B107.7C14—C13—O2110.0 (2)
C6—C5—C4113.3 (2)C15—C14—C13121.5 (2)
C6—C5—H5A108.9C15—C14—O3128.3 (2)
C4—C5—H5A108.9C13—C14—O3110.15 (19)
C6—C5—H5B108.9C14—C15—C10118.05 (19)
C4—C5—H5B108.9C14—C15—H15121.0
H5A—C5—H5B107.7C10—C15—H15121.0
C5—C6—C7113.8 (2)C11—C16—H16A109.5
C5—C6—H6A108.8C11—C16—H16B109.5
C7—C6—H6A108.8H16A—C16—H16B109.5
C5—C6—H6B108.8C11—C16—H16C109.5
C7—C6—H6B108.8H16A—C16—H16C109.5
H6A—C6—H6B107.7H16B—C16—H16C109.5
C6—C7—H7A109.5O2—C17—O3109.2 (2)
C6—C7—H7B109.5O2—C17—H17A109.8
H7A—C7—H7B109.5O3—C17—H17A109.8
C6—C7—H7C109.5O2—C17—H17B109.8
H7A—C7—H7C109.5O3—C17—H17B109.8
H7B—C7—H7C109.5H17A—C17—H17B108.3
C3—N1—C1—N20.1 (2)N2—C9—C10—C1510.1 (3)
C3—N1—C1—C4178.7 (2)N2—C9—C10—C11172.30 (18)
C2—N2—C1—N10.2 (2)C15—C10—C11—C120.1 (3)
C9—N2—C1—N1176.13 (18)C9—C10—C11—C12177.67 (19)
C2—N2—C1—C4178.3 (2)C15—C10—C11—C16179.3 (2)
C9—N2—C1—C45.3 (3)C9—C10—C11—C161.7 (3)
C1—N2—C2—C30.4 (2)C10—C11—C12—C130.7 (3)
C9—N2—C2—C3175.92 (18)C16—C11—C12—C13178.7 (2)
C1—N2—C2—C8179.2 (2)C11—C12—C13—C141.0 (3)
C9—N2—C2—C84.5 (3)C11—C12—C13—O2179.3 (2)
C1—N1—C3—C20.4 (2)C17—O2—C13—C12177.6 (2)
C1—N1—C3—Cl1179.79 (15)C17—O2—C13—C143.9 (2)
N2—C2—C3—N10.5 (2)C12—C13—C14—C150.5 (3)
C8—C2—C3—N1179.1 (2)O2—C13—C14—C15179.11 (19)
N2—C2—C3—Cl1179.67 (15)C12—C13—C14—O3178.99 (19)
C8—C2—C3—Cl10.8 (3)O2—C13—C14—O30.4 (3)
N1—C1—C4—C54.2 (3)C17—O3—C14—C15177.3 (2)
N2—C1—C4—C5177.37 (19)C17—O3—C14—C133.3 (3)
C1—C4—C5—C6174.3 (2)C13—C14—C15—C100.2 (3)
C4—C5—C6—C7176.4 (2)O3—C14—C15—C10179.6 (2)
C3—C2—C8—O1178.2 (2)C11—C10—C15—C140.4 (3)
N2—C2—C8—O11.2 (4)C9—C10—C15—C14177.10 (19)
C1—N2—C9—C1093.9 (2)C13—O2—C17—O36.0 (3)
C2—N2—C9—C1090.4 (2)C14—O3—C17—O25.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.992.473.022 (3)115
C9—H9A···O1i0.992.573.528 (3)167
C15—H15···Cg10.952.973.585 (2)124
C17—H17A···Cg2ii0.992.893.654 (3)135
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H20BrClN2O3C17H19ClN2O3
Mr415.72334.79
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)193130
a, b, c (Å)8.547 (2), 10.308 (2), 10.611 (2)12.4899 (5), 9.4887 (3), 14.1018 (5)
α, β, γ (°)91.654 (4), 100.667 (4), 93.623 (3)90, 94.319 (1), 90
V3)916.2 (4)1666.5 (1)
Z24
Radiation typeMo KαMo Kα
µ (mm1)2.410.25
Crystal size (mm)0.14 × 0.10 × 0.100.11 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Siemens SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.73, 0.790.934, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7830, 4087, 2655 6694, 2401, 2090
Rint0.0300.058
θmax (°)28.023.3
(sin θ/λ)max1)0.6610.556
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.170, 1.04 0.039, 0.106, 1.09
No. of reflections40872401
No. of parameters231211
No. of restraints10
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.88, 0.660.18, 0.17

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 2001), SAINT-Plus, SHELXS86 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2003), WinGX (Farrugia, 1999) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.992.512.996 (6)110
C15—H15···Cg10.953.003.602 (3)122
C16—H16A···O1i0.982.593.142 (6)115
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O10.992.473.022 (3)115
C9—H9A···O1i0.992.573.528 (3)167
C15—H15···Cg10.952.973.585 (2)124
C17—H17A···Cg2ii0.992.893.654 (3)135
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds