Download citation
Download citation
link to html
In the title complex, [Mn(C5H4NO)2(C5H5NO)2]n or [Mn(μ-3-PyO)2(3-PyOH)2]n (3-PyO is the pyridin-3-olate anion and 3-PyOH is pyridin-3-ol), the MnII atom lies on an inversion centre and has octahedral geometry, defined by two N atoms and two deprotonated exocyclic O atoms of symmetry-related pyridin-3-olate ligands [Mn—N = 2.3559 (14) Å and Mn—O = 2.1703 (11) Å], as well as two N atoms of terminal 3-PyOH ligands [Mn—N = 2.3482 (13) Å]. The MnII atoms are bridged by the deprotonated pyridin-3-olate anion into a layer structure, generating sheets in the (\overline 101) plane. These sheets are linked by O—H...O hydrogen bonds. There are also π–π and C—H...π interactions in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105001101/fg1807sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105001101/fg1807Isup2.hkl
Contains datablock I

CCDC reference: 268082

Comment top

Molecular self-assembly of coordination architecture has been a rapidly developing research area within supramolecular chemistry in recent years (Liu et al., 2003). The choice of ligand is an important factor, since it greatly influences the structure of the coordination architecture and the functionality of the complex formed. Bifunctional hydroxypyridine (PyOH) molecules, including 2-OH, 3-OH and 4-OH, are good candidates for the construction of supramolecular systems, which are not only capable of binding to metal centres, but can also form regular hydrogen bonds by functioning as both a hydrogen donor and an acceptor (Breeze & Wang, 1993). Among the isomers of PyOH molecules, 2- or 4-PyOH exhibit tautomerization to their pyridone isomers, viz. 2- or 4-pyridone (Yang & Craven, 1998; Wheeler & Ammon, 1974; Trikoupis et al., 2002). For example, 4-PyOH would be expected to coordinate, if at all, through the pyridone O atom, which has only weak donor properties because the N atom is protonated (Gao et al., 2004; Lu et al.,2004), whereas 3-PyOH does not have the corresponding tautomeric form, `3-pyridone', and so is a true hydroxypyridine (Flakus et al., 2003). Therefore, 3-PyOH is able to construct high-dimensional coordination polymers, in contrast with 2- or 4-PyOH. To date, only two such extended structures of CuII coordination polymers by means of covalent bonds have been reported, namely [Cu(3-pyO-N,O)2(3-pyOH)(H2O)]n (chain; Castillo et al., 2000) and [Cu(3-PyOH)2(O2CCF3)2]n (layer; Kawata et al., 1997). As a contribution to this study, we report here the structure of the title novel two-dimensional manganese(II) coordination polymer, (I), [Mn(µ-3-PyO-N,O)2(3-PyOH)2]n.

As shown in Fig. 1, the asymmetric unit of (I) is composed of one MnII atom, one neutral 3-PyOH molecule and one deprotonated pyridin-3-onate anion. The MnII atom lies on an inversion centre [chosen for convenience to be at (1/2,1/2,1/2)] and is six-coordinated by two N atoms and two deprotonated exocyclic O atoms of symmetry-related pyridin-3-onate ligands, as well as by two N atoms of the terminal 3-PyOH molecules. The Mn1—N1 bond is slightly shorter than the Mn1—N2i(3-PyO) bond (Table 1) and the Mn1—O2ii bond is shorter than the Mn—N bonds.

Compound (I) has a two-dimensional layer structure (Figs. 2a and 2 b) with sheets in the (101) plane; the shortest Mn···Mn separation is 7.4156 (15) Å [e.g. between Mn1 at (1/2,1/2,1/2) and (0,0,0)]. In contrast, in the reported one-dimensional copper(II) polymer [Cu(3-pyO-N,O)2(3-pyOH)(H2O)]n (Castillo et al., 2000), the CuII atoms are bridged by the deprotonated pyridin-3-onate anion, to produce a one-dimensional chain with a Cu···Cu separation of 7.03 Å, while in the reported two-dimensional copper(II) polymer [Cu(3-PyOH)2(O2CCF3)2]n (Kawata et al., 1997), the Cu centres are linked by neutral 3-hydroxypyridine ligands, with a shortest Cu···Cu separation of 7.23 Å.

The sheets of (I) are linked by O—H···O hydrogen bonds (Table 2) between the neutral 3-py—OH hydroxy group (O1—H1) and a screw-axis related deprotonated phenolate atom O2. In addition to these strong hydrogen bonds, there are also ππ interactions between the neutral and symmetry-related deprotonated 3-PyOH ligands. The centroid···centroid separation between the N1–C5 ring at (x,y,z) and the N2–C10 ring at (1 − x, 1 − y, 1 − z) is 3.631 Å, with an interplanar angle of 19.25°. There is also a C—H···π interaction, C5—H5···Cg2 (Table 2), where Cg2 is the centroid of the N2—C10 ring at (x − 1/2, 1/2 − y, z − 1/2).

Experimental top

Complex (I) was synthesized by the addition of manganese diacetate tetrahydrate (10 mmol) to an aqueous solution of 3-hydroxypyridine (20 mmol). The solution was allowed to evaporate at room temperature, and yellow crystals were obtained after several days. Analysis calculated for C20H18N4O4Mn: C 55.44, H 4.19, N 12.93%; found: C 55.47, H 4.25, N 12.95%.

Refinement top

H atoms attached to C atoms were placed in calculated positions [C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] using the riding-model approximation. The hydroxy atom H1 was located in a difference map and refined with an O—H distance restraint of 0.85 (1) Å and with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) x − 1/2, 1/2 − y, z − 1/2; (iii) 3/2 − x, y + 1/2, 3/2 − z; (iv) 3/2 − x, y − 1/2, 3/2 − z. Code (iv) not visible.]
[Figure 2] Fig. 2. (a) A view of the two-dimensional framework of (I) in the (101) plane. The terminal 3-PyOH ligands and H atoms have been omitted for clarity. Atoms marked with an asterisk (*), hash (#) or dollar ($) symbol are at the symmetry positions (1 − x, 1 − y, 1 − z), (3/2 − x, 1/2 + y, 3/2 − z) and (x − 1/2, 1/2 − y, z − 1/2), respectively. (b) An edge-on view of the two-dimensional sheet structure of (I), with the terminal 3-PyOH ligands included and showing the directions of the hydrogen bonds. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
Poly[[bis(pyridin-3-ol)manganese(II)]-di-µ-pyridin-3-olato] top
Crystal data top
[Mn(C5H4NO)2(C5H5NO)2]F(000) = 446
Mr = 433.32Dx = 1.639 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 7874 reflections
a = 9.4512 (19) Åθ = 3.0–27.5°
b = 10.583 (2) ŵ = 0.79 mm1
c = 9.5998 (19) ÅT = 296 K
β = 113.90 (3)°Prism, yellow
V = 877.9 (4) Å30.36 × 0.24 × 0.18 mm
Z = 2
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2012 independent reflections
Radiation source: fine-focus sealed tube1870 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = 1212
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1313
Tmin = 0.764, Tmax = 0.871l = 1212
8483 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.2628P]
where P = (Fo2 + 2Fc2)/3
2012 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.43 e Å3
1 restraintΔρmin = 0.25 e Å3
Crystal data top
[Mn(C5H4NO)2(C5H5NO)2]V = 877.9 (4) Å3
Mr = 433.32Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.4512 (19) ŵ = 0.79 mm1
b = 10.583 (2) ÅT = 296 K
c = 9.5998 (19) Å0.36 × 0.24 × 0.18 mm
β = 113.90 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2012 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1870 reflections with I > 2σ(I)
Tmin = 0.764, Tmax = 0.871Rint = 0.019
8483 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0291 restraint
wR(F2) = 0.095H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
2012 reflectionsΔρmin = 0.25 e Å3
136 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.01678 (13)
O10.85038 (13)0.72041 (12)0.21408 (13)0.0306 (3)
H110.860 (3)0.757 (2)0.140 (2)0.046*
O20.62536 (12)0.32396 (9)0.52332 (11)0.0210 (2)
N10.55242 (15)0.55947 (12)0.29002 (14)0.0233 (3)
N20.76736 (14)0.09055 (11)0.82708 (14)0.0215 (3)
C10.68904 (18)0.60598 (15)0.30248 (17)0.0246 (3)
H10.77570.59090.39210.030*
C20.70793 (17)0.67588 (14)0.18786 (16)0.0226 (3)
C30.57901 (18)0.69633 (15)0.05301 (17)0.0268 (3)
H30.58680.74280.02580.032*
C40.43910 (19)0.64611 (16)0.03874 (18)0.0286 (3)
H40.35140.65720.05100.034*
C50.42991 (18)0.57945 (15)0.15803 (18)0.0262 (3)
H50.33450.54680.14660.031*
C60.76141 (16)0.18774 (13)0.73456 (16)0.0206 (3)
H60.85290.23070.75180.025*
C70.62522 (16)0.22854 (13)0.61321 (15)0.0187 (3)
C80.49016 (17)0.16188 (14)0.59220 (17)0.0257 (3)
H80.39670.18430.51370.031*
C90.49555 (18)0.06302 (15)0.6878 (2)0.0292 (3)
H90.40570.01910.67450.035*
C100.63513 (19)0.02940 (15)0.80342 (18)0.0243 (3)
H100.63750.03770.86680.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.01824 (19)0.01568 (19)0.01650 (19)0.00002 (9)0.00712 (13)0.00035 (9)
O10.0262 (6)0.0430 (7)0.0232 (5)0.0072 (5)0.0108 (4)0.0029 (5)
O20.0244 (5)0.0189 (5)0.0208 (5)0.0027 (4)0.0102 (4)0.0025 (4)
N10.0276 (6)0.0226 (6)0.0226 (6)0.0012 (5)0.0131 (5)0.0020 (5)
N20.0217 (6)0.0219 (6)0.0198 (5)0.0025 (5)0.0074 (5)0.0009 (5)
C10.0251 (7)0.0286 (7)0.0206 (7)0.0025 (6)0.0096 (6)0.0035 (6)
C20.0244 (7)0.0235 (7)0.0223 (7)0.0003 (5)0.0119 (6)0.0020 (5)
C30.0304 (8)0.0303 (8)0.0218 (7)0.0003 (6)0.0129 (6)0.0059 (6)
C40.0257 (7)0.0348 (8)0.0231 (7)0.0014 (6)0.0077 (6)0.0049 (6)
C50.0251 (7)0.0272 (7)0.0278 (7)0.0012 (6)0.0124 (6)0.0023 (6)
C60.0189 (6)0.0209 (7)0.0212 (6)0.0003 (5)0.0073 (5)0.0007 (5)
C70.0213 (6)0.0169 (6)0.0184 (6)0.0015 (5)0.0084 (5)0.0023 (5)
C80.0198 (7)0.0263 (7)0.0259 (7)0.0002 (6)0.0040 (6)0.0028 (6)
C90.0223 (7)0.0275 (8)0.0353 (8)0.0040 (6)0.0091 (7)0.0035 (6)
C100.0271 (8)0.0211 (6)0.0257 (8)0.0009 (6)0.0116 (6)0.0045 (6)
Geometric parameters (Å, º) top
Mn1—N12.3482 (13)C1—H10.9300
Mn1—N2i2.3559 (14)C2—C31.389 (2)
Mn1—O2ii2.1703 (11)C3—C41.379 (2)
O1—C21.3503 (18)C3—H30.9300
O2—C71.3287 (17)C4—C51.377 (2)
Mn1—N1ii2.3483 (13)C4—H40.9300
Mn1—N2iii2.3559 (14)C5—H50.9300
Mn1—O22.1703 (11)C6—C71.409 (2)
N1—C11.341 (2)C6—H60.9300
N1—C51.342 (2)C7—C81.400 (2)
N2—C101.342 (2)C8—C91.379 (2)
N2—C61.3452 (19)C8—H80.9300
N2—Mn1iv2.3559 (14)C9—C101.383 (2)
O1—H110.85 (3)C9—H90.9300
C1—C21.396 (2)C10—H100.9300
N1ii—Mn1—N1180.0C2—O1—H11116.3 (17)
N1ii—Mn1—N2i88.02 (5)C7—O2—Mn1125.12 (9)
N1—Mn1—N2i91.98 (5)C1—N1—C5117.22 (12)
N2iii—Mn1—N2i180.0C1—N1—Mn1123.52 (10)
O2ii—Mn1—O2180.0C2—C1—H1118.3
O2ii—Mn1—N1ii91.28 (4)C2—C3—H3120.8
O2—Mn1—N1ii88.72 (4)C3—C2—C1118.23 (14)
O2ii—Mn1—N2iii87.82 (4)C3—C4—H4120.1
O2—Mn1—N2iii92.18 (4)C4—C3—C2118.44 (14)
N1ii—Mn1—N2iii91.98 (5)C4—C3—H3120.8
N1—Mn1—N2iii88.02 (5)C4—C5—H5118.5
N1—C1—C2123.37 (14)C5—N1—Mn1116.82 (10)
N1—C1—H1118.3C5—C4—C3119.71 (15)
N1—C5—C4123.00 (14)C5—C4—H4120.1
N1—C5—H5118.5C6—N2—Mn1iv123.62 (10)
N2—C6—C7124.06 (13)C7—C6—H6118.0
N2—C6—H6118.0C7—C8—H8120.0
N2—C10—C9122.11 (14)C8—C7—C6116.04 (13)
N2—C10—H10118.9C8—C9—C10119.70 (14)
O1—C2—C3123.46 (13)C8—C9—H9120.2
O1—C2—C1118.31 (13)C9—C8—C7120.06 (14)
O2ii—Mn1—N188.72 (4)C9—C8—H8120.0
O2—Mn1—N191.28 (4)C9—C10—H10118.9
O2ii—Mn1—N2i92.18 (4)C10—N2—C6118.02 (13)
O2—Mn1—N2i87.82 (4)C10—N2—Mn1iv117.53 (10)
O2—C7—C6121.93 (13)C10—C9—H9120.2
O2—C7—C8122.03 (13)
Mn1—N1—C1—C2159.86 (11)N2i—Mn1—N1—C5151.96 (11)
Mn1—N1—C5—C4161.93 (13)N2—C6—C7—O2178.98 (12)
Mn1iv—N2—C6—C7168.59 (10)N2—C6—C7—C80.5 (2)
Mn1iv—N2—C10—C9169.66 (12)O1—C2—C3—C4179.92 (15)
Mn1—O2—C7—C862.97 (16)O2ii—Mn1—N1—C559.82 (11)
Mn1—O2—C7—C6117.61 (13)O2—Mn1—N1—C5120.18 (11)
N1ii—Mn1—O2—C710.35 (11)O2—C7—C8—C9179.65 (14)
N1—Mn1—O2—C7169.65 (11)C1—N1—C5—C41.0 (2)
N1—C1—C2—O1178.60 (14)C1—C2—C3—C40.3 (2)
N1—C1—C2—C31.2 (2)C2—C3—C4—C51.1 (2)
N2iii—Mn1—O2—C781.58 (11)C3—C4—C5—N10.4 (2)
N2i—Mn1—O2—C798.42 (11)C5—N1—C1—C21.8 (2)
O2ii—Mn1—N1—C1101.92 (12)C6—N2—C10—C90.3 (2)
O2—Mn1—N1—C178.08 (12)C6—C7—C8—C90.2 (2)
N2iii—Mn1—N1—C1170.22 (12)C7—C8—C9—C100.6 (2)
N2i—Mn1—N1—C19.78 (12)C8—C9—C10—N20.3 (3)
N2iii—Mn1—N1—C528.04 (11)C10—N2—C6—C70.7 (2)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O2v0.85 (3)1.78 (3)2.621 (3)176 (2)
C5—H5···Cg2iii0.932.913.773 (2)155
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (v) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Mn(C5H4NO)2(C5H5NO)2]
Mr433.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)9.4512 (19), 10.583 (2), 9.5998 (19)
β (°) 113.90 (3)
V3)877.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.79
Crystal size (mm)0.36 × 0.24 × 0.18
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.764, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
8483, 2012, 1870
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.095, 1.04
No. of reflections2012
No. of parameters136
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.25

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Mn1—N12.3482 (13)Mn1—O2ii2.1703 (11)
Mn1—N2i2.3559 (14)
N1—Mn1—N2i91.98 (5)O2—Mn1—N2iii92.18 (4)
O2—Mn1—N1ii88.72 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O2iv0.85 (3)1.78 (3)2.621 (3)176 (2)
C5—H5···Cg2iii0.932.913.773 (2)155
Symmetry codes: (iii) x1/2, y+1/2, z1/2; (iv) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds