Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [μ-2,2′-(1,4-butane­diyl)di-1H-benzimidazole-κ2N3:N3′]bis{[2,2′-(1,4-butane­diyl)di-1H-benzimidazole-κ2N3,N3′](nitrato-κO)cobalt(II)} dinitrate ethanol disolvate, [Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6O, was obtained from self-assembly of cobalt(II) nitrate with 2,2′-(1,4-butane­diyl)dibenzimidazole (L). The complex molecule lies about an inversion centre and the flexible L ligands act in both bridging and chelating modes to form a dinuclear complex with unanticipated nine-membered chelate rings. The unique uncoordinated nitrate anion is linked to the cation by pairs of N—H...O hydrogen bonds, which determine the overall cation conformation. Cation–anion sets are then linked by a further N—H...O hydrogen bond to generate a chain along [010]. Chains are linked by C—H...O hydrogen bonds to form sheets in the (100) plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105000478/fg1805sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105000478/fg1805Isup2.hkl
Contains datablock I

CCDC reference: 252238

Comment top

The role of coordination bonds in crystal engineering is currently of great interest because of their use in constructing novel compounds with special properties, such as electrical conductivity, magnetism, host–guest chemistry and catalysis (Fujita et al., 1994; Inoue et al., 1996). So far, much of the work has been focused on coordination compounds with rigid ligands, such as 4,4'-bipyridine and pyrazine (Carlucci et al., 1994; Robinson & Zaworotko, 1995; Gable et al., 1990). We are interested in utilizing substituted benzimidazole or imidazole ligands to construct new coordination compounds (Yang et al., 2003). Our previous investigation of cobalt(II) complexes with the flexible ligand 1,1'-(1,4-butanediyl)bis(benzimidazole) (L') gave one- and two-dimensional coordination polymers (Ma et al., 2000). In the present work, the assembly of 2,2'-(1,4-butanediyl)bis(benzimidazole) (L) with cobalt(II) nitrate resulted in a dinuclear complex, [Co2L3(NO3)2]2+·2NO3·2C2H5OH, (I). The structure of the free ligand L has been reported (Chen et al., 2002) and that of a Cu complex, catena2-[1,4-bis(2-benzimidazolyl)butane]bis(azido-N)copper(II)] is known (van Albada et al., 2000); in both cases, the ligand L lies about an inversion centre.

The [Co2L3(NO3)2]2+ cation in complex (I) (Fig. 1) lies about an inversion centre (chosen for convenience to be (1/2,1/2, 1/2)]. The unique cobalt(II) ion is in a distorted tetrahedral coordination environment, with three N atoms from two L ligands and one O atom from a nitrate anion (see Table 1 for selected geometric parameters). The L ligands in (I) display two different coordination modes; one L ligand lies about an inversion centre and bridges two cobalt(II) atoms, while the other L ligand chelates the cobalt(II) atom, leading to a complex with two unanticipated nine-membered chelate rings. The Co—N distances (Table 1) are shorter than those found in other related cobalt(II) complexes (2.132 and 2.159 Å; Ma et al., 2000). The distance between Co1 and Co1i [symmetry code: (i) 1 − x, 1 − y, 1 − z] is 10.420 (2) Å. We have previously reported two related complexes, [CoL2'(H2O)2]2+·2NO3·8H2O with a (4,4)-network and [CoL'(H2O)2(CH3CO2)2]·H2O with an infinite chain structure, where L' is 1,1'-(1,4-butanediyl)bis(benzimidazole) (Ma et al., 2000).

The uncoordinated nitrate moiety plays the role of counter-anion and determines the cation complex conformation by acting as an acceptor for pairs of N—H···O hydrogen bonds (Table 2) from N1—H1 and N11i—H11i. The unique ethanol molecule is also linked to the counter-anion by an O—H···O hydrogen bond (Table 2). In the crystal structure, the {[Co2L3(NO3)2]2+·2NO3·2C2H5OH} units are linked to form chains in the [010] direction by an N—H···O hydrogen bond involving the N21/H21 group and the adjacent ethanol O atom (see Table 2). Chains are linked to form sheets in the (100) plane by C—H···O hydrogen bonds (Table 2) between aromatic atoms C16 and H16 and nitro atom O3 of a symmetry-related cation (Fig. 2)

Experimental top

Ligand L was synthesized according to the method reported by Berends & Stephan (1984). A mixture of Co(NO3)2.6H2O (0.291 g, 1 mmol) and L (0.435 g, 1.5 mmol) in ethanol (20 ml) was refluxed for 30 min, and a purple solution was obtained. Purple crystals were obtained after leaving the solution to stand at room temperature for several days. The same product, (I), was isolated using different cobalt(II)/L molar ratios of 1:1, 1:1.5 and 1:2; this result may be caused by the low solubility of complex (I). Yield 64% based on Co. Analysis calcualted for C58H66Co2N16O14: C 52.41, H 5.00, N 16.86%; found: C 52.35, H 4.92, N 16.41%. IR (cm−1, KBr): 3436 (s), 3121 (w), 2943 (w), 2340 (w), 1641 (w), 1529 (m), 1458 (s), 1382 (vs), 1240 (w), 1103(s), 1038 (w), 948 (w), 837 (w), 757 (w), 622 (m).

Refinement top

All H atoms were visible in difference maps and were allowed for in the refinement as riding atoms, with C—H distances of 0.95–0.99 Å, N—H distances of 0.88 Å and an O—H distance of 0.84 Å, and with Uiso(H) values of 1.2–1.5 times Ueq(C, N,O).

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the structure of (I), with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. [Symmetry code: (i) 1 − x, 1 − y, 1 − z.]
[Figure 2] Fig. 2. A stereoview of part of the hydrogen-bonded (100) sheet of (I).
[µ-2,2'-(1,4-butanediyl)bis(1H-benzimidazole)-κ2N3:N3']bis{[2,2'- (1,4-butanediyl)bis(1H-benzimidazole)-κ2N3,N3'](nitrato-κO)cobalt(II)} dinitrate ethanol disolvate top
Crystal data top
[Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6OZ = 1
Mr = 1329.13F(000) = 692
Triclinic, P1Dx = 1.427 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7260 (17) ÅCell parameters from 7174 reflections
b = 11.295 (2) Åθ = 2.3–27.5°
c = 16.284 (3) ŵ = 0.61 mm1
α = 90.16 (3)°T = 193 K
β = 96.76 (3)°Block, purple
γ = 103.85 (3)°0.51 × 0.44 × 0.23 mm
V = 1546.6 (5) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6778 independent reflections
Radiation source: rotating anode4638 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(Higashi, 1995)
h = 011
Tmin = 0.725, Tmax = 0.867k = 1413
13292 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0475P)2]
where P = (Fo2 + 2Fc2)/3
6778 reflections(Δ/σ)max < 0.001
408 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6Oγ = 103.85 (3)°
Mr = 1329.13V = 1546.6 (5) Å3
Triclinic, P1Z = 1
a = 8.7260 (17) ÅMo Kα radiation
b = 11.295 (2) ŵ = 0.61 mm1
c = 16.284 (3) ÅT = 193 K
α = 90.16 (3)°0.51 × 0.44 × 0.23 mm
β = 96.76 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
6778 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
4638 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.867Rint = 0.032
13292 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 0.91Δρmax = 0.50 e Å3
6778 reflectionsΔρmin = 0.38 e Å3
408 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.38487 (3)0.20527 (3)0.241430 (17)0.02794 (9)
O10.55379 (17)0.21259 (14)0.16743 (9)0.0407 (4)
O20.62483 (19)0.38065 (15)0.23991 (10)0.0475 (4)
O30.7784 (2)0.33985 (19)0.15424 (11)0.0661 (6)
N10.66240 (19)0.22300 (15)0.46911 (10)0.0279 (4)
H10.72300.26380.51200.033*
N30.48729 (19)0.18275 (15)0.35654 (10)0.0260 (4)
N40.6567 (2)0.31293 (19)0.18709 (11)0.0392 (5)
N110.1090 (2)0.46147 (17)0.24837 (11)0.0363 (4)
H110.04760.49900.27230.044*
N130.26112 (19)0.33477 (15)0.23022 (10)0.0300 (4)
N210.0036 (2)0.09084 (16)0.18100 (11)0.0375 (4)
H210.09330.13810.19320.045*
N230.22122 (19)0.05359 (16)0.19455 (10)0.0310 (4)
C20.5671 (2)0.26780 (18)0.41333 (11)0.0251 (4)
C3A0.5389 (2)0.07649 (18)0.37810 (12)0.0271 (4)
C40.4998 (3)0.0395 (2)0.33952 (14)0.0372 (5)
H40.42330.05920.29190.045*
C50.5775 (3)0.1240 (2)0.37380 (15)0.0422 (6)
H50.55260.20380.34930.051*
C60.6905 (3)0.0964 (2)0.44278 (15)0.0418 (6)
H60.74310.15680.46340.050*
C70.7281 (3)0.0167 (2)0.48204 (14)0.0357 (5)
H7A0.80390.03560.53000.043*
C7A0.6495 (2)0.10213 (18)0.44798 (12)0.0271 (4)
C80.5572 (2)0.39773 (18)0.41748 (12)0.0279 (4)
H8A0.47940.41150.37140.033*
H8B0.66210.45100.40980.033*
C90.5077 (2)0.43462 (18)0.49955 (12)0.0285 (5)
H9A0.40460.37960.50850.034*
H9B0.58780.42460.54570.034*
C120.1723 (2)0.37263 (19)0.28129 (13)0.0306 (5)
C13A0.2509 (2)0.40393 (19)0.15928 (12)0.0299 (5)
C140.3181 (3)0.4019 (2)0.08585 (13)0.0350 (5)
H140.38290.34750.07710.042*
C150.2861 (3)0.4825 (2)0.02645 (14)0.0424 (6)
H150.32930.48310.02450.051*
C160.1923 (3)0.5628 (2)0.03924 (15)0.0500 (6)
H160.17450.61750.00300.060*
C170.1244 (3)0.5655 (2)0.11095 (15)0.0471 (6)
H170.05940.61990.11920.057*
C17A0.1560 (3)0.4841 (2)0.17074 (13)0.0350 (5)
C180.1380 (2)0.3197 (2)0.36263 (13)0.0344 (5)
H18A0.14660.38680.40350.041*
H18B0.21880.27440.38210.041*
C190.0282 (3)0.2333 (2)0.35838 (14)0.0393 (5)
H19A0.04140.19670.41300.047*
H19B0.10910.28130.34670.047*
C220.0928 (2)0.00061 (19)0.22955 (13)0.0331 (5)
C23A0.2040 (2)0.00653 (19)0.11675 (12)0.0303 (5)
C240.3010 (3)0.0122 (2)0.05355 (13)0.0382 (5)
H240.39860.07260.05870.046*
C250.2479 (3)0.0618 (2)0.01738 (14)0.0436 (6)
H250.31130.05230.06160.052*
C260.1040 (3)0.1498 (2)0.02532 (15)0.0471 (6)
H260.07130.19760.07520.057*
C270.0087 (3)0.1693 (2)0.03654 (15)0.0427 (6)
H270.08940.22930.03090.051*
C27A0.0629 (3)0.0966 (2)0.10836 (13)0.0349 (5)
C280.0505 (3)0.0420 (2)0.30816 (13)0.0379 (5)
H28A0.14880.08340.34380.046*
H28B0.00420.02920.33780.046*
C290.0586 (3)0.1307 (2)0.29234 (14)0.0384 (5)
H29A0.04370.16750.23790.046*
H29B0.17070.08380.28970.046*
O71.2465 (2)0.27097 (18)0.77199 (14)0.0697 (6)
H71.21610.32550.74420.105*
C311.3980 (3)0.3190 (3)0.81330 (17)0.0602 (8)
H31A1.39840.39170.84750.072*
H31B1.47530.34370.77290.072*
C321.4426 (4)0.2229 (3)0.8669 (2)0.0830 (10)
H32A1.54940.25440.89630.124*
H32B1.44150.15130.83250.124*
H32C1.36620.19980.90700.124*
O41.08359 (19)0.41372 (17)0.66994 (11)0.0530 (5)
O50.8646 (2)0.37899 (19)0.58905 (13)0.0783 (7)
O61.0218 (3)0.2621 (2)0.58139 (14)0.0945 (8)
N50.9904 (3)0.3510 (2)0.61269 (12)0.0487 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03030 (16)0.02959 (17)0.02396 (15)0.00660 (12)0.00482 (11)0.00539 (11)
O10.0386 (9)0.0460 (10)0.0353 (9)0.0028 (8)0.0111 (7)0.0107 (7)
O20.0565 (11)0.0439 (10)0.0404 (10)0.0054 (8)0.0127 (8)0.0096 (8)
O30.0430 (10)0.0944 (16)0.0539 (12)0.0058 (10)0.0239 (9)0.0079 (11)
N10.0305 (9)0.0313 (10)0.0220 (9)0.0082 (8)0.0026 (7)0.0061 (7)
N30.0310 (9)0.0241 (9)0.0241 (9)0.0079 (7)0.0058 (7)0.0040 (7)
N40.0350 (11)0.0541 (13)0.0273 (10)0.0061 (9)0.0087 (8)0.0015 (9)
N110.0359 (10)0.0390 (11)0.0373 (11)0.0147 (9)0.0068 (8)0.0053 (8)
N130.0340 (10)0.0298 (10)0.0258 (9)0.0063 (8)0.0051 (8)0.0048 (8)
N210.0336 (10)0.0345 (11)0.0398 (11)0.0004 (8)0.0023 (8)0.0045 (9)
N230.0320 (10)0.0325 (10)0.0272 (9)0.0059 (8)0.0029 (8)0.0059 (8)
C20.0283 (10)0.0266 (11)0.0220 (10)0.0073 (8)0.0084 (8)0.0028 (8)
C3A0.0305 (11)0.0271 (11)0.0263 (10)0.0089 (9)0.0106 (9)0.0019 (8)
C40.0438 (13)0.0312 (13)0.0370 (13)0.0093 (10)0.0064 (10)0.0076 (10)
C50.0559 (15)0.0271 (13)0.0483 (15)0.0134 (11)0.0183 (12)0.0026 (11)
C60.0500 (15)0.0362 (14)0.0482 (15)0.0222 (11)0.0182 (12)0.0115 (11)
C70.0373 (13)0.0409 (14)0.0337 (12)0.0158 (10)0.0103 (10)0.0065 (10)
C7A0.0285 (11)0.0285 (12)0.0275 (11)0.0094 (9)0.0113 (9)0.0006 (9)
C80.0328 (11)0.0258 (11)0.0258 (10)0.0082 (9)0.0045 (9)0.0058 (8)
C90.0329 (11)0.0285 (11)0.0247 (10)0.0089 (9)0.0024 (9)0.0067 (9)
C120.0276 (11)0.0323 (12)0.0309 (11)0.0058 (9)0.0027 (9)0.0069 (9)
C13A0.0291 (11)0.0302 (12)0.0272 (11)0.0030 (9)0.0003 (9)0.0026 (9)
C140.0360 (12)0.0376 (13)0.0302 (12)0.0058 (10)0.0049 (10)0.0032 (10)
C150.0474 (14)0.0494 (16)0.0278 (12)0.0062 (12)0.0050 (10)0.0021 (11)
C160.0576 (16)0.0510 (16)0.0403 (14)0.0135 (13)0.0001 (12)0.0130 (12)
C170.0496 (15)0.0484 (16)0.0464 (15)0.0195 (12)0.0027 (12)0.0061 (12)
C17A0.0344 (12)0.0365 (13)0.0331 (12)0.0076 (10)0.0021 (10)0.0022 (10)
C180.0380 (12)0.0398 (13)0.0270 (11)0.0118 (10)0.0057 (9)0.0061 (10)
C190.0350 (12)0.0506 (15)0.0334 (12)0.0088 (11)0.0127 (10)0.0009 (11)
C220.0336 (12)0.0313 (12)0.0332 (12)0.0070 (9)0.0006 (10)0.0009 (10)
C23A0.0342 (12)0.0290 (12)0.0282 (11)0.0112 (9)0.0008 (9)0.0055 (9)
C240.0398 (13)0.0400 (14)0.0370 (13)0.0147 (10)0.0034 (10)0.0046 (10)
C250.0516 (15)0.0520 (16)0.0322 (12)0.0236 (12)0.0027 (11)0.0115 (11)
C260.0594 (16)0.0460 (15)0.0375 (14)0.0236 (13)0.0096 (12)0.0170 (11)
C270.0441 (14)0.0347 (14)0.0457 (14)0.0094 (11)0.0087 (11)0.0124 (11)
C27A0.0378 (12)0.0306 (12)0.0366 (12)0.0115 (10)0.0014 (10)0.0054 (10)
C280.0397 (13)0.0404 (14)0.0309 (12)0.0020 (10)0.0085 (10)0.0002 (10)
C290.0321 (12)0.0426 (14)0.0378 (13)0.0014 (10)0.0089 (10)0.0034 (10)
O70.0482 (11)0.0663 (14)0.0835 (15)0.0024 (10)0.0045 (10)0.0274 (12)
C310.0580 (17)0.0555 (18)0.0573 (18)0.0028 (14)0.0016 (14)0.0090 (14)
C320.069 (2)0.082 (2)0.085 (2)0.0071 (18)0.0194 (18)0.003 (2)
O40.0396 (9)0.0627 (12)0.0554 (11)0.0182 (8)0.0112 (8)0.0279 (9)
O50.0603 (13)0.0878 (16)0.0884 (15)0.0448 (12)0.0388 (12)0.0535 (12)
O60.1020 (17)0.0955 (17)0.0945 (17)0.0632 (15)0.0334 (14)0.0599 (14)
N50.0488 (13)0.0542 (14)0.0445 (12)0.0211 (11)0.0061 (10)0.0192 (10)
Geometric parameters (Å, º) top
Co1—O11.9980 (15)C14—C151.380 (3)
Co1—N132.0125 (17)C14—H140.95
Co1—N32.0233 (17)C15—C161.389 (3)
Co1—N232.0303 (18)C15—H150.95
O1—N41.279 (2)C16—C171.374 (3)
O2—N41.248 (2)C16—H160.95
O3—N41.219 (2)C17—C17A1.390 (3)
N1—C21.341 (2)C17—H170.95
N1—C7A1.382 (2)C18—C191.536 (3)
N1—H10.88C18—H18A0.99
N3—C21.336 (2)C18—H18B0.99
N3—C3A1.411 (2)C19—C291.532 (3)
N11—C121.341 (3)C19—H19A0.99
N11—C17A1.380 (3)C19—H19B0.99
N11—H110.88C22—C281.483 (3)
N13—C121.335 (2)C23A—C27A1.389 (3)
N13—C13A1.402 (3)C23A—C241.393 (3)
N21—C221.341 (3)C24—C251.390 (3)
N21—C27A1.385 (3)C24—H240.95
N21—H210.88C25—C261.394 (4)
N23—C221.334 (3)C25—H250.95
N23—C23A1.411 (2)C26—C271.366 (3)
C2—C81.492 (3)C26—H260.95
C3A—C7A1.384 (3)C27—C27A1.394 (3)
C3A—C41.399 (3)C27—H270.95
C4—C51.381 (3)C28—C291.542 (3)
C4—H40.95C28—H28A0.99
C5—C61.386 (3)C28—H28B0.99
C5—H50.95C29—H29A0.99
C6—C71.376 (3)C29—H29B0.99
C6—H60.95O7—C311.393 (3)
C7—C7A1.392 (3)O7—H70.84
C7—H7A0.95C31—C321.489 (4)
C8—C91.538 (3)C31—H31A0.99
C8—H8A0.99C31—H31B0.99
C8—H8B0.99C32—H32A0.98
C9—C9i1.515 (4)C32—H32B0.98
C9—H9A0.99C32—H32C0.98
C9—H9B0.99O4—N51.255 (2)
C12—C181.488 (3)O5—N51.233 (2)
C13A—C17A1.392 (3)O6—N51.227 (3)
C13A—C141.394 (3)
O1—Co1—N13117.59 (7)C16—C15—H15119.2
O1—Co1—N3105.64 (7)C17—C16—C15122.1 (2)
N13—Co1—N3116.37 (7)C17—C16—H16118.9
O1—Co1—N23100.93 (7)C15—C16—H16118.9
N13—Co1—N23102.62 (7)C16—C17—C17A116.3 (2)
N3—Co1—N23112.74 (7)C16—C17—H17121.9
N4—O1—Co1105.64 (12)C17A—C17—H17121.9
C2—N1—C7A108.62 (16)N11—C17A—C17132.2 (2)
C2—N1—H1125.7N11—C17A—C13A105.44 (19)
C7A—N1—H1125.7C17—C17A—C13A122.3 (2)
C2—N3—C3A105.18 (16)C12—C18—C19112.54 (18)
C2—N3—Co1128.76 (14)C12—C18—H18A109.1
C3A—N3—Co1122.18 (12)C19—C18—H18A109.1
O3—N4—O2122.7 (2)C12—C18—H18B109.1
O3—N4—O1120.49 (19)C19—C18—H18B109.1
O2—N4—O1116.82 (17)H18A—C18—H18B107.8
C12—N11—C17A108.60 (18)C29—C19—C18113.47 (18)
C12—N11—H11125.7C29—C19—H19A108.9
C17A—N11—H11125.7C18—C19—H19A108.9
C12—N13—C13A105.52 (17)C29—C19—H19B108.9
C12—N13—Co1131.42 (15)C18—C19—H19B108.9
C13A—N13—Co1123.04 (13)H19A—C19—H19B107.7
C22—N21—C27A108.06 (18)N23—C22—N21112.04 (19)
C22—N21—H21126.0N23—C22—C28124.43 (19)
C27A—N21—H21126.0N21—C22—C28123.2 (2)
C22—N23—C23A105.40 (17)C27A—C23A—C24120.65 (19)
C22—N23—Co1124.70 (14)C27A—C23A—N23108.54 (19)
C23A—N23—Co1129.39 (14)C24—C23A—N23130.8 (2)
N3—C2—N1111.61 (17)C25—C24—C23A116.7 (2)
N3—C2—C8126.53 (18)C25—C24—H24121.7
N1—C2—C8121.87 (17)C23A—C24—H24121.7
C7A—C3A—C4120.24 (19)C24—C25—C26121.8 (2)
C7A—C3A—N3109.01 (17)C24—C25—H25119.1
C4—C3A—N3130.71 (18)C26—C25—H25119.1
C5—C4—C3A117.0 (2)C27—C26—C25122.0 (2)
C5—C4—H4121.5C27—C26—H26119.0
C3A—C4—H4121.5C25—C26—H26119.0
C4—C5—C6122.2 (2)C26—C27—C27A116.5 (2)
C4—C5—H5118.9C26—C27—H27121.8
C6—C5—H5118.9C27A—C27—H27121.8
C7—C6—C5121.3 (2)N21—C27A—C23A105.96 (18)
C7—C6—H6119.3N21—C27A—C27131.5 (2)
C5—C6—H6119.3C23A—C27A—C27122.5 (2)
C6—C7—C7A116.7 (2)C22—C28—C29111.30 (18)
C6—C7—H7A121.7C22—C28—H28A109.4
C7A—C7—H7A121.7C29—C28—H28A109.4
N1—C7A—C3A105.56 (18)C22—C28—H28B109.4
N1—C7A—C7131.85 (19)C29—C28—H28B109.4
C3A—C7A—C7122.54 (19)H28A—C28—H28B108.0
C2—C8—C9113.38 (17)C19—C29—C28113.92 (18)
C2—C8—H8A108.9C19—C29—H29A108.8
C9—C8—H8A108.9C28—C29—H29A108.8
C2—C8—H8B108.9C19—C29—H29B108.8
C9—C8—H8B108.9C28—C29—H29B108.8
H8A—C8—H8B107.7H29A—C29—H29B107.7
C9i—C9—C8112.1 (2)C31—O7—H7109.5
C9i—C9—H9A109.2O7—C31—C32107.9 (2)
C8—C9—H9A109.2O7—C31—H31A110.1
C9i—C9—H9B109.2C32—C31—H31A110.1
C8—C9—H9B109.2O7—C31—H31B110.1
H9A—C9—H9B107.9C32—C31—H31B110.1
N13—C12—N11111.55 (19)H31A—C31—H31B108.4
N13—C12—C18125.29 (19)C31—C32—H32A109.5
N11—C12—C18123.06 (19)C31—C32—H32B109.5
C17A—C13A—C14120.6 (2)H32A—C32—H32B109.5
C17A—C13A—N13108.89 (18)C31—C32—H32C109.5
C14—C13A—N13130.5 (2)H32A—C32—H32C109.5
C15—C14—C13A117.0 (2)H32B—C32—H32C109.5
C15—C14—H14121.5O6—N5—O5120.2 (2)
C13A—C14—H14121.5O6—N5—O4121.0 (2)
C14—C15—C16121.7 (2)O5—N5—O4118.81 (19)
C14—C15—H15119.2
N13—Co1—O1—N463.25 (15)C13A—N13—C12—C18175.70 (19)
N3—Co1—O1—N468.56 (14)Co1—N13—C12—C182.7 (3)
N23—Co1—O1—N4173.86 (13)C17A—N11—C12—N130.6 (2)
O1—Co1—N3—C289.12 (17)C17A—N11—C12—C18176.08 (19)
N13—Co1—N3—C243.37 (18)C12—N13—C13A—C17A0.8 (2)
N23—Co1—N3—C2161.55 (16)Co1—N13—C13A—C17A179.41 (13)
O1—Co1—N3—C3A65.30 (16)C12—N13—C13A—C14179.1 (2)
N13—Co1—N3—C3A162.20 (14)Co1—N13—C13A—C140.6 (3)
N23—Co1—N3—C3A44.02 (16)C17A—C13A—C14—C150.1 (3)
Co1—O1—N4—O3176.75 (18)N13—C13A—C14—C15179.9 (2)
Co1—O1—N4—O24.1 (2)C13A—C14—C15—C160.5 (3)
O1—Co1—N13—C12161.34 (17)C14—C15—C16—C170.9 (4)
N3—Co1—N13—C1234.6 (2)C15—C16—C17—C17A0.7 (4)
N23—Co1—N13—C1289.01 (18)C12—N11—C17A—C17179.8 (2)
O1—Co1—N13—C13A20.50 (17)C12—N11—C17A—C13A0.0 (2)
N3—Co1—N13—C13A147.27 (14)C16—C17—C17A—N11179.8 (2)
N23—Co1—N13—C13A89.15 (16)C16—C17—C17A—C13A0.0 (3)
O1—Co1—N23—C22170.74 (17)C14—C13A—C17A—N11179.48 (18)
N13—Co1—N23—C2267.49 (18)N13—C13A—C17A—N110.5 (2)
N3—Co1—N23—C2258.48 (18)C14—C13A—C17A—C170.4 (3)
O1—Co1—N23—C23A18.60 (18)N13—C13A—C17A—C17179.6 (2)
N13—Co1—N23—C23A103.17 (17)N13—C12—C18—C19101.2 (2)
N3—Co1—N23—C23A130.86 (17)N11—C12—C18—C1975.0 (3)
C3A—N3—C2—N10.9 (2)C12—C18—C19—C2954.7 (3)
Co1—N3—C2—N1158.62 (13)C23A—N23—C22—N210.7 (2)
C3A—N3—C2—C8178.94 (18)Co1—N23—C22—N21173.21 (13)
Co1—N3—C2—C821.2 (3)C23A—N23—C22—C28172.60 (19)
C7A—N1—C2—N31.5 (2)Co1—N23—C22—C280.1 (3)
C7A—N1—C2—C8178.33 (17)C27A—N21—C22—N230.9 (2)
C2—N3—C3A—C7A0.1 (2)C27A—N21—C22—C28172.5 (2)
Co1—N3—C3A—C7A159.51 (13)C22—N23—C23A—C27A0.2 (2)
C2—N3—C3A—C4177.8 (2)Co1—N23—C23A—C27A172.27 (14)
Co1—N3—C3A—C418.2 (3)C22—N23—C23A—C24179.3 (2)
C7A—C3A—C4—C50.7 (3)Co1—N23—C23A—C247.3 (3)
N3—C3A—C4—C5176.7 (2)C27A—C23A—C24—C251.0 (3)
C3A—C4—C5—C60.6 (3)N23—C23A—C24—C25178.5 (2)
C4—C5—C6—C71.7 (4)C23A—C24—C25—C260.6 (3)
C5—C6—C7—C7A1.3 (3)C24—C25—C26—C271.0 (4)
C2—N1—C7A—C3A1.5 (2)C25—C26—C27—C27A0.1 (3)
C2—N1—C7A—C7176.0 (2)C22—N21—C27A—C23A0.7 (2)
C4—C3A—C7A—N1178.91 (18)C22—N21—C27A—C27176.8 (2)
N3—C3A—C7A—N10.9 (2)C24—C23A—C27A—N21179.90 (19)
C4—C3A—C7A—C71.1 (3)N23—C23A—C27A—N210.3 (2)
N3—C3A—C7A—C7176.84 (18)C24—C23A—C27A—C272.2 (3)
C6—C7—C7A—N1177.2 (2)N23—C23A—C27A—C27177.46 (19)
C6—C7—C7A—C3A0.1 (3)C26—C27—C27A—N21178.8 (2)
N3—C2—C8—C9122.4 (2)C26—C27—C27A—C23A1.7 (3)
N1—C2—C8—C957.8 (2)N23—C22—C28—C2991.5 (3)
C2—C8—C9—C9i177.7 (2)N21—C22—C28—C2981.0 (3)
C13A—N13—C12—N110.9 (2)C18—C19—C29—C2863.8 (3)
Co1—N13—C12—N11179.28 (13)C22—C28—C29—C19144.45 (19)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.881.912.777 (3)168
N11—H11···O4i0.881.992.869 (2)178
N21—H21···O7ii0.881.892.747 (3)163
O7—H7···O40.842.012.817 (3)162
C16—H16···O3iii0.952.573.358 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co2(NO3)2(C18H18N4)3](NO3)2·2C2H6O
Mr1329.13
Crystal system, space groupTriclinic, P1
Temperature (K)193
a, b, c (Å)8.7260 (17), 11.295 (2), 16.284 (3)
α, β, γ (°)90.16 (3), 96.76 (3), 103.85 (3)
V3)1546.6 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.61
Crystal size (mm)0.51 × 0.44 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.725, 0.867
No. of measured, independent and
observed [I > 2σ(I)] reflections
13292, 6778, 4638
Rint0.032
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.089, 0.91
No. of reflections6778
No. of parameters408
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.50, 0.38

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999), PLATON (Spek, 2003), SHELXL97.

Selected geometric parameters (Å, º) top
Co1—O11.9980 (15)Co1—N32.0233 (17)
Co1—N132.0125 (17)Co1—N232.0303 (18)
O1—Co1—N13117.59 (7)N13—Co1—N23102.62 (7)
O1—Co1—N3105.64 (7)N3—Co1—N23112.74 (7)
N13—Co1—N3116.37 (7)N4—O1—Co1105.64 (12)
O1—Co1—N23100.93 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.881.912.777 (3)168
N11—H11···O4i0.881.992.869 (2)178
N21—H21···O7ii0.881.892.747 (3)163
O7—H7···O40.842.012.817 (3)162
C16—H16···O3iii0.952.573.358 (3)140
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds