Download citation
Download citation
link to html
In the title complex, poly[copper(II)-di-μ-5-carboxy-1H-imidazole-4-carboxyl­ato], [Cu(C5H3N2O4)2]n or [Cu(H2Imda)2]n, each imidazole moiety is bonded to the Cu atom via O and N atoms to give a square-planar coordination [Cu—O = 2.014 (2) and 2.016 (2) Å, and Cu—N = 1.982 (3) and 1.992 (2) Å]. The distorted square-pyramidal geometry at the Cu atom results from coordination to an adjacent O atom [Cu—O = 2.305 (2) Å], which generates zigzag chains. There is a sixth, weaker, octahedral coordination to the Cu atom from an inversion-related O atom [Cu—O = 3.090 (2) Å], which links the chains into sheets in the (100) plane. Imidazole moieties in the sheets are linked in the [100] direction by pairs of N—H...O and C—H...O hydrogen bonds, thus generating a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104034158/fg1804sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104034158/fg1804Isup2.hkl
Contains datablock I

CCDC reference: 264789

Comment top

4,5-Imidazoledicarboxylic acid (H3Imda) can form three types of anions, namely Imda3−, HImda2− and H2Imda, while interacting with metal ions. In the crystal structure of a mixed-valence CoII,III complex, Na2[Co4(Imda)4(2,2'-bipy)4].12H2O (2,2'-bipy is 2,2'-bipyridine; Wang et al., 2004), the Imda3− trianion links adjacent Co atoms through both bidentate CO2 groups and an imidazole entity into a square plane, which is capped at each corner by 2,2'-bipy ligands; adjacent square planes are linked by water- and CO2-bound Na+ cations into a one-dimensional motif. The dinuclear mixed-valence MnIII,IV complex Mn2(dtbsalpn)2(Imda) {H2dtbsalpn is 1,3-tris[(3,5-di-tert-butylsalicylidene)amino]propane} follows a similar coordination pattern (Rajendiran et al., 2003). Recently, the crystal structures of M(H2Imda)2(H2O)2 (M = Co, Cu and Zn), in which the H2Imda monoanion coordinates to the metal ion via only one N atom and one O atom of the monodentate CO2 group, have been reported (Shimizu et al., 2004).

We have obtained metal-cluster complexes by using mixed N– and O-atom ligands under hydrothermal conditions (Yin et al., 2004). We employed the ligand H3Imda to react with CuII in the presence of NaOH in the hope of synthesizing a new metal-cluster complex, but this reaction resulted in the complex [Cu(H2Imda)2]n, (I), being obtained serendipitously.

The title complex is shown in Fig. 1, with selected geometric parameters listed in Table 1. Both H2Imda monoanions chelate the Cu atom in a syn mode, which does not resemble that found in M(H2Imda)2(H2O)2 (M = Co, Cu and Zn) complexes (Shimizu et al., 2004). In the asymmetric unit, the coordination geometry of the Cu atom may be described as slightly distorted square pyramidal, with two O atoms (O1 and O11) of monodentate CO2 groups and two N atoms (N3 and N13) of two H2Imda imidazole moieties in the basal plane, and an O atom (O4i) of a monodentate CO2 group of an adjacent H2Imda species occupying the apical position. There is a sixth, weaker, Cu1···O coordination to atom O1ii in the inversion-related complex at (1 − x, 1 − y, 1 − z). Such [4 + 1+1]-coordination is not uncommon; a search of the current (July 2004) release of the Cambridge Structural Database (Allen, 2002) for compounds with octahedral coordination at the Cu atom in compounds with a CuN2O4 moiety and the sixth Cu—O coordination in the ranges 2.6–2.8, 2.8–3.0, 3.0–3.2 and 3.2–3.4 Å yielded 51, 72, 62 and 61 hits, respectively. Atoms O1, O11, N3 and N13 form a plane with a mean deviation of 0.009 Å; atom Cu1 lies +0.1218 (13) Å from this plane and the remaining two atoms, O4B and O1C (see the Fig. 1 caption for symmetry codes), lie +2.419 (3) and −2.873 (4) Å, respectively, from the basal plane. The two carboxylic acid hydroxy groups form intramolecular O—H···O hydrogen bonds to adjacent carboxyl O atoms (Table 2).

One H2Imda monoanion (containing atoms N3, O1 and O4) uses both CO2 groups and an imidazole N atom to link to adjacent Cu atoms to form a zigzag chain via an n-glide operation, both CO2 groups being monodentate. Adjacent chains are then linked by inversion-related pairs of the weaker Cu···O1C and O1···CuC interactions [the suffix C corresponds to the symmetry operation (1 − x, 1 − y, 1 − z)] to generate a sheet in the (100) plane, as shown in Fig. 2. These sheets are linked by pairs of N—H···O and C—H···O hydrogen bonds (Table 2), which link the Cu(H2Imda)2 moieties into chains extending along [100] (Fig. 3). The combination of these hydrogen bonds and the Cu—O bonds shown in Fig. 2 then develops a three-dimensional network.

Experimental top

An aqueous solution (10 ml) of 4,5-imidazoledicarboxylic acid (0.078 g 0.5 mmol) was adjusted to a pH of 5 with 1 M NaOH solution at 333 K. The solution was then transferred to 25 ml Teflon-lined stainless vessel that contained Cu(NO3)2·3H2O (0.182 g 0.75 mmol). The vessel was sealed and heated to 413 K for 12 d, and then cooled at 5 K h−1 to 373 K. The vessel was kept at 373 K for 10 h before being cooled to room temperature. Blue long parallelepiped crystals were separated by hand (yield 13%).

Refinement top

All H atoms were found in difference maps and subsequently allowed for in the refinements as riding atoms [C—H = 0.93 Å, N—H = 0.86 Å, O—H = 0.82 Å and Uiso(H) = 1.2Ueq(parent atom)].

Computing details top

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. A segment of the structure of the title complex, with displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (A) −1/2 + x, 3/2 − y, −1/2 + z; (B) 1/2 + x, 3/2 − y, 1/2 + z; (C) 1 − x, 1 − y, 1 − z; (D) 3/2 − x, −1/2 + y, 3/2 − z; (E) 1/2 − x, −1/2 + y, 1/2 − z.]
[Figure 2] Fig. 2. A view of the two-dimensional network in the (100) plane. Atoms labeled with an asterisk (*) or a hash (#) are at symmetry positions (1 − x, 1 − y, 1 − z) and (−1/2 + x, 3/2 − y, −1/2 + z), respectively.
[Figure 3] Fig. 3. A view showing the chain of Cu(H2Imda)2 moieties along [100] linked by pairs of N—H···O and C—H···O hydrogen bonds. Atoms labeled with an asterisk (*) are at symmetry position (−1 + x, y, z).
poly[copper(II)-µ-5-carboxy-1H-imidazole-4-carboxylato], top
Crystal data top
[Cu(C10H6N4O8)]F(000) = 748
Mr = 373.73Dx = 1.972 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2318 reflections
a = 7.112 (1) Åθ = 3.2–28°
b = 14.676 (3) ŵ = 1.79 mm1
c = 12.145 (2) ÅT = 293 K
β = 96.65 (3)°Parallelepiped, blue
V = 1259.1 (4) Å30.30 × 0.10 × 0.06 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
3038 independent reflections
Radiation source: fine-focus sealed tube2318 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.00 pixels mm-1θmax = 28.0°, θmin = 3.2°
ω scansh = 09
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 019
Tmin = 0.807, Tmax = 0.898l = 1615
4554 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0536P)2 + 0.1086P]
where P = (Fo2 + 2Fc2)/3
3038 reflections(Δ/σ)max = 0.001
210 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Cu(C10H6N4O8)]V = 1259.1 (4) Å3
Mr = 373.73Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.112 (1) ŵ = 1.79 mm1
b = 14.676 (3) ÅT = 293 K
c = 12.145 (2) Å0.30 × 0.10 × 0.06 mm
β = 96.65 (3)°
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
3038 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2318 reflections with I > 2σ(I)
Tmin = 0.807, Tmax = 0.898Rint = 0.024
4554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
3038 reflectionsΔρmin = 0.38 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.38859 (5)0.57768 (3)0.61124 (3)0.02405 (12)
O10.5549 (3)0.61073 (16)0.49365 (17)0.0271 (5)
O20.5450 (3)0.69413 (16)0.33820 (17)0.0297 (5)
O30.2731 (3)0.77558 (18)0.20750 (19)0.0373 (6)
H30.35850.75330.25020.045*
O40.0463 (3)0.78344 (16)0.19586 (19)0.0364 (6)
N10.0564 (3)0.67896 (18)0.3874 (2)0.0271 (6)
H10.16910.69350.35950.033*
N30.1800 (3)0.62062 (19)0.4997 (2)0.0259 (5)
C20.0097 (4)0.6333 (2)0.4825 (2)0.0292 (7)
H20.09520.61340.52960.035*
C40.2560 (4)0.6611 (2)0.4129 (2)0.0222 (6)
C50.1096 (4)0.6985 (2)0.3421 (2)0.0233 (6)
C60.4674 (4)0.6563 (2)0.4138 (2)0.0233 (6)
C70.1067 (4)0.7553 (2)0.2418 (3)0.0298 (7)
O110.6017 (3)0.51959 (15)0.71053 (16)0.0275 (5)
O120.6598 (3)0.44032 (16)0.86885 (18)0.0322 (5)
O130.4420 (4)0.3655 (2)1.0074 (2)0.0453 (7)
H130.50630.38000.95830.054*
O140.1284 (4)0.3671 (2)1.0292 (2)0.0488 (7)
N110.0408 (4)0.47378 (19)0.8368 (2)0.0307 (6)
H110.05990.46080.86650.037*
N130.2295 (3)0.52994 (18)0.7218 (2)0.0257 (5)
C120.0488 (4)0.5242 (2)0.7457 (3)0.0320 (7)
H120.05480.55140.70480.038*
C140.3387 (4)0.4817 (2)0.8027 (2)0.0233 (6)
C150.2235 (4)0.4461 (2)0.8752 (2)0.0247 (6)
C160.5482 (4)0.4798 (2)0.7956 (2)0.0246 (6)
C170.2592 (5)0.3895 (3)0.9771 (3)0.0348 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01924 (17)0.0319 (2)0.02083 (18)0.00016 (16)0.00162 (12)0.00426 (16)
O10.0190 (9)0.0388 (12)0.0235 (10)0.0021 (9)0.0021 (8)0.0045 (9)
O20.0232 (10)0.0376 (12)0.0291 (11)0.0017 (9)0.0065 (9)0.0075 (10)
O30.0306 (11)0.0443 (15)0.0371 (12)0.0041 (11)0.0045 (10)0.0181 (11)
O40.0289 (11)0.0389 (14)0.0397 (13)0.0039 (10)0.0038 (10)0.0150 (11)
N10.0207 (11)0.0307 (14)0.0298 (13)0.0006 (10)0.0024 (10)0.0020 (11)
N30.0194 (11)0.0352 (15)0.0234 (12)0.0009 (11)0.0035 (9)0.0037 (11)
C20.0222 (14)0.0395 (18)0.0259 (15)0.0001 (13)0.0027 (12)0.0075 (14)
C40.0206 (13)0.0235 (15)0.0223 (13)0.0003 (11)0.0023 (10)0.0004 (12)
C50.0213 (13)0.0253 (15)0.0237 (13)0.0000 (11)0.0048 (11)0.0009 (12)
C60.0212 (13)0.0246 (15)0.0243 (13)0.0005 (12)0.0034 (11)0.0022 (12)
C70.0328 (16)0.0265 (16)0.0302 (15)0.0008 (13)0.0040 (13)0.0023 (13)
O110.0213 (10)0.0348 (12)0.0266 (10)0.0008 (9)0.0036 (8)0.0062 (9)
O120.0220 (10)0.0420 (14)0.0324 (11)0.0020 (10)0.0018 (8)0.0112 (10)
O130.0416 (14)0.0533 (17)0.0425 (14)0.0078 (12)0.0112 (11)0.0247 (13)
O140.0460 (15)0.0536 (17)0.0504 (15)0.0041 (13)0.0210 (12)0.0188 (14)
N110.0239 (12)0.0385 (16)0.0309 (13)0.0008 (11)0.0076 (10)0.0012 (12)
N130.0207 (12)0.0317 (15)0.0248 (12)0.0009 (10)0.0037 (9)0.0039 (11)
C120.0230 (14)0.0401 (19)0.0330 (16)0.0025 (14)0.0037 (12)0.0057 (15)
C140.0222 (13)0.0248 (15)0.0231 (13)0.0004 (12)0.0034 (11)0.0017 (12)
C150.0214 (13)0.0279 (16)0.0256 (14)0.0013 (12)0.0064 (11)0.0007 (12)
C160.0231 (14)0.0264 (16)0.0238 (14)0.0002 (12)0.0008 (11)0.0002 (13)
C170.0357 (17)0.0341 (17)0.0361 (17)0.0033 (15)0.0106 (14)0.0071 (15)
Geometric parameters (Å, º) top
Cu1—N131.982 (3)C4—C51.385 (4)
Cu1—N31.992 (2)C4—C61.505 (4)
Cu1—O112.014 (2)C5—C71.475 (4)
Cu1—O12.016 (2)O11—C161.283 (4)
Cu1—O4i2.305 (2)O12—C161.262 (3)
Cu1—O1ii3.090 (2)O13—C171.356 (4)
O1—C61.279 (4)O13—H130.82
O2—C61.254 (4)O14—C171.229 (4)
O3—C71.333 (4)N11—C121.338 (4)
O3—H30.82N11—C151.389 (4)
O4—C71.235 (4)N11—H110.86
O4—Cu1iii2.305 (2)N13—C121.352 (4)
N1—C21.343 (4)N13—C141.376 (4)
N1—C51.389 (4)C12—H120.93
N1—H10.86C14—C151.374 (4)
N3—C21.354 (4)C14—C161.502 (4)
N3—C41.374 (4)C15—C171.487 (4)
C2—H20.93
N13—Cu1—N397.68 (10)O2—C6—O1124.8 (3)
N13—Cu1—O1183.90 (9)O2—C6—C4119.9 (3)
N3—Cu1—O11172.26 (10)O1—C6—C4115.3 (2)
N13—Cu1—O1173.20 (10)O4—C7—O3123.5 (3)
N3—Cu1—O183.93 (9)O4—C7—C5119.3 (3)
O11—Cu1—O193.64 (8)O3—C7—C5117.2 (3)
N13—Cu1—O4i96.40 (10)C16—O11—Cu1113.71 (18)
N3—Cu1—O4i96.82 (10)C17—O13—H13109.5
O11—Cu1—O4i90.51 (9)C12—N11—C15108.2 (2)
O1—Cu1—O4i89.95 (9)C12—N11—H11125.9
O1ii—Cu1—O4i161.07 (9)C15—N11—H11125.9
C6—O1—Cu1112.91 (18)C12—N13—C14106.7 (2)
C7—O3—H3109.5C12—N13—Cu1143.0 (2)
C7—O4—Cu1iii128.2 (2)C14—N13—Cu1110.26 (18)
C2—N1—C5107.8 (2)N11—C12—N13110.2 (3)
C2—N1—H1126.1N11—C12—H12124.9
C5—N1—H1126.1N13—C12—H12124.9
C2—N3—C4107.2 (2)C15—C14—N13108.9 (2)
C2—N3—Cu1143.1 (2)C15—C14—C16134.4 (3)
C4—N3—Cu1109.27 (18)N13—C14—C16116.7 (2)
N1—C2—N3110.2 (3)C14—C15—N11106.1 (3)
N1—C2—H2124.9C14—C15—C17133.5 (3)
N3—C2—H2124.9N11—C15—C17120.4 (3)
N3—C4—C5108.3 (2)O12—C16—O11123.7 (3)
N3—C4—C6117.2 (2)O12—C16—C14121.0 (3)
C5—C4—C6134.6 (3)O11—C16—C14115.3 (2)
C4—C5—N1106.5 (2)O14—C17—O13123.4 (3)
C4—C5—C7132.5 (3)O14—C17—C15120.7 (3)
N1—C5—C7120.9 (3)O13—C17—C15115.9 (3)
N3—Cu1—O1—C611.1 (2)N1—C5—C7—O3176.0 (3)
O11—Cu1—O1—C6176.2 (2)N13—Cu1—O11—C160.0 (2)
O4i—Cu1—O1—C685.7 (2)O1—Cu1—O11—C16173.6 (2)
N13—Cu1—N3—C27.7 (4)O4i—Cu1—O11—C1696.4 (2)
O1—Cu1—N3—C2179.0 (4)N3—Cu1—N13—C126.2 (4)
O4i—Cu1—N3—C289.7 (4)O11—Cu1—N13—C12178.5 (4)
N13—Cu1—N3—C4177.9 (2)O4i—Cu1—N13—C1291.6 (4)
O1—Cu1—N3—C48.8 (2)N3—Cu1—N13—C14170.3 (2)
O4i—Cu1—N3—C480.4 (2)O11—Cu1—N13—C142.0 (2)
C5—N1—C2—N31.4 (4)O4i—Cu1—N13—C1491.9 (2)
C4—N3—C2—N11.0 (4)C15—N11—C12—N130.7 (4)
Cu1—N3—C2—N1171.2 (3)C14—N13—C12—N110.7 (4)
C2—N3—C4—C50.2 (3)Cu1—N13—C12—N11175.8 (3)
Cu1—N3—C4—C5174.0 (2)C12—N13—C14—C150.5 (4)
C2—N3—C4—C6179.8 (3)Cu1—N13—C14—C15177.3 (2)
Cu1—N3—C4—C65.9 (3)C12—N13—C14—C16178.6 (3)
N3—C4—C5—N10.6 (3)Cu1—N13—C14—C163.6 (3)
C6—C4—C5—N1179.5 (3)N13—C14—C15—N110.1 (3)
N3—C4—C5—C7174.6 (3)C16—C14—C15—N11178.8 (3)
C6—C4—C5—C75.3 (6)N13—C14—C15—C17179.7 (3)
C2—N1—C5—C41.2 (4)C16—C14—C15—C170.8 (6)
C2—N1—C5—C7174.7 (3)C12—N11—C15—C140.4 (4)
Cu1—O1—C6—O2170.8 (2)C12—N11—C15—C17179.3 (3)
Cu1—O1—C6—C410.6 (3)Cu1—O11—C16—O12179.1 (2)
N3—C4—C6—O2178.1 (3)Cu1—O11—C16—C141.9 (3)
C5—C4—C6—O21.8 (5)C15—C14—C16—O121.7 (6)
N3—C4—C6—O13.2 (4)N13—C14—C16—O12177.1 (3)
C5—C4—C6—O1176.9 (3)C15—C14—C16—O11177.4 (3)
Cu1iii—O4—C7—O334.9 (5)N13—C14—C16—O113.7 (4)
Cu1iii—O4—C7—C5143.2 (2)C14—C15—C17—O14179.0 (4)
C4—C5—C7—O4176.8 (3)N11—C15—C17—O140.6 (5)
N1—C5—C7—O42.2 (5)C14—C15—C17—O130.9 (6)
C4—C5—C7—O31.3 (5)N11—C15—C17—O13179.6 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+3/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.822.642 (3)175
O13—H13···O120.821.852.653 (3)165
N1—H1···O2iv0.862.022.837 (3)158
N11—H11···O12iv0.862.022.825 (3)156
C2—H2···O1iv0.932.483.133 (4)128
C12—H12···O11iv0.932.503.160 (4)129
Symmetry code: (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H6N4O8)]
Mr373.73
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)7.112 (1), 14.676 (3), 12.145 (2)
β (°) 96.65 (3)
V3)1259.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.79
Crystal size (mm)0.30 × 0.10 × 0.06
Data collection
DiffractometerRigaku R-AXIS RAPID imaging plate
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.807, 0.898
No. of measured, independent and
observed [I > 2σ(I)] reflections
4554, 3038, 2318
Rint0.024
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.03
No. of reflections3038
No. of parameters210
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.38

Computer programs: PROCESS-AUTO (Rigaku Corporation, 1998), PROCESS-AUTO, TEXSAN (Molecular Structure Corporation & Rigaku Corporation, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) in WinGX (Farrugia, 1999), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997).

Selected geometric parameters (Å, º) top
Cu1—N131.982 (3)Cu1—O12.016 (2)
Cu1—N31.992 (2)Cu1—O4i2.305 (2)
Cu1—O112.014 (2)Cu1—O1ii3.090 (2)
N13—Cu1—N397.68 (10)N3—Cu1—O183.93 (9)
N13—Cu1—O1183.90 (9)O11—Cu1—O193.64 (8)
N3—Cu1—O11172.26 (10)O1ii—Cu1—O4i161.07 (9)
N13—Cu1—O1173.20 (10)
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.821.822.642 (3)175
O13—H13···O120.821.852.653 (3)165
N1—H1···O2iii0.862.022.837 (3)158
N11—H11···O12iii0.862.022.825 (3)156
C2—H2···O1iii0.932.483.133 (4)128
C12—H12···O11iii0.932.503.160 (4)129
Symmetry code: (iii) x1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds