Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [UO2(C13H10O2)(C11H19N3)]·C3H6O, the U atom is in a pentagonal–bipyramidal environment, with the three N atoms of the 2,6-bis­[(di­methyl­amino)­methyl]­pyridine ligand and the two O atoms of the dianionic 2,2′-methyl­ene­diphenolate ligand in the equatorial plane. The geometry is compared with that of previously reported 1:2 uranyl–diphenoxide complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010402431X/fg1769sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010402431X/fg1769Isup2.hkl
Contains datablock I

CCDC reference: 256995

Comment top

Uranyl complexes with acyclic polyphenoxides are rather scarce (Thuéry & Nierlich, 1997; Thuéry et al., 2000 and 2002; Salmon et al., 2004), at least when compared with the numerous studies of uranyl complexes with cyclic poly(phenol/phenoxides) in the calixarene and homooxacalixarene families (Thuéry et al., 2001). Also, few uranium(IV) complexes with acyclic polyphenoxides have been decribed (Salmon et al., 2003). In the case of uranyl, in particular, the complex with the simple ligand 2,2'-bis(hydroxyphenyl)methane could not be obtained (Thuéry et al., 2000), although 1:2 complexes with related molecules possessing terminal hydroxymethyl or pyridiniomethyl groups have been characterized, in which the uranyl ion is surrounded by two diphenoxide species (Thuéry et al., 2002; Salmon et al., 2004). We have also shown that some triphenols complex the uranyl ion as diphenoxide ligands only, the third phenolic group being uncoordinated (Thuéry et al., 2000, 2002). In an attempt to synthesize uranyl complexes with mixed ligands, the title complex, (I), was obtained, in which the uranyl ion is bound both to the bis(2-oxidophenyl)methane bidentate chelating ligand and to the tridentate bis-orthochelating 2,6-bis[(dimethylamino)methyl]pyridine ligand. Several structures of complexes of the latter molecule with d-block transition metal atoms have been reported and are present in the Cambridge Structural Database (CSD, Version 5.25; Allen, 2002), but, to the best of our knowledge, (I) is the first complex of U with this ligand to be crystallographically characterized. \sch

Compound (I) crystallizes as an acetone solvate, with one complete molecule in the asymmetric unit. The uranyl ion is encompassed by the two chelating ligands, i.e. the tridentate neutral 2,6-bis[(dimethylamino)methyl]pyridine molecule and the bidentate dianionic bis(2-oxidophenyl)methane one, resulting in a neutral complex. The five donor atoms are located near the equatorial plane of the uranyl ion and define a mean plane with an r.m.s. deviation of 0.17 Å and individual deviations of −0.224 (3), 0.144 (2), −0.153 (3), 0.003 (3) and 0.230 (3) Å for atoms O1, O2, N1, N2 and N3, respectively. The U atom is located 0.0003 (19) Å from this plane and is thus in a slightly distorted pentagonal-bipyramidal environment, with O(oxo)-U-(O,N) angles in the range 81.11 (15)–97.17 (15)°. The U—N bond lengths are slightly larger for the side-arm tertiary amine groups, with a mean value of 2.647 (13) Å, than for the central pyridine N atom [2.613 (4) Å; an even more pronounced difference is observed in a RuII complex with the same ligand (Back et al., 2001)].

This trend is opposite to that found in the mono- and dinuclear uranyl complexes with pyridine-2,6-dicarboxylic acid, which we have described elsewhere (Masci & Thuéry, 2004). In these complexes, the U—N bond lengths range from 2.535 (5) to 2.626 (2) Å [mean value 2.56 (3) Å] and the UO(carboxylate) bond lengths range from 2.366 (4) to 2.4730 (19) Å [mean value 2.40 (3) Å], i.e. the N atom is further from U than the carboxylate O atoms, both distances being smaller than in (I). This is obviously due to the different geometries of the pyridine substituents, particularly apparent when the distance to the aromatic plane of the side-arm donor atoms are considered, since they amount to 0.751 (9) and −0.504 (9) Å for atoms N2 and N3, respectively, in (I), and to 0.23 Å at most for the O atoms in the dicarboxylate complexes. The mean plane of the pyridine ring (r.m.s. deviation 0.007 Å) makes a dihedral angle of 19.94 (12)° with the uranyl equatorial plane.

The mean value of the U—O(phenoxide) bond lengths in (I) is 2.208 (2) Å, in agreement with the lower values usually observed in polyphenoxide uranyl complexes (Thuéry et al., 2001) and particularly in the acyclic polyphenoxide complexes cited above. The mean values in the diphenoxide 1:2 complexes previously described are 2.25 (2) Å (Thuéry et al., 2002) and 2.256 (6) Å (Salmon et al., 2004), the difference being probably due to the replacement of one diphenoxide species by a neutral N-donor ligand in complex (I).

The angles around the U atom defined by adjacent donor atoms in the equatorial plane are not equivalent, with mean values of 63.2 (6) and 76.6 (12)° for N—U—N and O—U—N angles, respectively, the larger angle being that defined by the diphenoxide ligand, O1—U—O2 [82.12 (13)°]. This last value is, however, smaller than those in the 1:2 uranyl complexes with substituted diphenoxide ligands previously reported, which are in the range 86.7 (5)–89.9 (4)°, and the O1···O2 distance in (I) of 2.900 (5) Å is accordingly smaller than in the other cases. This difference is likely to be the result of the uranyl equatorial environment being more crowded in the pentagonal complex, (I), than in the square-planar 1:2 complexes.

The two aromatic rings of the diphenoxide ligand define a dihedral angle of 77.05 (18)°, which is in the usual range for uncomplexed diphenols in the `butterfly' conformation (Thuéry et al., 2000), whereas in the 1:2 uranyl complex with hydroxymethyl-substituted diphenols, the dihedral angles are in the range 71.4 (6)–79.6 (7)°. A smaller value of 69.66 (17)° has been found for the complex with pyridiniomethyl-substituted diphenoxide ligands (Salmon et al., 2004), this same ligand displaying dihedral angles of 76.3 (2) and 76.2 (4)° in its UIV complex (Salmon et al., 2003). The bulky and cationic pyridiniomethyl groups, as well as the intermolecular interactions observed in the uranyl complex, are likely to be the origin of this difference in geometry in the former case. The dihedral angles between the mean equatorial O2N3 plane of the uranyl ion and the two phenoxide aromatic rings are 30.91 (12) and 50.83 (14)°, i.e. in the range observed in the previous diphenoxide complexes [25.8 (2)–52.4 (5)°].

Experimental top

Uranyl nitrate hexahydrate (77 mg, 0.15 mmol) in MeOH (1 ml) was added dropwise to a boiling stirred mixture of 2,6-bis[(dimethylamino)methyl]pyridine (21 mg, 0.11 mmol), 2,2'-bis(hydroxyphenyl)methane (30 mg, 0.15 mmol) and triethylamine (250 mg, 2.5 mmol) in MeOH (11 ml). Stirring and heating of the resulting reddish solution were continued for an additional 5 min. The reddish crystals which formed on solvent evaporation were recovered and recrystallized from acetone to give red-orange single crystals of (I) suitable for X-ray crystallography.

Refinement top

The H atoms were introduced in calculated positions as riding atoms, with C—H distances of 0.93 (aromatic CH), 0.97 (CH2) and 0.96 Å (CH3), and with Uiso(H) = 1.2Ueq(C) for CH and CH2 and 1.5Ueq(C) for CH3.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL (Bruker, 1999), PLATON (Spek, 2003) and PARST97 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
{2,6-Bis[(dimethylamino)methyl]pyridine-κ3N}(2,2-methylenediphenolato- κ2O,O')dioxouranium(VI) acetone solvate top
Crystal data top
[U(C13H10O2)O2(C11H19N3)]·C3H6OF(000) = 1400
Mr = 719.61Dx = 1.773 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.5787 (6) ÅCell parameters from 18299 reflections
b = 11.7099 (3) Åθ = 2.2–25.7°
c = 16.7701 (8) ŵ = 6.06 mm1
β = 109.691 (2)°T = 100 K
V = 2695.50 (19) Å3Platelet, dark orange
Z = 40.15 × 0.10 × 0.04 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
5120 independent reflections
Radiation source: fine-focus sealed tube4149 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.068
ϕ scansθmax = 25.7°, θmin = 2.2°
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
h = 1717
Tmin = 0.463, Tmax = 0.770k = 1414
18299 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + 0.9093P]
where P = (Fo2 + 2Fc2)/3
5120 reflections(Δ/σ)max = 0.001
331 parametersΔρmax = 0.75 e Å3
0 restraintsΔρmin = 1.33 e Å3
Crystal data top
[U(C13H10O2)O2(C11H19N3)]·C3H6OV = 2695.50 (19) Å3
Mr = 719.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5787 (6) ŵ = 6.06 mm1
b = 11.7099 (3) ÅT = 100 K
c = 16.7701 (8) Å0.15 × 0.10 × 0.04 mm
β = 109.691 (2)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
5120 independent reflections
Absorption correction: part of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
4149 reflections with I > 2σ(I)
Tmin = 0.463, Tmax = 0.770Rint = 0.068
18299 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.03Δρmax = 0.75 e Å3
5120 reflectionsΔρmin = 1.33 e Å3
331 parameters
Special details top

Experimental. The unit-cell parameters have been determined from 10 frames, then refined on all data. The crystal-to-detector distance was fixed to 28 mm. One-half of the diffraction sphere was scanned (90 frames, ϕ scans, 2° by frame).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms were introduced at calculated positions and were treated as riding atoms with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
U0.220647 (14)0.077461 (15)0.273966 (12)0.01920 (7)
O10.3142 (3)0.1528 (3)0.2079 (2)0.0239 (8)
O20.2080 (3)0.0612 (3)0.1818 (2)0.0262 (8)
O30.1187 (3)0.1557 (3)0.2047 (2)0.0244 (8)
O40.3142 (3)0.0013 (3)0.3529 (2)0.0248 (8)
O50.2095 (4)0.0165 (4)0.5837 (3)0.0485 (12)
N10.1482 (3)0.1409 (3)0.3899 (3)0.0208 (9)
N20.0862 (3)0.0567 (4)0.3002 (3)0.0252 (10)
N30.3071 (3)0.2512 (4)0.3695 (3)0.0221 (10)
C10.4224 (4)0.2790 (5)0.1726 (3)0.0233 (11)
H10.39520.34080.19150.028*
C20.3872 (4)0.1691 (5)0.1767 (3)0.0213 (11)
C30.4298 (4)0.0760 (5)0.1485 (3)0.0227 (11)
C40.5038 (4)0.0975 (5)0.1166 (3)0.0266 (12)
H40.53120.03630.09720.032*
C50.5392 (4)0.2069 (5)0.1122 (3)0.0263 (12)
H50.58940.21870.09060.032*
C60.4980 (4)0.2971 (5)0.1405 (3)0.0257 (12)
H60.52080.37080.13830.031*
C70.3894 (4)0.0432 (4)0.1501 (3)0.0229 (12)
H7A0.43510.09880.14260.027*
H7B0.38280.05650.20500.027*
C80.2917 (4)0.0599 (4)0.0818 (3)0.0230 (11)
C90.2049 (4)0.0671 (4)0.1007 (3)0.0233 (11)
C100.1160 (4)0.0800 (4)0.0353 (3)0.0259 (12)
H100.05870.08320.04800.031*
C110.1118 (4)0.0882 (5)0.0479 (4)0.0301 (13)
H110.05210.09640.09100.036*
C120.1975 (5)0.0842 (5)0.0671 (3)0.0301 (13)
H120.19540.09060.12290.036*
C130.2858 (4)0.0706 (4)0.0024 (3)0.0264 (12)
H130.34280.06870.01570.032*
C140.0621 (4)0.1003 (4)0.3893 (3)0.0231 (11)
C150.0190 (4)0.1340 (4)0.4486 (3)0.0228 (12)
H150.04040.10370.44730.027*
C160.0674 (4)0.2139 (4)0.5093 (3)0.0258 (12)
H160.03990.23940.54860.031*
C170.1564 (4)0.2549 (5)0.5108 (3)0.0263 (12)
H170.19000.30790.55150.032*
C180.1955 (4)0.2164 (4)0.4509 (3)0.0212 (11)
C190.0130 (4)0.0166 (5)0.3194 (3)0.0242 (12)
H19A0.03160.03100.33650.029*
H19B0.02450.05810.26880.029*
C200.0333 (5)0.1314 (5)0.2274 (4)0.0327 (14)
H20A0.01580.17390.24080.049*
H20B0.07850.18320.21610.049*
H20C0.00320.08510.17820.049*
C210.1341 (4)0.1322 (5)0.3742 (4)0.0303 (13)
H21A0.08580.17910.38540.045*
H21B0.16610.08610.42310.045*
H21C0.18110.17990.36190.045*
C220.2965 (4)0.2471 (5)0.4545 (3)0.0260 (12)
H22A0.31350.32100.48150.031*
H22B0.34190.19130.48910.031*
C230.2633 (4)0.3567 (4)0.3252 (4)0.0274 (12)
H23A0.19750.36320.32480.041*
H23B0.26340.35430.26810.041*
H23C0.30040.42130.35400.041*
C240.4129 (4)0.2508 (5)0.3830 (3)0.0270 (12)
H24A0.44420.31040.42200.040*
H24B0.42290.26340.33000.040*
H24C0.44010.17830.40580.040*
C250.2689 (5)0.0850 (5)0.6254 (4)0.0392 (15)
C260.3591 (6)0.1139 (7)0.6048 (6)0.066 (2)
H26A0.35900.19390.59220.099*
H26B0.41570.09600.65250.099*
H26C0.35990.07020.55660.099*
C270.2549 (6)0.1450 (6)0.6983 (4)0.0487 (19)
H27A0.19650.11780.70630.073*
H27B0.30960.13050.74840.073*
H27C0.24940.22560.68730.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
U0.01978 (11)0.02027 (11)0.01832 (10)0.00058 (9)0.00745 (7)0.00040 (9)
O10.022 (2)0.026 (2)0.0249 (19)0.0021 (15)0.0100 (17)0.0007 (16)
O20.028 (2)0.027 (2)0.0253 (19)0.0062 (16)0.0115 (17)0.0052 (16)
O30.024 (2)0.0250 (19)0.0233 (19)0.0007 (16)0.0074 (17)0.0019 (16)
O40.026 (2)0.025 (2)0.0229 (19)0.0026 (16)0.0083 (17)0.0025 (16)
O50.038 (3)0.047 (3)0.062 (3)0.014 (2)0.018 (2)0.015 (2)
N10.026 (3)0.021 (2)0.015 (2)0.0031 (18)0.0069 (19)0.0003 (17)
N20.023 (3)0.028 (3)0.028 (2)0.0011 (19)0.013 (2)0.0010 (19)
N30.019 (2)0.027 (2)0.022 (2)0.0042 (19)0.0104 (19)0.0006 (19)
C10.029 (3)0.025 (3)0.020 (3)0.001 (2)0.013 (2)0.004 (2)
C20.019 (3)0.033 (3)0.012 (2)0.003 (2)0.005 (2)0.001 (2)
C30.022 (3)0.028 (3)0.018 (2)0.002 (2)0.005 (2)0.004 (2)
C40.022 (3)0.033 (3)0.024 (3)0.003 (2)0.006 (2)0.001 (2)
C50.017 (3)0.039 (3)0.024 (3)0.003 (2)0.006 (2)0.002 (2)
C60.024 (3)0.027 (3)0.023 (3)0.009 (2)0.004 (2)0.001 (2)
C70.021 (3)0.023 (3)0.027 (3)0.004 (2)0.012 (2)0.000 (2)
C80.029 (3)0.013 (2)0.028 (3)0.001 (2)0.010 (2)0.001 (2)
C90.027 (3)0.014 (2)0.028 (3)0.002 (2)0.010 (2)0.000 (2)
C100.026 (3)0.017 (3)0.035 (3)0.002 (2)0.011 (2)0.001 (2)
C110.031 (3)0.026 (3)0.030 (3)0.003 (3)0.007 (3)0.006 (2)
C120.043 (4)0.027 (3)0.022 (3)0.013 (3)0.012 (3)0.005 (2)
C130.033 (3)0.017 (3)0.034 (3)0.004 (2)0.018 (3)0.000 (2)
C140.022 (3)0.021 (3)0.025 (3)0.002 (2)0.007 (2)0.003 (2)
C150.025 (3)0.022 (3)0.024 (3)0.003 (2)0.012 (2)0.004 (2)
C160.029 (3)0.025 (3)0.024 (3)0.006 (2)0.009 (2)0.004 (2)
C170.031 (3)0.028 (3)0.020 (3)0.002 (2)0.010 (2)0.002 (2)
C180.023 (3)0.025 (3)0.017 (2)0.006 (2)0.008 (2)0.002 (2)
C190.016 (3)0.029 (3)0.028 (3)0.001 (2)0.007 (2)0.003 (2)
C200.031 (4)0.035 (3)0.035 (3)0.009 (3)0.016 (3)0.009 (3)
C210.031 (3)0.026 (3)0.037 (3)0.001 (2)0.016 (3)0.008 (2)
C220.032 (3)0.029 (3)0.019 (3)0.005 (2)0.010 (2)0.006 (2)
C230.028 (3)0.022 (3)0.033 (3)0.003 (2)0.011 (3)0.000 (2)
C240.021 (3)0.034 (3)0.028 (3)0.008 (2)0.012 (2)0.009 (2)
C250.026 (3)0.033 (3)0.049 (4)0.000 (3)0.002 (3)0.010 (3)
C260.046 (5)0.052 (5)0.103 (7)0.005 (4)0.028 (5)0.013 (5)
C270.053 (5)0.040 (4)0.041 (4)0.008 (3)0.001 (3)0.002 (3)
Geometric parameters (Å, º) top
U—N12.613 (4)C11—H110.9300
U—N22.661 (4)C12—C131.385 (8)
U—N32.633 (4)C12—H120.9300
U—O12.210 (4)C13—H130.9300
U—O22.205 (3)C14—C151.401 (7)
U—O31.798 (4)C14—C191.510 (7)
U—O41.786 (4)C15—C161.387 (7)
O1—C21.348 (6)C15—H150.9300
O2—C91.348 (6)C16—C171.376 (8)
O5—C251.214 (7)C16—H160.9300
N1—C141.339 (7)C17—C181.387 (7)
N1—C181.352 (7)C17—H170.9300
N2—C191.487 (7)C18—C221.497 (8)
N2—C201.489 (7)C19—H19A0.9700
N2—C211.492 (7)C19—H19B0.9700
N3—C231.471 (7)C20—H20A0.9600
N3—C241.482 (7)C20—H20B0.9600
N3—C221.484 (6)C20—H20C0.9600
C1—C21.396 (7)C21—H21A0.9600
C1—C61.397 (7)C21—H21B0.9600
C1—H10.9300C21—H21C0.9600
C2—C31.412 (7)C22—H22A0.9700
C3—C41.379 (8)C22—H22B0.9700
C3—C71.519 (7)C23—H23A0.9600
C4—C51.392 (7)C23—H23B0.9600
C4—H40.9300C23—H23C0.9600
C5—C61.376 (8)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C7—C81.510 (8)C25—C271.483 (10)
C7—H7A0.9700C25—C261.505 (10)
C7—H7B0.9700C26—H26A0.9600
C8—C131.391 (7)C26—H26B0.9600
C8—C91.407 (8)C26—H26C0.9600
C9—C101.396 (8)C27—H27A0.9600
C10—C111.380 (8)C27—H27B0.9600
C10—H100.9300C27—H27C0.9600
C11—C121.391 (8)
N1—U—N262.61 (13)C12—C11—H11120.2
N1—U—N363.77 (13)C13—C12—C11119.5 (5)
O1—U—N375.36 (13)C13—C12—H12120.2
O2—U—N277.82 (13)C11—C12—H12120.2
O1—U—O282.12 (13)C12—C13—C8121.9 (5)
O4—U—O3172.52 (16)C12—C13—H13119.1
O4—U—O290.83 (15)C8—C13—H13119.1
O3—U—O293.80 (15)N1—C14—C15122.5 (5)
O4—U—O197.17 (15)N1—C14—C19115.8 (4)
O3—U—O189.29 (15)C15—C14—C19121.7 (5)
O4—U—N189.40 (15)C16—C15—C14118.2 (5)
O3—U—N183.29 (15)C16—C15—H15120.9
O2—U—N1140.42 (13)C14—C15—H15120.9
O1—U—N1137.04 (13)C17—C16—C15119.5 (5)
O4—U—N381.11 (15)C17—C16—H16120.3
O3—U—N396.97 (15)C15—C16—H16120.3
O2—U—N3154.83 (14)C16—C17—C18119.2 (5)
O4—U—N290.21 (15)C16—C17—H17120.4
O3—U—N285.03 (15)C18—C17—H17120.4
O1—U—N2158.71 (13)N1—C18—C17122.1 (5)
N3—U—N2125.67 (13)N1—C18—C22115.5 (4)
C2—O1—U162.2 (3)C17—C18—C22122.1 (5)
C9—O2—U135.4 (3)N2—C19—C14110.8 (4)
C14—N1—C18118.4 (4)N2—C19—H19A109.5
C14—N1—U120.4 (3)C14—C19—H19A109.5
C18—N1—U121.2 (3)N2—C19—H19B109.5
C19—N2—C20107.8 (4)C14—C19—H19B109.5
C19—N2—C21109.3 (4)H19A—C19—H19B108.1
C20—N2—C21107.6 (4)N2—C20—H20A109.5
C19—N2—U108.5 (3)N2—C20—H20B109.5
C20—N2—U114.7 (3)H20A—C20—H20B109.5
C21—N2—U108.9 (3)N2—C20—H20C109.5
C23—N3—C24109.4 (4)H20A—C20—H20C109.5
C23—N3—C22110.1 (4)H20B—C20—H20C109.5
C24—N3—C22107.0 (4)N2—C21—H21A109.5
C23—N3—U107.7 (3)N2—C21—H21B109.5
C24—N3—U110.5 (3)H21A—C21—H21B109.5
C22—N3—U112.1 (3)N2—C21—H21C109.5
C2—C1—C6120.7 (5)H21A—C21—H21C109.5
C2—C1—H1119.7H21B—C21—H21C109.5
C6—C1—H1119.7N3—C22—C18112.8 (4)
O1—C2—C1120.0 (5)N3—C22—H22A109.0
O1—C2—C3121.0 (5)C18—C22—H22A109.0
C1—C2—C3119.0 (5)N3—C22—H22B109.0
C4—C3—C2118.7 (5)C18—C22—H22B109.0
C4—C3—C7122.2 (5)H22A—C22—H22B107.8
C2—C3—C7119.1 (5)N3—C23—H23A109.5
C3—C4—C5122.7 (5)N3—C23—H23B109.5
C3—C4—H4118.7H23A—C23—H23B109.5
C5—C4—H4118.7N3—C23—H23C109.5
C6—C5—C4118.5 (5)H23A—C23—H23C109.5
C6—C5—H5120.8H23B—C23—H23C109.5
C4—C5—H5120.8N3—C24—H24A109.5
C5—C6—C1120.6 (5)N3—C24—H24B109.5
C5—C6—H6119.7H24A—C24—H24B109.5
C1—C6—H6119.7N3—C24—H24C109.5
C8—C7—C3112.2 (4)H24A—C24—H24C109.5
C8—C7—H7A109.2H24B—C24—H24C109.5
C3—C7—H7A109.2O5—C25—C27121.2 (6)
C8—C7—H7B109.2O5—C25—C26121.7 (7)
C3—C7—H7B109.2C27—C25—C26117.1 (6)
H7A—C7—H7B107.9C25—C26—H26A109.5
C13—C8—C9118.1 (5)C25—C26—H26B109.5
C13—C8—C7120.1 (5)H26A—C26—H26B109.5
C9—C8—C7121.8 (5)C25—C26—H26C109.5
O2—C9—C10120.3 (5)H26A—C26—H26C109.5
O2—C9—C8119.9 (5)H26B—C26—H26C109.5
C10—C9—C8119.8 (5)C25—C27—H27A109.5
C11—C10—C9121.0 (5)C25—C27—H27B109.5
C11—C10—H10119.5H27A—C27—H27B109.5
C9—C10—H10119.5C25—C27—H27C109.5
C10—C11—C12119.6 (5)H27A—C27—H27C109.5
C10—C11—H11120.2H27B—C27—H27C109.5
O4—U—O1—C228.7 (11)O1—U—N3—C22166.1 (4)
O3—U—O1—C2155.1 (11)N1—U—N3—C2227.5 (3)
O2—U—O1—C261.2 (11)N2—U—N3—C2217.6 (4)
N1—U—O1—C2125.5 (10)U—O1—C2—C1144.3 (9)
N3—U—O1—C2107.5 (11)U—O1—C2—C335.1 (13)
N2—U—O1—C280.8 (12)C6—C1—C2—O1180.0 (5)
O4—U—O2—C9131.9 (5)C6—C1—C2—C30.5 (8)
O3—U—O2—C954.0 (5)O1—C2—C3—C4179.5 (5)
O1—U—O2—C934.8 (5)C1—C2—C3—C41.0 (8)
N1—U—O2—C9138.0 (4)O1—C2—C3—C72.6 (7)
N3—U—O2—C961.3 (6)C1—C2—C3—C7177.9 (5)
N2—U—O2—C9138.1 (5)C2—C3—C4—C51.0 (8)
O4—U—N1—C14111.3 (4)C7—C3—C4—C5177.8 (5)
O3—U—N1—C1467.1 (4)C3—C4—C5—C60.3 (8)
O2—U—N1—C1420.8 (5)C4—C5—C6—C10.2 (8)
O1—U—N1—C14148.8 (3)C2—C1—C6—C50.1 (8)
N3—U—N1—C14168.3 (4)C4—C3—C7—C8104.0 (6)
N2—U—N1—C1420.8 (4)C2—C3—C7—C872.8 (6)
O4—U—N1—C1869.8 (4)C3—C7—C8—C1373.2 (6)
O3—U—N1—C18111.8 (4)C3—C7—C8—C9108.0 (5)
O2—U—N1—C18160.4 (3)U—O2—C9—C10100.2 (6)
O1—U—N1—C1830.1 (4)U—O2—C9—C879.6 (6)
N3—U—N1—C1810.6 (3)C13—C8—C9—O2177.7 (4)
N2—U—N1—C18160.4 (4)C7—C8—C9—O21.2 (7)
O4—U—N2—C19125.6 (3)C13—C8—C9—C102.6 (7)
O3—U—N2—C1948.6 (3)C7—C8—C9—C10178.6 (4)
O2—U—N2—C19143.6 (3)O2—C9—C10—C11178.9 (5)
O1—U—N2—C19123.7 (4)C8—C9—C10—C111.4 (8)
N1—U—N2—C1936.4 (3)C9—C10—C11—C120.3 (8)
N3—U—N2—C1946.4 (4)C10—C11—C12—C130.8 (8)
O4—U—N2—C20113.9 (4)C11—C12—C13—C80.5 (8)
O3—U—N2—C2071.9 (4)C9—C8—C13—C122.2 (8)
O2—U—N2—C2023.1 (4)C7—C8—C13—C12178.9 (5)
O1—U—N2—C203.2 (6)C18—N1—C14—C150.7 (7)
N1—U—N2—C20156.9 (4)U—N1—C14—C15178.2 (4)
N3—U—N2—C20166.9 (3)C18—N1—C14—C19179.8 (4)
O4—U—N2—C216.7 (3)U—N1—C14—C190.9 (6)
O3—U—N2—C21167.6 (3)N1—C14—C15—C161.0 (8)
O2—U—N2—C2197.5 (3)C19—C14—C15—C16178.0 (5)
O1—U—N2—C21117.3 (4)C14—C15—C16—C171.7 (8)
N1—U—N2—C2182.6 (3)C15—C16—C17—C180.7 (8)
N3—U—N2—C2172.5 (4)C14—N1—C18—C171.7 (7)
O4—U—N3—C23172.5 (3)U—N1—C18—C17177.2 (4)
O3—U—N3—C2314.8 (3)C14—N1—C18—C22172.7 (5)
O2—U—N3—C2399.8 (4)U—N1—C18—C228.4 (6)
O1—U—N3—C2372.6 (3)C16—C17—C18—N11.0 (8)
N1—U—N3—C2393.8 (3)C16—C17—C18—C22173.0 (5)
N2—U—N3—C23103.7 (3)C20—N2—C19—C14176.4 (4)
O4—U—N3—C2453.0 (3)C21—N2—C19—C1467.0 (5)
O3—U—N3—C24134.3 (3)U—N2—C19—C1451.6 (5)
O2—U—N3—C2419.6 (5)N1—C14—C19—N235.3 (6)
O1—U—N3—C2446.8 (3)C15—C14—C19—N2145.6 (5)
N1—U—N3—C24146.8 (4)C23—N3—C22—C1876.2 (5)
N2—U—N3—C24136.9 (3)C24—N3—C22—C18165.0 (4)
O4—U—N3—C2266.2 (4)U—N3—C22—C1843.7 (5)
O3—U—N3—C22106.5 (4)N1—C18—C22—N335.1 (7)
O2—U—N3—C22138.9 (4)C17—C18—C22—N3150.5 (5)

Experimental details

Crystal data
Chemical formula[U(C13H10O2)O2(C11H19N3)]·C3H6O
Mr719.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)14.5787 (6), 11.7099 (3), 16.7701 (8)
β (°) 109.691 (2)
V3)2695.50 (19)
Z4
Radiation typeMo Kα
µ (mm1)6.06
Crystal size (mm)0.15 × 0.10 × 0.04
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionPart of the refinement model (ΔF)
(DELABS in PLATON; Spek, 2003)
Tmin, Tmax0.463, 0.770
No. of measured, independent and
observed [I > 2σ(I)] reflections
18299, 5120, 4149
Rint0.068
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.03
No. of reflections5120
No. of parameters331
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.75, 1.33

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), PLATON (Spek, 2003) and PARST97 (Nardelli, 1995).

Selected geometric parameters (Å, º) top
U—N12.613 (4)U—O22.205 (3)
U—N22.661 (4)U—O31.798 (4)
U—N32.633 (4)U—O41.786 (4)
U—O12.210 (4)
N1—U—N262.61 (13)O2—U—N277.82 (13)
N1—U—N363.77 (13)O1—U—O282.12 (13)
O1—U—N375.36 (13)O4—U—O3172.52 (16)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds