Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the two related polymeric title compounds, {[La2(sip)2(phen)2(H2O)3]·H2O}n [sip is the 5-sulfonatoisophthalate trianion (C8H3O7S3−) and phen is 1,10-phenanthroline (C12H8N2)], (I), and {[La(sip)(H2O)3]·H2O}n, (II), the lanthanum(III) ions are nine-coordinate, with similar distorted monocapped square-antiprism coordination geometry. The two crystal structures are very different. In (I), the sip anion acts as a pentadentate ligand, one of the coordinated water mol­ecules lies on a twofold axis and further inversion, n-glide and translation operations generate a two-dimensional framework. In (II), the sip anion functions as a hexadentate ligand and a three-dimensional network with trinuclear 24-membered rings is developed via inversion, n-glide, twofold-screw and translation operations. Both structures also have extensive O—H...O hydrogen-bonded networks and π–π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104018645/fg1760sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104018645/fg1760Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104018645/fg1760IIsup3.hkl
Contains datablock II

CCDC references: 251299; 251300

Comment top

A number of coordination polymers assembled from lanthanide ions and aromatic polycarboxylate ligands have been extensively studied in recent years, due to their intriguing structural diversity and potential application as functional materials (Hu Zhu et al., 2004; Wan et al., 2003; Zhang et al., 2003). However, lanthanide coordination polymers utilizing organic species with two or more different functional groups, both coordinated to the metal ions, are very rare (Hu Yuan et al., 2004). It is of interest to us that the polytypic sip anion, which is nearly rigid and which has both carboxylate and sulfonate as potential coordinating groups, can form not only short bridges via one carboxylate or sulfonate end, but also long bridges via the central aromatic ring between metal ions. In principle, the novelty of coordination polymers depends on the deliberate selection of central metal ions and multifunctional ligands. The lanthanide ions are well known for their large radii and variable coordination number in the range of 3 to 12, which make these ions excellent spacers in assembling fascinating metal-organic frameworks (Wan et al., 2002). Thus, we have selected the La-sip-phen system and the La-sip system to extend this research and we present here the crystal structures of the two title compounds, {[La2(sip)2(phen)2(H2O)3]·H2O}n, (I) and {[La(sip)(H2O)3]·H2O}n, (II), (sip is the 5-sulfonatoisophthalate trianion and phen is 1,10-phenanthroline). \sch

In (I), each LaIII ion coordinates to four O atoms from three carboxylate groups of three sip anions, with a typical La—O(carboxylate) distance range [2.442 (4)–2.617 (4) Å; Kim & Jung, 2002), one bridging water molecule (O8) with a longer La—O distance [2.9231 (9) Å], due to its weak coordination role between two LaIII ions (Liu et al., 2001), one water molecule (O9) with a normal La—O distance [2.538 (4) Å], one sulfonate O1 atom from another sip anion with an La—O distance of 2.474 (4) Å, and atoms N1 and N10 of the phen ligand in a chelating fashion, with typical La—N distances of 2.730 (5) and 2.712 (5) Å (Shi et al., 2001), resulting in a distorted monocapped square antiprism (Fig. 1). The square plane of atoms N1, N2, O7iii and O8 [symmetry code: (iii) 1 + x, y, z], with a mean deviation of 0.42 Å, is seriously distorted, but the mean deviation of the other square plane composed of atoms O1, O4ii, O5ii and O9 is only 0.05 Å [symmetry code: (ii) 1/2 + x, −y, 1/2 + z]. To complete the coordination environment of the La centre, atom O6i is located as the cap [symmetry code: (i) −x, −y, −z].

Each sip anion acts as a pentadentate ligand to connect four LaIII ions through its one bridging carboxylate group, one chelating carboxylate group and one monodentate sulfonate group. This coordination mode is slightly different from that in the lanthanide coordination polymer [Eu(sip)(H2O)4]n (Wang et al., 2002), in which the two carboxylate groups of each sip anion show bidentate chelation. As shown in Fig. 2, each pair of LaIII ions is bridged by a pair of carboxylate groups, forming an eight-membered ring with an La1···La1v separation of 5.1426 (6) Å [symmetry code: (v) 1 − x, −y, −z], and each pair of such rings is interconnected by two carboxylate-carboxylate bridges of two sip anions via benzene rings to form an intersecting double chain along the [101] direction. Within this double chain, there are also 16-membered rings, each of which is formed by two LaIII ions and two carboxylate-carboxylate bridges of two sip anions via benzene rings, with an La1···La1iv separation of 7.8646 (6) Å [symmetry code: (iv) 1/2 − x, y, 1/2 − z]. This double chain is similar to that found in [Zn(sip)(H-4,4'-bipyridine)(H2O)]·2H2O (Sun et al., 2004).

Moreover, as shown in Fig. 3, each pair of LaIII ions is linked by a carboxylate-sulfonate bridge of a sip anion via a benzene ring, with an La1···La1vi separation of 8.5572 (6) Å [symmetry code: (vi) x − 1/2, −y, z − 1/2], extending in a wave-like chain, and two adjacent chains are connected by bridging water molecules to produce a ribbon-like double chain containing 20-membered rings, each of which comprises two carboxylate-sulfonate bridges of two sip anions, two bridging water molecules and four LaIII ions, along the [101] direction. The two different kinds of double chains are staggered relative to each other, to generate a two-dimensional network with octanuclear units, each of which comprises four sip anions, eight LaIII ions and two bridging water molecules (Fig. 4).

In the crystal of (I), the noncomplexed water molecule (O10) lies on a twofold axis and all water O—H groups participate in O—H···O hydrogen bonds with sip anions (details in Table 2). There are also ππ interactions between inversion-related sip aromatic rings [at (x, y, z) and (-x, −y, −z)], with the ring centroids separated by 3.523 Å (3.214 Å between planes), and also between inversion-related rings of the phen moieties [at (x, y, z) and (1 − x, 1 − y, −z)], with the ring centroids separated by 3.478 Å and with a 3.214 Å separation between the planes.

In (II), the coordination geometry of the unique LaIII ion is a distorted monocapped square antiprism, similar to that of (I) (Fig. 5). The square plane of atoms O1, O4viii, O5viii and O8, with a mean deviation of 0.20 Å, is seriously distorted, but the mean deviation of the other square plane composed of atoms O2ix, O6x, O7xi and O10 is only 0.10 Å [symmetry codes: (viii) 1/2 − x, y − 1/2, 3/2 − z; (ix) x − 1/2, 1/2 − y, 1/2 + z; (x) −x, 1 − y, 1 − z; (xi) x, y, 1 + z]. Atom O9 as the cap completes the coordination at La.

Each sip anion of (II) acts as a hexadentate ligand to connect five LaIII ions through one bridging carboxylate group, one chelating carboxylate group and one bidentate sulfonate group. This coordination mode is quite different from the pentadentate fashion of (I) and that in [Cu4(OH)2(sip)2(bipy)2]·2H2O (bipy is 4,4'-bipyridine; Sun et al., 2003), in which the two carboxylate groups of each sip anion are bidentate chelating and the sulfonate group uses one O atom to make significant contact with two Cu atoms.

As shown in Fig. 6, three LaIII ions in (II) are bridged by three sip anions, forming a trinuclear 24-membered ring with three different La1viii···La1xi, La1viii···La1 and La1xi···La1 separations of 10.5645 (3), 9.8022 (3) and 10.5753 (3) Å, respectively. Each trinuclear ring links six adjacent rings, extending to form a two-dimensional layer in the crystallographic bc plane. This is comparable with what was found in a Eu-sip-H2O analogue (Wang et al., 2002).

Each pair of LaIII ions in (II) is connected by three different kinds of bridges, namely carboxylate short-bridge, carboxylate-carboxylate and carboxylate-sulfonate long-bridge, generating three different kinds of binuclear rings, with La1xiii···La1xiv, La1xiii···La1xv and La1xiii···La1 separations of 5.0235 (3), 7.0487 (3) and 10.5235 (3) Å, respectively [symmetry codes: (xiii) 1 − x, 1 − y, 1 − z; (xiv) x, y − 1, z; (xv) 3/2 − x, y − 1/2, 3/2 − z]. Each binuclear eight-membered ring links six binuclear 16-membered rings to produce another two-dimensional layer in the ab plane (Fig. 7), which is different from the double chain found in (I) and [Zn(sip)(H-bipy)(H2O)]·2H2O (Sun et al., 2004). Thus each sip anion in (II) acts as a hexadentate bridge, interconnecting the two different kinds of layers to yield a three-dimensional framework.

As in (I), the water O—H groups in (II) participate in O—H···O hydrogen bonds (with sip anions or uncoordinated water molecules; details in Table 4). There are also ππ interactions between inversion-related sip anions [at (x, y, z) and (1 − x, 2 − y, 2 − z)], with the ring centroids separated by 3.697 Å and a 3.566 Å separation between the planes.

Experimental top

The two title compounds were synthesized using the hydrothermal method. For (I), the mixture consisted of sodium 5-sulfoisophthalate (1 mmol, 0.27 g), LaCl3·6H2O (1 mmol, 0.35 g), 1,10-phenanthroline (3 mmol, 0.54 g) and water (20 ml). For (II), the mixture consisted of sodium 5-sulfoisophthalate (1 mmol, 0.27 g), LaCl3·6H2O (1 mmol, 0.35 g), 2-aminopyrimidine (3 mmol, 0.29 g) and water (20 ml). The mixtures were placed in 30 ml Teflon-lined stainless steel reactors. The solution for (I) was heated to 412 K for 3 d, and the solution for (II) was heated to 408 K for 4 d. After slow cooling of the reaction systems to room temperature, colourless prism crystals of (I) and (II) were collected and washed with distilled water.

Refinement top

The water H atoms were refined subject to the restraint O—H = 0.82 (2) Å. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of 0.93 Å, with Uiso(H) = 1.2Ueq(parent atom). The 1.628 e Å−3 peak in the final difference Fourier map for (I) was adjacent to La1.

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The coordination environment of the LaIII ion in (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) −x, −y, −z; (ii) 1/2 + x, −y, 1/2 + z; (iii) 1 + x, y, z.]
[Figure 2] Fig. 2. The intersecting double chain of (I) along the [101] direction. H atoms, non-bridging water molecules and 1,10-phenanthroline molecules have been omitted for clarity. [Symmetry codes: (i) −x, −y, −z; (ii) 1/2 + x, −y, 1/2 + z; (iii) 1 + x, y, z; (iv) 1/2 − x, y, 1/2 − z; (v) 1 − x, −y, −z.]
[Figure 3] Fig. 3. The ribbon-like double chain of (I) along the [101] direction. H atoms, non-bridging water molecules and 1,10-phenanthroline molecules have been omitted for clarity. [Symmetry codes: (v) 1 − x, −y, −z; (vi) x − 1/2, −y, z − 1/2; (vii) 3/2 − x, y, 1/2 − z.]
[Figure 4] Fig. 4. Perspective view of the two-dimensional network in (I) along the b axis. H atoms, non-bridging water molecules and 1,10-phenanthroline molecules have been omitted for clarity.
[Figure 5] Fig. 5. The coordination environment of the LaIII ion in (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (viii) 1/2 − x, y − 1/2, 3/2 − z; (ix) x − 1/2, 1/2 − y, 1/2 + z; (x) −x, 1 − y, 1 − z; (xi) x, y, 1 + z.]
[Figure 6] Fig. 6. The two-dimensional layer of (II) in the crystallographic bc plane. H atoms and water molecules have been omitted for clarity. [Symmetry codes: (viii) 1/2 − x, y − 1/2, 3/2 − z; (xi) x, y, 1 + z; (xii) 1/2 − x, y − 1/2, 5/2 − z.]
[Figure 7] Fig. 7. The two-dimensional layer of (II) in the crystallographic ab plane. H atoms and water molecules have been omitted for clarity. [Symmetry codes: (xiii) 1 − x, 1 − y, 1 − z; (xiv) x, y − 1, z; (xv) 3/2 − x, y − 1/2, 3/2 − z.]
(I) Poly[[bis[aqua(1,10-phenanthroline)lanthanum(III)]-µ-aqua-di-µ-5- sulfonatoisophthalato] monohydrate] top
Crystal data top
[La2(C8H3O7S)2(C12H8N2)2(H2O)3]·H2OF(000) = 1176
Mr = 1196.62Dx = 1.956 Mg m3
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2yacCell parameters from 6312 reflections
a = 10.1655 (5) Åθ = 2.5–25.2°
b = 15.1560 (7) ŵ = 2.26 mm1
c = 13.8914 (6) ÅT = 298 K
β = 108.302 (2)°Prism, colourless
V = 2031.96 (16) Å30.27 × 0.18 × 0.15 mm
Z = 2
Data collection top
Bruker APEX CCD area-detector
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube3586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 25.2°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1212
Tmin = 0.531, Tmax = 0.718k = 1814
10692 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.40 w = 1/[σ2(Fo2) + (0.0465P)2 + 5.3444P]
where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max < 0.001
314 parametersΔρmax = 1.63 e Å3
7 restraintsΔρmin = 0.79 e Å3
Crystal data top
[La2(C8H3O7S)2(C12H8N2)2(H2O)3]·H2OV = 2031.96 (16) Å3
Mr = 1196.62Z = 2
Monoclinic, P2/nMo Kα radiation
a = 10.1655 (5) ŵ = 2.26 mm1
b = 15.1560 (7) ÅT = 298 K
c = 13.8914 (6) Å0.27 × 0.18 × 0.15 mm
β = 108.302 (2)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
3586 reflections with I > 2σ(I)
Tmin = 0.531, Tmax = 0.718Rint = 0.028
10692 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0437 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.40Δρmax = 1.63 e Å3
3661 reflectionsΔρmin = 0.79 e Å3
314 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.49529 (3)0.15233 (2)0.08034 (2)0.01710 (13)
S10.12533 (14)0.25196 (9)0.04135 (11)0.0226 (3)
O10.2693 (4)0.2233 (3)0.0040 (4)0.0377 (11)
O20.0811 (5)0.2984 (3)0.0330 (4)0.0472 (14)
O30.0980 (5)0.2997 (3)0.1363 (4)0.0402 (12)
O40.0785 (4)0.0228 (3)0.2902 (3)0.0259 (9)
O50.0653 (4)0.1179 (3)0.2569 (3)0.0250 (9)
O60.3421 (4)0.0246 (3)0.0329 (3)0.0307 (10)
O70.2881 (4)0.0993 (3)0.0543 (3)0.0238 (9)
O80.75000.1750 (5)0.25000.0359 (15)
H8A0.789 (12)0.137 (7)0.227 (8)0.043*0.50
H8B0.783 (14)0.184 (8)0.311 (3)0.043*0.50
O90.4450 (5)0.1345 (3)0.1095 (3)0.0318 (10)
H9A0.433 (7)0.0859 (19)0.136 (4)0.038*
H9B0.394 (6)0.174 (3)0.141 (4)0.038*
O100.25000.2332 (5)0.25000.0399 (16)
H10A0.213 (8)0.266 (4)0.219 (6)0.048*
C10.0319 (5)0.0197 (4)0.1684 (4)0.0176 (11)
C20.1353 (5)0.0028 (4)0.1244 (4)0.0195 (11)
H20.18920.04770.14230.023*
C30.1579 (5)0.0609 (4)0.0544 (4)0.0191 (11)
C40.0767 (6)0.1365 (4)0.0270 (4)0.0197 (11)
H40.09040.17510.02100.024*
C50.0251 (6)0.1538 (4)0.0721 (4)0.0203 (12)
C60.0475 (6)0.0960 (4)0.1431 (4)0.0193 (11)
H60.11510.10820.17340.023*
C70.0050 (6)0.0449 (4)0.2424 (4)0.0217 (12)
C80.2694 (5)0.0437 (4)0.0072 (4)0.0191 (11)
N10.6120 (5)0.2927 (3)0.0144 (4)0.0322 (12)
C2A0.6701 (7)0.2835 (5)0.0575 (6)0.0429 (18)
H2A0.66380.22910.08950.051*
C3A0.7411 (9)0.3519 (6)0.0882 (8)0.057 (2)
H3A0.78120.34290.13910.068*
C4A0.7497 (8)0.4309 (6)0.0422 (7)0.057 (2)
H4A0.79850.47650.06020.069*
C5A0.6876 (7)0.4449 (5)0.0308 (6)0.0450 (19)
C6A0.6848 (9)0.5295 (5)0.0762 (7)0.057 (2)
H6A0.72600.57770.05560.069*
C7A0.6237 (9)0.5399 (5)0.1478 (7)0.055 (2)
H7A0.62380.59550.17630.066*
C8A0.6226 (6)0.3719 (4)0.0617 (5)0.0303 (14)
C9A0.5600 (6)0.3839 (4)0.1405 (5)0.0289 (14)
N100.5014 (6)0.3117 (3)0.1703 (4)0.0308 (12)
C11A0.4443 (8)0.3239 (5)0.2431 (6)0.0395 (17)
H11A0.40490.27550.26470.047*
C12A0.4400 (10)0.4052 (5)0.2890 (6)0.054 (2)
H12A0.39860.41070.33970.064*
C13A0.4971 (9)0.4753 (5)0.2585 (6)0.050 (2)
H13A0.49580.52980.28910.060*
C14A0.5583 (8)0.4683 (4)0.1820 (5)0.0392 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0179 (2)0.0159 (2)0.0213 (2)0.00194 (12)0.01168 (14)0.00095 (11)
S10.0205 (7)0.0170 (7)0.0331 (8)0.0026 (5)0.0125 (6)0.0041 (6)
O10.022 (2)0.032 (3)0.054 (3)0.0001 (19)0.005 (2)0.002 (2)
O20.048 (3)0.037 (3)0.070 (4)0.014 (2)0.038 (3)0.027 (3)
O30.045 (3)0.026 (2)0.050 (3)0.006 (2)0.016 (2)0.012 (2)
O40.030 (2)0.027 (2)0.029 (2)0.0064 (17)0.0218 (19)0.0045 (17)
O50.039 (2)0.016 (2)0.029 (2)0.0055 (18)0.0229 (19)0.0044 (16)
O60.031 (2)0.033 (2)0.034 (2)0.0124 (19)0.020 (2)0.0040 (19)
O70.021 (2)0.025 (2)0.032 (2)0.0006 (16)0.0177 (18)0.0039 (17)
O80.042 (4)0.035 (4)0.027 (3)0.0000.007 (3)0.000
O90.040 (3)0.027 (2)0.030 (2)0.006 (2)0.013 (2)0.0024 (19)
O100.056 (5)0.035 (4)0.033 (4)0.0000.019 (3)0.000
C10.020 (3)0.018 (3)0.019 (3)0.003 (2)0.011 (2)0.001 (2)
C20.016 (3)0.020 (3)0.023 (3)0.003 (2)0.007 (2)0.000 (2)
C30.018 (3)0.017 (3)0.025 (3)0.000 (2)0.011 (2)0.003 (2)
C40.020 (3)0.018 (3)0.025 (3)0.002 (2)0.013 (2)0.000 (2)
C50.018 (3)0.021 (3)0.023 (3)0.002 (2)0.008 (2)0.000 (2)
C60.019 (3)0.022 (3)0.021 (3)0.001 (2)0.011 (2)0.000 (2)
C70.022 (3)0.022 (3)0.021 (3)0.002 (2)0.008 (2)0.002 (2)
C80.016 (3)0.018 (3)0.025 (3)0.002 (2)0.008 (2)0.002 (2)
N10.025 (3)0.026 (3)0.050 (3)0.001 (2)0.018 (3)0.014 (2)
C2A0.039 (4)0.040 (4)0.063 (5)0.010 (3)0.035 (4)0.022 (4)
C3A0.048 (5)0.061 (6)0.073 (6)0.001 (4)0.036 (5)0.030 (5)
C4A0.034 (4)0.059 (6)0.079 (6)0.011 (4)0.016 (4)0.037 (5)
C5A0.033 (4)0.035 (4)0.057 (5)0.011 (3)0.001 (3)0.017 (3)
C6A0.052 (5)0.034 (4)0.069 (6)0.021 (4)0.005 (4)0.020 (4)
C7A0.056 (5)0.021 (4)0.061 (5)0.014 (3)0.018 (4)0.008 (3)
C8A0.021 (3)0.022 (3)0.039 (4)0.004 (2)0.003 (3)0.011 (3)
C9A0.027 (3)0.018 (3)0.034 (3)0.004 (2)0.002 (3)0.004 (2)
N100.034 (3)0.022 (3)0.035 (3)0.000 (2)0.009 (2)0.000 (2)
C11A0.058 (5)0.025 (3)0.040 (4)0.005 (3)0.022 (4)0.004 (3)
C12A0.083 (6)0.033 (4)0.049 (5)0.014 (4)0.027 (5)0.000 (3)
C13A0.070 (5)0.027 (4)0.043 (4)0.002 (4)0.002 (4)0.003 (3)
C14A0.048 (4)0.021 (3)0.034 (4)0.007 (3)0.008 (3)0.001 (3)
Geometric parameters (Å, º) top
La1—O12.474 (4)C3—C41.393 (8)
La1—O4i2.617 (4)C3—C81.500 (7)
La1—O5i2.577 (4)C4—C51.392 (8)
La1—O6ii2.442 (4)C4—H40.93
La1—O7iii2.475 (4)C5—C61.391 (8)
La1—O82.9231 (9)C6—H60.93
La1—O92.538 (4)N1—C2A1.318 (9)
La1—N12.730 (5)N1—C8A1.357 (9)
La1—N102.712 (5)C2A—C3A1.404 (10)
S1—O11.457 (4)C2A—H2A0.93
S1—O21.434 (5)C3A—C4A1.347 (13)
S1—O31.453 (5)C3A—H3A0.93
S1—C51.778 (6)C4A—C5A1.369 (12)
O4—C71.276 (7)C4A—H4A0.93
O4—La1iv2.617 (4)C5A—C8A1.422 (9)
O5—C71.249 (7)C5A—C6A1.432 (12)
O5—La1iv2.577 (4)C6A—C7A1.338 (13)
O6—C81.257 (7)C6A—H6A0.93
O6—La1ii2.442 (4)C7A—C14A1.430 (11)
O7—C81.256 (7)C7A—H7A0.93
O8—H8A0.82 (11)C8A—C9A1.440 (10)
O8—H8B0.82 (5)C9A—N101.371 (8)
O9—H9A0.82 (3)C9A—C14A1.405 (9)
O9—H9B0.82 (5)N10—C11A1.327 (9)
O10—H10A0.82 (8)C11A—C12A1.395 (10)
C1—C61.390 (8)C11A—H11A0.93
C1—C21.395 (7)C12A—C13A1.341 (11)
C1—C71.506 (8)C12A—H12A0.93
C2—C31.383 (8)C13A—C14A1.395 (11)
C2—H20.93C13A—H13A0.93
O6ii—La1—O178.35 (15)C3—C4—H4120.2
O6ii—La1—O7iii103.00 (13)C6—C5—C4120.7 (5)
O1—La1—O7iii143.96 (15)C6—C5—S1119.2 (4)
O6ii—La1—O974.47 (15)C4—C5—S1120.0 (4)
O1—La1—O972.54 (16)C1—C6—C5119.4 (5)
O7iii—La1—O973.25 (14)C1—C6—H6120.3
O6ii—La1—O5i76.57 (14)C5—C6—H6120.3
O1—La1—O5i93.52 (15)O5—C7—O4121.4 (5)
O7iii—La1—O5i122.10 (13)O5—C7—C1120.1 (5)
O9—La1—O5i149.82 (15)O4—C7—C1118.5 (5)
O6ii—La1—O4i68.40 (14)O5—C7—La1iv60.4 (3)
O1—La1—O4i134.70 (14)O4—C7—La1iv62.3 (3)
O7iii—La1—O4i75.34 (12)C1—C7—La1iv167.4 (4)
O9—La1—O4i123.41 (13)O7—C8—O6123.1 (5)
O5i—La1—O4i50.17 (12)O7—C8—C3118.5 (5)
O6ii—La1—N10138.65 (15)O6—C8—C3118.4 (5)
O1—La1—N1073.39 (16)C2A—N1—C8A118.3 (6)
O7iii—La1—N10117.64 (15)C2A—N1—La1121.2 (5)
O9—La1—N10122.80 (15)C8A—N1—La1120.3 (4)
O5i—La1—N1075.72 (14)N1—C2A—C3A123.2 (8)
O4i—La1—N10113.31 (15)N1—C2A—H2A118.4
O6ii—La1—N1146.59 (16)C3A—C2A—H2A118.4
O1—La1—N186.50 (15)C4A—C3A—C2A118.4 (8)
O7iii—La1—N172.74 (14)C4A—C3A—H3A120.8
O9—La1—N172.62 (17)C2A—C3A—H3A120.8
O5i—La1—N1134.52 (16)C3A—C4A—C5A120.9 (7)
O4i—La1—N1137.26 (14)C3A—C4A—H4A119.6
N10—La1—N160.74 (17)C5A—C4A—H4A119.6
O6ii—La1—O8129.74 (17)C4A—C5A—C8A118.0 (7)
O1—La1—O8141.85 (16)C4A—C5A—C6A122.8 (7)
O7iii—La1—O863.42 (11)C8A—C5A—C6A119.3 (8)
O9—La1—O8133.53 (11)C7A—C6A—C5A120.7 (7)
O5i—La1—O873.24 (10)C7A—C6A—H6A119.6
O4i—La1—O861.37 (16)C5A—C6A—H6A119.6
N10—La1—O868.73 (17)C6A—C7A—C14A122.0 (8)
N1—La1—O879.08 (16)C6A—C7A—H7A119.0
O2—S1—O3113.3 (3)C14A—C7A—H7A119.0
O2—S1—O1113.4 (3)N1—C8A—C5A121.1 (7)
O3—S1—O1110.9 (3)N1—C8A—C9A119.5 (5)
O2—S1—C5107.3 (3)C5A—C8A—C9A119.3 (6)
O3—S1—C5105.5 (3)N10—C9A—C14A122.7 (6)
O1—S1—C5105.8 (3)N10—C9A—C8A117.8 (6)
S1—O1—La1168.0 (3)C14A—C9A—C8A119.5 (6)
C7—O4—La1iv92.1 (3)C11A—N10—C9A117.1 (6)
C7—O5—La1iv94.6 (3)C11A—N10—La1121.5 (4)
C8—O6—La1ii176.3 (4)C9A—N10—La1121.4 (4)
H8A—O8—H8B115 (3)N10—C11A—C12A123.7 (7)
H9A—O9—H9B116 (3)N10—C11A—H11A118.1
C6—C1—C2120.0 (5)C12A—C11A—H11A118.1
C6—C1—C7119.9 (5)C13A—C12A—C11A118.5 (8)
C2—C1—C7120.2 (5)C13A—C12A—H12A120.8
C3—C2—C1120.4 (5)C11A—C12A—H12A120.8
C3—C2—H2119.8C12A—C13A—C14A121.4 (7)
C1—C2—H2119.8C12A—C13A—H13A119.3
C2—C3—C4120.0 (5)C14A—C13A—H13A119.3
C2—C3—C8120.8 (5)C13A—C14A—C9A116.7 (6)
C4—C3—C8119.2 (5)C13A—C14A—C7A124.0 (7)
C5—C4—C3119.5 (5)C9A—C14A—C7A119.2 (7)
C5—C4—H4120.2
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4v0.82 (11)2.19 (9)2.840 (7)135 (11)
O8—H8B···O7vi0.82 (5)2.26 (11)2.863 (5)131 (13)
O9—H9A···O4vii0.82 (3)1.92 (4)2.734 (6)172 (7)
O9—H9B···O100.82 (5)1.96 (5)2.747 (6)160 (6)
O10—H10A···O30.82 (8)1.95 (8)2.726 (6)158 (8)
Symmetry codes: (v) x+1, y, z; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y, z1/2.
(II) Poly[[triaqualanthanum(III)-µ-5-sulfonatoisophthalato] monohydrate] top
Crystal data top
[La(C8H3O7S)(H2O)3]·H2OF(000) = 880
Mr = 454.14Dx = 2.317 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P2ynCell parameters from 5538 reflections
a = 7.9902 (2) Åθ = 2.3–25.2°
b = 15.4229 (4) ŵ = 3.50 mm1
c = 10.5753 (2) ÅT = 298 K
β = 92.606 (1)°Prism, colourless
V = 1301.87 (5) Å30.35 × 0.28 × 0.10 mm
Z = 4
Data collection top
Bruker APEX CCD area-detector
diffractometer
2345 independent reflections
Radiation source: fine-focus sealed tube2307 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 25.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 99
Tmin = 0.333, Tmax = 0.713k = 1810
6724 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.15 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.8212P]
where P = (Fo2 + 2Fc2)/3
2345 reflections(Δ/σ)max = 0.002
214 parametersΔρmax = 0.48 e Å3
12 restraintsΔρmin = 0.55 e Å3
Crystal data top
[La(C8H3O7S)(H2O)3]·H2OV = 1301.87 (5) Å3
Mr = 454.14Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.9902 (2) ŵ = 3.50 mm1
b = 15.4229 (4) ÅT = 298 K
c = 10.5753 (2) Å0.35 × 0.28 × 0.10 mm
β = 92.606 (1)°
Data collection top
Bruker APEX CCD area-detector
diffractometer
2345 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
2307 reflections with I > 2σ(I)
Tmin = 0.333, Tmax = 0.713Rint = 0.015
6724 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.01812 restraints
wR(F2) = 0.047H atoms treated by a mixture of independent and constrained refinement
S = 1.15Δρmax = 0.48 e Å3
2345 reflectionsΔρmin = 0.55 e Å3
214 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
La10.499634 (16)0.839870 (8)0.543278 (12)0.01376 (7)
S10.20380 (8)0.84055 (3)0.83036 (6)0.01515 (14)
O10.3581 (2)0.83021 (11)0.76215 (17)0.0204 (4)
O20.1661 (2)0.76389 (11)0.90281 (16)0.0241 (4)
O30.0647 (2)0.86916 (12)0.74665 (16)0.0233 (4)
O40.0477 (2)1.17926 (12)0.88963 (16)0.0217 (4)
O50.2293 (2)1.22867 (12)1.03367 (18)0.0292 (4)
O60.4610 (2)1.01780 (12)1.34810 (15)0.0229 (4)
O70.4232 (2)0.87713 (12)1.31483 (16)0.0248 (4)
O80.2101 (2)0.91684 (12)0.52846 (17)0.0208 (4)
O90.7663 (2)0.90711 (13)0.4851 (2)0.0315 (5)
O100.7504 (2)0.78516 (12)0.68595 (17)0.0233 (4)
O110.0152 (3)1.16204 (12)0.6450 (2)0.0295 (5)
C10.2272 (3)1.07620 (16)0.9956 (2)0.0175 (5)
C20.3096 (3)1.05780 (16)1.1107 (2)0.0185 (5)
H20.33731.10281.16620.022*
C30.3515 (3)0.97327 (15)1.1444 (2)0.0163 (5)
C40.3201 (3)0.90653 (16)1.0583 (2)0.0168 (5)
H40.35090.84991.07860.020*
C50.2419 (3)0.92546 (16)0.9412 (2)0.0159 (5)
C60.1911 (3)1.00914 (15)0.9100 (2)0.0178 (5)
H60.13381.02030.83330.021*
C70.1668 (3)1.16634 (15)0.9702 (2)0.0179 (5)
C80.4194 (3)0.95473 (15)1.2780 (2)0.0162 (5)
H8A0.156 (3)0.9052 (18)0.5920 (16)0.019*
H8B0.162 (3)0.9000 (18)0.4620 (15)0.019*
H10A0.835 (3)0.8180 (15)0.687 (2)0.019*
H10B0.762 (3)0.7463 (14)0.741 (2)0.019*
H11A0.037 (3)1.2097 (13)0.616 (2)0.019*
H11B0.001 (4)1.1613 (15)0.7244 (16)0.019*
H9A0.826 (3)0.8823 (14)0.437 (2)0.019*
H9B0.772 (3)0.9600 (10)0.485 (2)0.019*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.01780 (10)0.01119 (10)0.01221 (9)0.00072 (5)0.00025 (6)0.00106 (4)
S10.0205 (3)0.0125 (3)0.0125 (3)0.0023 (2)0.0016 (2)0.0012 (2)
O10.0248 (9)0.0201 (9)0.0167 (9)0.0007 (7)0.0051 (7)0.0016 (6)
O20.0385 (11)0.0139 (9)0.0202 (9)0.0065 (8)0.0065 (8)0.0001 (7)
O30.0242 (9)0.0255 (10)0.0199 (9)0.0020 (8)0.0031 (7)0.0022 (8)
O40.0282 (10)0.0175 (9)0.0189 (9)0.0045 (7)0.0043 (8)0.0001 (7)
O50.0379 (11)0.0130 (9)0.0354 (11)0.0032 (8)0.0132 (9)0.0037 (8)
O60.0319 (10)0.0206 (9)0.0159 (8)0.0013 (8)0.0024 (7)0.0046 (7)
O70.0397 (11)0.0175 (10)0.0168 (9)0.0028 (8)0.0037 (8)0.0033 (7)
O80.0223 (9)0.0237 (10)0.0164 (9)0.0014 (7)0.0004 (7)0.0007 (8)
O90.0320 (11)0.0156 (10)0.0483 (13)0.0000 (8)0.0183 (9)0.0025 (9)
O100.0246 (9)0.0220 (10)0.0228 (9)0.0025 (8)0.0041 (7)0.0028 (7)
O110.0338 (12)0.0302 (12)0.0241 (11)0.0013 (8)0.0016 (9)0.0071 (8)
C10.0206 (12)0.0129 (12)0.0191 (12)0.0018 (10)0.0004 (10)0.0006 (9)
C20.0218 (12)0.0154 (12)0.0182 (12)0.0002 (10)0.0004 (10)0.0044 (9)
C30.0194 (12)0.0137 (12)0.0155 (11)0.0012 (9)0.0007 (9)0.0011 (9)
C40.0206 (12)0.0135 (12)0.0165 (11)0.0002 (9)0.0022 (9)0.0009 (9)
C50.0197 (12)0.0140 (12)0.0142 (11)0.0015 (9)0.0031 (9)0.0024 (9)
C60.0217 (12)0.0160 (12)0.0153 (11)0.0003 (9)0.0014 (9)0.0017 (10)
C70.0229 (13)0.0128 (13)0.0181 (13)0.0004 (9)0.0009 (11)0.0004 (9)
C80.0183 (11)0.0167 (13)0.0137 (11)0.0008 (9)0.0006 (9)0.0001 (9)
Geometric parameters (Å, º) top
La1—O12.6260 (17)O8—H8B0.829 (16)
La1—O2i2.5918 (17)O9—H9A0.813 (16)
La1—O4ii2.6090 (18)O9—H9B0.817 (16)
La1—O5ii2.6106 (18)O10—H10A0.845 (16)
La1—O6iii2.4908 (17)O10—H10B0.839 (16)
La1—O7iv2.5308 (17)O11—H11A0.811 (16)
La1—O82.5984 (18)O11—H11B0.843 (16)
La1—O92.4726 (19)C1—C21.387 (3)
La1—O102.5937 (17)C1—C61.395 (3)
S1—O11.4654 (19)C1—C71.492 (3)
S1—O21.4478 (18)C2—C31.388 (3)
S1—O31.4576 (18)C2—H20.93
S1—C51.775 (2)C3—C41.390 (3)
O4—C71.264 (3)C3—C81.518 (3)
O5—C71.263 (3)C4—C51.392 (3)
O6—C81.259 (3)C4—H40.93
O7—C81.259 (3)C5—C61.388 (3)
O8—H8A0.835 (16)C6—H60.93
O9—La1—O6iii69.69 (6)O1—S1—C5106.41 (11)
O9—La1—O7iv80.83 (7)S1—O1—La1146.45 (11)
O6iii—La1—O7iv105.07 (6)S1—O2—La1v158.74 (12)
O9—La1—O2i69.25 (6)C7—O4—La1vi94.62 (14)
O6iii—La1—O2i138.69 (6)C7—O5—La1vi94.57 (15)
O7iv—La1—O2i72.60 (6)C8—O6—La1iii167.74 (16)
O9—La1—O1068.25 (7)C8—O7—La1vii120.86 (15)
O6iii—La1—O1086.59 (6)La1—O8—H8A110.2 (19)
O7iv—La1—O10140.85 (6)La1—O8—H8B106.8 (19)
O2i—La1—O1074.31 (6)H8A—O8—H8B112 (2)
O9—La1—O8124.64 (6)La1—O9—H9A119.9 (19)
O6iii—La1—O873.65 (6)La1—O9—H9B117.7 (18)
O7iv—La1—O870.32 (6)H9A—O9—H9B116 (2)
O2i—La1—O8136.58 (6)La1—O10—H10A114.2 (17)
O10—La1—O8147.74 (6)La1—O10—H10B134.3 (17)
O9—La1—O4ii127.10 (6)H10A—O10—H10B110.6 (19)
O6iii—La1—O4ii136.73 (5)H11A—O11—H11B114 (2)
O7iv—La1—O4ii116.33 (6)C2—C1—C6119.6 (2)
O2i—La1—O4ii69.77 (6)C2—C1—C7119.0 (2)
O10—La1—O4ii69.56 (6)C6—C1—C7121.2 (2)
O8—La1—O4ii108.08 (6)C1—C2—C3121.1 (2)
O9—La1—O5ii142.91 (7)C1—C2—H2119.4
O6iii—La1—O5ii142.63 (6)C3—C2—H2119.4
O7iv—La1—O5ii73.53 (6)C2—C3—C4119.5 (2)
O2i—La1—O5ii77.67 (6)C2—C3—C8119.2 (2)
O10—La1—O5ii118.65 (6)C4—C3—C8121.1 (2)
O8—La1—O5ii70.85 (6)C3—C4—C5119.2 (2)
O4ii—La1—O5ii49.67 (6)C3—C4—H4120.4
O9—La1—O1130.80 (7)C5—C4—H4120.4
O6iii—La1—O172.17 (6)C6—C5—C4121.4 (2)
O7iv—La1—O1139.42 (6)C6—C5—S1119.30 (18)
O2i—La1—O1136.30 (5)C4—C5—S1119.29 (19)
O10—La1—O179.68 (6)C5—C6—C1119.0 (2)
O8—La1—O170.20 (6)C5—C6—H6120.5
O4ii—La1—O168.46 (5)C1—C6—H6120.5
O5ii—La1—O185.05 (6)O5—C7—O4120.4 (2)
O2—S1—O3113.42 (11)O5—C7—C1119.8 (2)
O2—S1—O1111.81 (11)O4—C7—C1119.7 (2)
O3—S1—O1111.69 (11)O7—C8—O6123.4 (2)
O2—S1—C5106.65 (11)O7—C8—C3118.0 (2)
O3—S1—C5106.32 (11)O6—C8—C3118.5 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+2, z+2; (iv) x, y, z1; (v) x1/2, y+3/2, z+1/2; (vi) x+1/2, y+1/2, z+3/2; (vii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O30.84 (2)1.90 (2)2.731 (2)171 (3)
O8—H8B···O11viii0.83 (2)1.86 (2)2.648 (3)159 (2)
O9—H9A···O11ix0.81 (2)1.90 (2)2.690 (3)164 (2)
O9—H9B···O8ix0.82 (2)1.91 (2)2.726 (3)176 (2)
O10—H10A···O3x0.84 (2)2.07 (2)2.872 (3)159 (2)
O10—H10B···O5iii0.84 (2)2.41 (3)2.970 (3)125 (2)
O10—H10B···O7i0.84 (2)2.41 (2)3.140 (3)146 (2)
O11—H11A···O5xi0.81 (2)2.23 (2)2.859 (3)134 (2)
O11—H11B···O40.84 (2)1.79 (2)2.626 (3)169 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (iii) x+1, y+2, z+2; (viii) x, y+2, z+1; (ix) x+1, y+2, z+1; (x) x+1, y, z; (xi) x1/2, y+5/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[La2(C8H3O7S)2(C12H8N2)2(H2O)3]·H2O[La(C8H3O7S)(H2O)3]·H2O
Mr1196.62454.14
Crystal system, space groupMonoclinic, P2/nMonoclinic, P21/n
Temperature (K)298298
a, b, c (Å)10.1655 (5), 15.1560 (7), 13.8914 (6)7.9902 (2), 15.4229 (4), 10.5753 (2)
β (°) 108.302 (2) 92.606 (1)
V3)2031.96 (16)1301.87 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)2.263.50
Crystal size (mm)0.27 × 0.18 × 0.150.35 × 0.28 × 0.10
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Bruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.531, 0.7180.333, 0.713
No. of measured, independent and
observed [I > 2σ(I)] reflections
10692, 3661, 3586 6724, 2345, 2307
Rint0.0280.015
(sin θ/λ)max1)0.5990.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.115, 1.40 0.018, 0.047, 1.15
No. of reflections36612345
No. of parameters314214
No. of restraints712
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.63, 0.790.48, 0.55

Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), XP (Bruker, 2002), SHELXL97.

Selected bond lengths (Å) for (I) top
La1—O12.474 (4)La1—O92.538 (4)
La1—O4i2.617 (4)La1—N12.730 (5)
La1—O5i2.577 (4)La1—N102.712 (5)
La1—O6ii2.442 (4)S1—O11.457 (4)
La1—O7iii2.475 (4)S1—O21.434 (5)
La1—O82.9231 (9)S1—O31.453 (5)
Symmetry codes: (i) x+1/2, y, z+1/2; (ii) x, y, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O4iv0.82 (11)2.19 (9)2.840 (7)135 (11)
O8—H8B···O7v0.82 (5)2.26 (11)2.863 (5)131 (13)
O9—H9A···O4vi0.82 (3)1.92 (4)2.734 (6)172 (7)
O9—H9B···O100.82 (5)1.96 (5)2.747 (6)160 (6)
O10—H10A···O30.82 (8)1.95 (8)2.726 (6)158 (8)
Symmetry codes: (iv) x+1, y, z; (v) x+1/2, y, z+1/2; (vi) x+1/2, y, z1/2.
Selected bond lengths (Å) for (II) top
La1—O12.6260 (17)La1—O82.5984 (18)
La1—O2i2.5918 (17)La1—O92.4726 (19)
La1—O4ii2.6090 (18)La1—O102.5937 (17)
La1—O5ii2.6106 (18)S1—O11.4654 (19)
La1—O6iii2.4908 (17)S1—O21.4478 (18)
La1—O7iv2.5308 (17)S1—O31.4576 (18)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1/2, y1/2, z+3/2; (iii) x+1, y+2, z+2; (iv) x, y, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O8—H8A···O30.84 (2)1.90 (2)2.731 (2)171 (3)
O8—H8B···O11v0.83 (2)1.86 (2)2.648 (3)159 (2)
O9—H9A···O11vi0.81 (2)1.90 (2)2.690 (3)164 (2)
O9—H9B···O8vi0.82 (2)1.91 (2)2.726 (3)176 (2)
O10—H10A···O3vii0.84 (2)2.07 (2)2.872 (3)159 (2)
O10—H10B···O5iii0.84 (2)2.41 (3)2.970 (3)125 (2)
O10—H10B···O7i0.84 (2)2.41 (2)3.140 (3)146 (2)
O11—H11A···O5viii0.81 (2)2.23 (2)2.859 (3)134 (2)
O11—H11B···O40.84 (2)1.79 (2)2.626 (3)169 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (iii) x+1, y+2, z+2; (v) x, y+2, z+1; (vi) x+1, y+2, z+1; (vii) x+1, y, z; (viii) x1/2, y+5/2, z1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds