Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of 1-(4-fluoro­phenyl)-2-phenyl-4,5,6,7-tetra­hydro-1H-indole, C20H18FN, and 1-(4-fluoro­phenyl)-6,6-di­methyl-2-phenyl-4,5,6,7-tetra­hydro-1H-indole, C22H22FN, have been determined in order to study the role of `organic fluorine' in crystal engineering. These mol­ecules pack in the crystal structure via different types of molecular motifs utilizing weak C—H...F and C—H...π interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104016865/fg1756sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016865/fg1756Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104016865/fg1756IIsup3.hkl
Contains datablock II

CCDC references: 251312; 251313

Comment top

Crystal engineering via manipulation of hydrogen bonding has attracted a lot of interest recently (Aaker\"oy, 1997; Guru Row, 1999; Desiraju, 2000, 2002; Hunter et al., 2001). Weak C—H···π (Nishio et al., 1995; Umezawa et al., 1999; Takahashi et al., 2000), π stacking (Hunter, 1993 & 1994) and C—H···O (Desiraju & Steiner, 1999; Steiner, 2002) interactions have been found to generate different crystal engineering motifs. Organohalo compounds also have been found to generate motifs via C—H···X, X···X and C—X···π interactions (Thalladi et al., 1998). It has been shown that fluorine does not readily accept hydrogen bonds and hence behaves differently from Cl and Br (Shimoni & Glusker, 1994; Howard et al., 1996; Dunitz & Taylor, 1997; Desiraju et al., 1989). We have shown that a significant number of compounds pack via weak interactions involving organic fluorine only (Prasanna et al., 2000a, 2000b, 2000c, 2001; Choudhury et al., 2002, 2004a) and generate different packing motifs via F···F, C—H···F and C—F···π interactions.

A structural study of 1-(4-fluorophenyl)-2-phenyl- 4,5,6,7-tetrahydro-1H-indole, (I), and 1-(4-fluorophenyl)-6,6-dimethyl-2 -phenyl-4,5,6,7-tetrahydro-1H-indole, (II), was undertaken because in these compounds the interactions predominatly involve `organic fluorine' and there are no other strong directional interactions involving H atoms.

A view of the (I), with the atom-labelling scheme, is shown in Fig. 1. In the tetrahydroindole ring, atoms C5 and C6 deviate from the C4/C9/C8/C7 plane by 0.310 (2) and −0.456 (2) Å, respectively. The two phenyl rings (C10–C15 and C16–C21) subtend an angle of 126.41 (4)° between their planes. Selected torsion angles are given in Table 1. The molecules pack via a C—H···F interaction, along with three independent C—H···π interactions (Table 2; Cg1 and Cg2 are the centers of gravity of N1/C2/C3/C9/C8 and C16–C21 rings, respectively). Two independent C—H···π interactions via atoms H11 and H15 form a chain of molecular dimers in the crystallographic a direction (Fig. 2). These dimers are connected to similar neighboring chains of molecular dimers via one C—H···F interaction through atom H3, generating a sheet of molecules, as shown in Fig. 2, by a combination of inversion and translation operations A further C—H···π interaction generates a chain of molecules via a glide operation along the c axis (Fig. 3); this interaction links the sheets and gives rise to a three-dimensional network.

Fig. 4 depicts (II), with the atom-labelling scheme. In the tetrahydroindole ring, atoms C5 and C6 deviate from the C4/C9/C8/C7 plane by 0.340 (2) and −0.420 (2) Å, respectively. The two phenyl rings (C10–C15 and C16–C21) subtend an angle of 115.38 (4)° between their planes. Selected torsion angles are given in Table 3. The molecules pack via C—H···F interactions, along with two independent C—H···π interactions (Table 4). These C—H···π interactions connected through atoms H11 and H15 form a sheet motif in the bc plane, resulting in molecular dimers (Fig. 5; Cg1 and Cg2 are the centers of gravity N1/C2/C3/C9/C8 and C16–C21 rings, respectively). These dimers are linked via a unique C—H···F interaction through methyl atom H22A (Fig. 5), generating a sheet structure; there are only van der Waals interactions between the sheets.

In our earlier study (Choudhury et al., 2004b), we showed that, in the presence of a strong acceptor such as CO, the C—H···O interaction takes priority over C—H···F and C—H···π interactions. Although C—H···F interactions are weaker than C—H···O interactions, the former? appear to play a significant role in the crystal packing of the molecules in the crystal structure by a subtle change in the C—H···F and C—H···π interactions in the two structures described here. Our current results suggest that, while interactions involving `organic fluorine' have a significant influence in generating supramolecular assemblies in organic solids, their general use to predict, a priori, packing motifs is yet to be harnessed.

Experimental top

Compounds (I) and (II) were synthesized according to the procedure reported in the literature (Nagarajan et al., 1985). The compounds were crystallized from a solution in dichloromethane and hexane (1:3) by slow evaporation at 263 K. Colourless crystals of (I) grew as long rods, whereas crystals of (II) grew as pale-yellow prisms.

Refinement top

All H atoms were located from difference Fourier maps and were refined isotropically.

Computing details top

For both compounds, data collection: SMART (Bruker, 2004); cell refinement: SMART; data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-32 for Windows (Farrugia, 1997), POV-RAY (The POV-RAY Team, 2004) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 1990).

Figures top
[Figure 1] Fig. 1. : A view of (I), with displacement ellipsoids shown at the 50% probability level.
[Figure 2] Fig. 2. : A packing diagram of (I), showing the sheets of of molecules in the ab plane, linked via C—H···π and C—H···F interactions. [Symmetry codes: (i) x,1 + y,z; (ii) 1 − x,-y,-z; (iii) −x,-y,-z.] Corresponding geometric details are given in Table 2.
[Figure 3] Fig. 3. : A molecular chain in (I), generated via C—H···π interactions along the c axis. [Symmetry codes: (iv) x,1/2 − y,1/2 + z.]
[Figure 4] Fig. 4. : A view of (II), with displacment ellipsoids shown at the 50% probability level.
[Figure 5] Fig. 5. : A packing diagram of (II), showing a molecular sheet in the bc plane, generated via C—H···π and C—H···F interactions. [Symmetry codes: (i) x,y,z − 1; (ii) 1 − x,1 − y,1 − z; (iii) 1 − x,-y,2 − z.] Corresponding geometric details are in Table 4.
(I) 1-(4-fluorophenyl)-2-phenyl-4,5,6,7-tetrahydro-1H-indole top
Crystal data top
C20H18FNF(000) = 616
Mr = 291.35Dx = 1.272 Mg m3
Monoclinic, P21/cMelting point = 129–130 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.256 (6) ÅCell parameters from 758 reflections
b = 10.939 (7) Åθ = 2.3–24.5°
c = 15.169 (9) ŵ = 0.08 mm1
β = 97.75 (1)°T = 100 K
V = 1521.9 (17) Å3Rod, colourless
Z = 40.60 × 0.20 × 0.20 mm
Data collection top
Bruker SMART CCD area detector
diffractometer
3073 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.912, Tmax = 0.984k = 1313
15212 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0457P)2 + 0.5815P]
where P = (Fo2 + 2Fc2)/3
3073 reflections(Δ/σ)max < 0.001
271 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C20H18FNV = 1521.9 (17) Å3
Mr = 291.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.256 (6) ŵ = 0.08 mm1
b = 10.939 (7) ÅT = 100 K
c = 15.169 (9) Å0.60 × 0.20 × 0.20 mm
β = 97.75 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3073 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2619 reflections with I > 2σ(I)
Tmin = 0.912, Tmax = 0.984Rint = 0.030
15212 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.03Δρmax = 0.29 e Å3
3073 reflectionsΔρmin = 0.20 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.22476 (9)0.49091 (7)0.00613 (6)0.0334 (2)
N10.26904 (11)0.01196 (9)0.01684 (7)0.0180 (2)
C20.22719 (13)0.09328 (11)0.05254 (8)0.0182 (3)
C30.24698 (13)0.20934 (12)0.01825 (9)0.0201 (3)
C40.33881 (15)0.29738 (12)0.14326 (9)0.0242 (3)
C50.41394 (16)0.24149 (13)0.23020 (10)0.0270 (3)
C60.33994 (17)0.12287 (13)0.25364 (9)0.0278 (3)
C70.35343 (15)0.02321 (12)0.18405 (9)0.0229 (3)
C80.31226 (13)0.07806 (11)0.09390 (8)0.0188 (3)
C90.30096 (13)0.19992 (12)0.07379 (9)0.0200 (3)
C100.25635 (13)0.11820 (11)0.01305 (8)0.0176 (3)
C110.11982 (14)0.17268 (12)0.00857 (8)0.0190 (3)
C120.10853 (14)0.29893 (12)0.01476 (8)0.0211 (3)
C130.23514 (15)0.36721 (11)0.00112 (9)0.0229 (3)
C140.37191 (15)0.31565 (12)0.02365 (9)0.0240 (3)
C150.38205 (14)0.18927 (12)0.02957 (9)0.0208 (3)
C160.16892 (13)0.05249 (11)0.14285 (8)0.0185 (3)
C170.04968 (14)0.11477 (13)0.18938 (9)0.0225 (3)
C180.01169 (15)0.07642 (14)0.27338 (9)0.0259 (3)
C190.04425 (15)0.02418 (13)0.31266 (9)0.0255 (3)
C200.16461 (15)0.08536 (12)0.26833 (9)0.0235 (3)
C210.22644 (14)0.04735 (12)0.18428 (9)0.0211 (3)
H30.2292 (16)0.2842 (15)0.0534 (10)0.028 (4)*
H4A0.4044 (17)0.3616 (14)0.1198 (10)0.026 (4)*
H4B0.2492 (17)0.3410 (14)0.1554 (10)0.028 (4)*
H5A0.5192 (18)0.2231 (14)0.2235 (10)0.032 (4)*
H5B0.4159 (17)0.3019 (15)0.2786 (11)0.032 (4)*
H6A0.3822 (17)0.0921 (14)0.3132 (11)0.028 (4)*
H6B0.2308 (18)0.1394 (15)0.2557 (10)0.032 (4)*
H7A0.4555 (17)0.0098 (14)0.1906 (10)0.028 (4)*
H7B0.2909 (17)0.0475 (14)0.1931 (10)0.025 (4)*
H110.0339 (16)0.1221 (13)0.0206 (9)0.021 (4)*
H120.0154 (17)0.3377 (14)0.0301 (10)0.027 (4)*
H140.4570 (17)0.3668 (15)0.0329 (10)0.029 (4)*
H150.4775 (17)0.1489 (14)0.0434 (10)0.026 (4)*
H170.0101 (16)0.1855 (13)0.1622 (10)0.021 (4)*
H180.0925 (19)0.1214 (15)0.3040 (11)0.034 (4)*
H190.0026 (17)0.0505 (14)0.3710 (11)0.029 (4)*
H200.2057 (16)0.1567 (14)0.2954 (10)0.026 (4)*
H210.3107 (16)0.0917 (13)0.1536 (9)0.021 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0455 (5)0.0142 (4)0.0383 (5)0.0002 (3)0.0028 (4)0.0012 (3)
N10.0169 (5)0.0160 (5)0.0210 (5)0.0005 (4)0.0015 (4)0.0014 (4)
C20.0140 (6)0.0174 (6)0.0238 (7)0.0014 (5)0.0041 (5)0.0012 (5)
C30.0164 (6)0.0174 (6)0.0265 (7)0.0014 (5)0.0031 (5)0.0005 (5)
C50.0268 (7)0.0233 (7)0.0298 (8)0.0015 (6)0.0002 (6)0.0092 (6)
C40.0234 (7)0.0185 (6)0.0303 (7)0.0006 (5)0.0029 (6)0.0058 (6)
C60.0337 (8)0.0266 (7)0.0223 (7)0.0015 (6)0.0011 (6)0.0034 (6)
C70.0234 (7)0.0204 (7)0.0241 (7)0.0016 (5)0.0001 (5)0.0018 (5)
C80.0142 (6)0.0186 (6)0.0237 (7)0.0001 (5)0.0028 (5)0.0038 (5)
C90.0152 (6)0.0182 (6)0.0267 (7)0.0003 (5)0.0034 (5)0.0027 (5)
C100.0205 (6)0.0157 (6)0.0166 (6)0.0002 (5)0.0029 (5)0.0010 (5)
C110.0184 (6)0.0204 (6)0.0184 (6)0.0012 (5)0.0033 (5)0.0004 (5)
C120.0236 (7)0.0216 (7)0.0181 (6)0.0050 (5)0.0030 (5)0.0016 (5)
C130.0352 (7)0.0132 (6)0.0199 (6)0.0011 (5)0.0018 (5)0.0007 (5)
C140.0255 (7)0.0214 (7)0.0242 (7)0.0062 (5)0.0004 (5)0.0005 (5)
C150.0186 (6)0.0206 (7)0.0225 (6)0.0003 (5)0.0004 (5)0.0018 (5)
C160.0172 (6)0.0172 (6)0.0214 (6)0.0029 (5)0.0040 (5)0.0018 (5)
C170.0214 (7)0.0230 (7)0.0237 (7)0.0021 (5)0.0052 (5)0.0015 (5)
C180.0204 (7)0.0343 (8)0.0225 (7)0.0019 (6)0.0015 (5)0.0057 (6)
C190.0262 (7)0.0305 (8)0.0198 (7)0.0073 (6)0.0027 (5)0.0006 (6)
C200.0283 (7)0.0195 (7)0.0236 (7)0.0033 (5)0.0070 (5)0.0012 (5)
C210.0197 (6)0.0193 (6)0.0246 (7)0.0007 (5)0.0040 (5)0.0023 (5)
Geometric parameters (Å, º) top
F1—C131.3601 (17)C10—C151.3937 (18)
N1—C81.3869 (17)C10—C111.3957 (19)
N1—C21.3924 (17)C11—C121.387 (2)
N1—C101.4292 (18)C11—H110.965 (15)
C2—C31.3750 (19)C12—C131.383 (2)
C2—C161.4722 (19)C12—H120.961 (16)
C3—C91.422 (2)C13—C141.386 (2)
C3—H30.979 (16)C14—C151.388 (2)
C5—C61.531 (2)C14—H140.960 (16)
C5—C41.533 (2)C15—H150.984 (16)
C5—H5A1.013 (17)C16—C211.4005 (19)
C5—H5B0.987 (17)C16—C171.4037 (19)
C4—C91.5067 (19)C17—C181.388 (2)
C4—H4A1.024 (16)C17—H170.971 (15)
C4—H4B0.995 (16)C18—C191.385 (2)
C6—C71.534 (2)C18—H180.961 (17)
C6—H6A0.994 (16)C19—C201.393 (2)
C6—H6B1.031 (16)C19—H190.960 (16)
C7—C81.495 (2)C20—C211.389 (2)
C7—H7A1.004 (16)C20—H200.982 (15)
C7—H7B0.987 (15)C21—H210.981 (15)
C8—C91.368 (2)
C8—N1—C2108.86 (11)C3—C9—C4130.79 (12)
C8—N1—C10124.48 (11)C15—C10—C11120.76 (13)
C2—N1—C10126.38 (11)C15—C10—N1119.11 (11)
C3—C2—N1107.14 (12)C11—C10—N1120.12 (11)
C3—C2—C16130.19 (12)C12—C11—C10119.90 (12)
N1—C2—C16122.64 (11)C12—C11—H11120.3 (9)
C2—C3—C9108.41 (12)C10—C11—H11119.8 (9)
C2—C3—H3124.2 (9)C13—C12—C11118.14 (12)
C9—C3—H3127.3 (9)C13—C12—H12121.0 (9)
C6—C5—C4111.87 (12)C11—C12—H12120.9 (9)
C6—C5—H5A108.7 (9)F1—C13—C12118.31 (12)
C4—C5—H5A108.9 (9)F1—C13—C14118.49 (12)
C6—C5—H5B111.0 (9)C12—C13—C14123.19 (13)
C4—C5—H5B109.5 (9)C13—C14—C15118.22 (12)
H5A—C5—H5B106.6 (13)C13—C14—H14120.2 (9)
C9—C4—C5110.81 (12)C15—C14—H14121.6 (9)
C9—C4—H4A109.6 (8)C14—C15—C10119.77 (12)
C5—C4—H4A110.5 (8)C14—C15—H15120.7 (9)
C9—C4—H4B110.4 (9)C10—C15—H15119.4 (9)
C5—C4—H4B108.9 (9)C21—C16—C17118.27 (12)
H4A—C4—H4B106.4 (12)C21—C16—C2122.69 (11)
C5—C6—C7111.21 (12)C17—C16—C2119.03 (12)
C5—C6—H6A111.4 (9)C18—C17—C16120.76 (13)
C7—C6—H6A109.1 (9)C18—C17—H17120.0 (9)
C5—C6—H6B109.2 (9)C16—C17—H17119.2 (9)
C7—C6—H6B108.5 (9)C19—C18—C17120.31 (13)
H6A—C6—H6B107.4 (12)C19—C18—H18120.8 (10)
C8—C7—C6108.05 (12)C17—C18—H18118.9 (10)
C8—C7—H7A110.8 (9)C18—C19—C20119.69 (13)
C6—C7—H7A110.6 (9)C18—C19—H19120.5 (9)
C8—C7—H7B111.1 (9)C20—C19—H19119.7 (9)
C6—C7—H7B110.9 (9)C21—C20—C19120.21 (13)
H7A—C7—H7B105.4 (12)C21—C20—H20119.2 (9)
C9—C8—N1108.38 (12)C19—C20—H20120.6 (9)
C9—C8—C7126.68 (12)C20—C21—C16120.72 (12)
N1—C8—C7124.80 (12)C20—C21—H21119.3 (8)
C8—C9—C3107.20 (11)C16—C21—H21120.0 (8)
C8—C9—C4122.00 (12)
C8—N1—C2—C30.93 (13)C8—N1—C10—C11113.62 (13)
C10—N1—C2—C3174.98 (11)C2—N1—C10—C1159.54 (17)
C8—N1—C2—C16177.14 (11)C15—C10—C11—C120.73 (19)
C10—N1—C2—C163.09 (18)N1—C10—C11—C12178.09 (11)
N1—C2—C3—C90.37 (13)C10—C11—C12—C130.09 (18)
C16—C2—C3—C9177.50 (12)C11—C12—C13—F1179.07 (11)
C6—C5—C4—C942.60 (16)C11—C12—C13—C140.6 (2)
C4—C5—C6—C764.40 (16)F1—C13—C14—C15179.00 (12)
C5—C6—C7—C847.59 (16)C12—C13—C14—C150.7 (2)
C2—N1—C8—C91.15 (13)C13—C14—C15—C100.0 (2)
C10—N1—C8—C9175.33 (11)C11—C10—C15—C140.66 (19)
C2—N1—C8—C7174.87 (11)N1—C10—C15—C14178.17 (12)
C10—N1—C8—C70.68 (18)C3—C2—C16—C21141.34 (14)
C6—C7—C8—C915.50 (18)N1—C2—C16—C2141.08 (17)
C6—C7—C8—N1159.78 (12)C3—C2—C16—C1739.48 (19)
N1—C8—C9—C30.90 (14)N1—C2—C16—C17138.10 (12)
C7—C8—C9—C3175.02 (12)C21—C16—C17—C181.54 (19)
N1—C8—C9—C4179.55 (11)C2—C16—C17—C18177.68 (12)
C7—C8—C9—C43.6 (2)C16—C17—C18—C190.1 (2)
C2—C3—C9—C80.32 (14)C17—C18—C19—C201.4 (2)
C2—C3—C9—C4178.81 (12)C18—C19—C20—C211.4 (2)
C5—C4—C9—C89.98 (17)C19—C20—C21—C160.12 (19)
C5—C4—C9—C3171.72 (13)C17—C16—C21—C201.55 (18)
C8—N1—C10—C1567.54 (16)C2—C16—C21—C20177.64 (11)
C2—N1—C10—C15119.29 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.98 (2)2.56 (2)3.292 (2)131 (1)
C15—H15···Cg1ii0.98 (2)2.68 (2)3.495 (3)141 (1)
C11—H11···Cg1iii0.97 (2)2.82 (2)3.646 (3)144 (1)
C4—H4B···Cg2iv1.00 (2)2.82 (2)3.708 (3)149 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y+1/2, z+1/2.
(II) 1-(4-fluorophenyl)-6,6-dimethyl-2-phenyl-4,5,6,7-tetrahydro-1H-indole top
Crystal data top
C22H22FNZ = 2
Mr = 319.41F(000) = 340
Triclinic, P1Dx = 1.235 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.273 (2) ÅCell parameters from 945 reflections
b = 10.786 (2) Åθ = 2.4–24.4°
c = 10.936 (2) ŵ = 0.08 mm1
α = 61.647 (3)°T = 100 K
β = 65.525 (3)°Prism, pale yellow
γ = 69.210 (3)°0.55 × 0.50 × 0.40 mm
V = 858.9 (3) Å3
Data collection top
Bruker SMART CCD area detector
diffractometer
3474 independent reflections
Radiation source: fine-focus sealed tube3193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.011
ϕ and ω scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.938, Tmax = 0.969k = 1313
6945 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097All H-atom parameters refined
S = 1.05 w = 1/[σ2(Fo2) + (0.0503P)2 + 0.2958P]
where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max = 0.001
305 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C22H22FNγ = 69.210 (3)°
Mr = 319.41V = 858.9 (3) Å3
Triclinic, P1Z = 2
a = 9.273 (2) ÅMo Kα radiation
b = 10.786 (2) ŵ = 0.08 mm1
c = 10.936 (2) ÅT = 100 K
α = 61.647 (3)°0.55 × 0.50 × 0.40 mm
β = 65.525 (3)°
Data collection top
Bruker SMART CCD area detector
diffractometer
3474 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3193 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.969Rint = 0.011
6945 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.097All H-atom parameters refined
S = 1.05Δρmax = 0.30 e Å3
3474 reflectionsΔρmin = 0.26 e Å3
305 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.05379 (8)0.27107 (8)1.09367 (8)0.02903 (19)
N10.52616 (10)0.26153 (10)0.58141 (9)0.0159 (2)
C20.69352 (12)0.22494 (11)0.55271 (11)0.0158 (2)
C30.75945 (13)0.22901 (11)0.41254 (12)0.0169 (2)
C40.63309 (14)0.28979 (13)0.20741 (12)0.0210 (2)
C50.46415 (14)0.36120 (13)0.18770 (12)0.0206 (2)
C60.32642 (13)0.29664 (12)0.32177 (12)0.0195 (2)
C70.32203 (13)0.32121 (12)0.45158 (12)0.0186 (2)
C80.48947 (13)0.28668 (11)0.46001 (11)0.0169 (2)
C90.63108 (13)0.26859 (11)0.35434 (11)0.0174 (2)
C100.40660 (12)0.26320 (12)0.71529 (11)0.0162 (2)
C110.39443 (13)0.13754 (12)0.83999 (12)0.0178 (2)
C120.27696 (13)0.13993 (12)0.96953 (12)0.0199 (2)
C130.17318 (13)0.26877 (13)0.96883 (12)0.0201 (2)
C140.18285 (14)0.39517 (13)0.84746 (13)0.0217 (2)
C150.30232 (13)0.39180 (12)0.71896 (12)0.0195 (2)
C160.77715 (13)0.19596 (11)0.65491 (11)0.0166 (2)
C170.92614 (13)0.09977 (12)0.65109 (12)0.0199 (2)
C181.01508 (14)0.07499 (13)0.73892 (13)0.0234 (3)
C190.95596 (15)0.14383 (13)0.83469 (13)0.0243 (3)
C200.80713 (15)0.23747 (13)0.84182 (13)0.0232 (2)
C210.71887 (14)0.26442 (12)0.75242 (12)0.0196 (2)
C220.16442 (15)0.37317 (14)0.28941 (14)0.0255 (3)
C230.35162 (16)0.13617 (13)0.35860 (14)0.0255 (3)
H20.8750 (18)0.2132 (15)0.3617 (16)0.027 (4)*
H4A0.6708 (17)0.1948 (15)0.1977 (15)0.023 (3)*
H4B0.7141 (17)0.3491 (15)0.1277 (15)0.022 (3)*
H5A0.4604 (17)0.3548 (15)0.1005 (15)0.025 (3)*
H5B0.4456 (16)0.4660 (15)0.1659 (15)0.022 (3)*
H6A0.2698 (14)0.4270 (13)0.4381 (13)0.012 (3)*
H6B0.2498 (16)0.2624 (14)0.5445 (15)0.020 (3)*
H110.4663 (16)0.0496 (15)0.8355 (15)0.021 (3)*
H120.2667 (17)0.0523 (16)1.0580 (16)0.028 (4)*
H140.1085 (18)0.4819 (16)0.8535 (15)0.026 (3)*
H150.3152 (17)0.4796 (16)0.6308 (16)0.025 (3)*
H170.9685 (17)0.0496 (15)0.5849 (15)0.024 (3)*
H181.1176 (19)0.0077 (16)0.7324 (16)0.030 (4)*
H191.0159 (17)0.1267 (15)0.8974 (15)0.026 (3)*
H200.7633 (17)0.2857 (16)0.9100 (16)0.028 (4)*
H210.6151 (17)0.3352 (15)0.7572 (15)0.025 (3)*
H22A0.1626 (19)0.3574 (17)0.2078 (18)0.038 (4)*
H22B0.1441 (18)0.4789 (17)0.2625 (16)0.031 (4)*
H22C0.073 (2)0.3364 (17)0.3770 (18)0.035 (4)*
H23A0.262 (2)0.0942 (17)0.4444 (18)0.036 (4)*
H23B0.4538 (19)0.0808 (17)0.3848 (16)0.031 (4)*
H23C0.3563 (18)0.1229 (17)0.2735 (17)0.035 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0225 (4)0.0422 (4)0.0224 (4)0.0096 (3)0.0046 (3)0.0196 (3)
N10.0148 (4)0.0181 (4)0.0141 (4)0.0031 (3)0.0035 (3)0.0065 (4)
C20.0149 (5)0.0139 (5)0.0169 (5)0.0030 (4)0.0037 (4)0.0054 (4)
C30.0164 (5)0.0167 (5)0.0163 (5)0.0038 (4)0.0027 (4)0.0067 (4)
C40.0208 (5)0.0262 (6)0.0161 (5)0.0050 (5)0.0039 (4)0.0092 (5)
C50.0243 (6)0.0221 (6)0.0156 (5)0.0055 (4)0.0073 (4)0.0056 (4)
C60.0203 (5)0.0206 (5)0.0194 (5)0.0046 (4)0.0077 (4)0.0071 (4)
C70.0170 (5)0.0214 (6)0.0172 (5)0.0044 (4)0.0047 (4)0.0071 (4)
C80.0190 (5)0.0169 (5)0.0151 (5)0.0044 (4)0.0053 (4)0.0055 (4)
C90.0183 (5)0.0173 (5)0.0159 (5)0.0045 (4)0.0041 (4)0.0060 (4)
C100.0143 (5)0.0201 (5)0.0155 (5)0.0043 (4)0.0029 (4)0.0086 (4)
C110.0168 (5)0.0179 (5)0.0190 (5)0.0027 (4)0.0053 (4)0.0078 (4)
C120.0202 (5)0.0236 (6)0.0162 (5)0.0089 (4)0.0040 (4)0.0059 (5)
C130.0153 (5)0.0315 (6)0.0174 (5)0.0076 (4)0.0002 (4)0.0146 (5)
C140.0180 (5)0.0240 (6)0.0252 (6)0.0002 (4)0.0057 (5)0.0148 (5)
C150.0204 (5)0.0194 (5)0.0183 (5)0.0033 (4)0.0060 (4)0.0073 (5)
C160.0170 (5)0.0162 (5)0.0150 (5)0.0065 (4)0.0038 (4)0.0034 (4)
C170.0188 (5)0.0201 (5)0.0188 (5)0.0039 (4)0.0043 (4)0.0071 (4)
C180.0191 (5)0.0233 (6)0.0244 (6)0.0048 (5)0.0086 (5)0.0043 (5)
C190.0281 (6)0.0255 (6)0.0219 (6)0.0116 (5)0.0125 (5)0.0025 (5)
C200.0298 (6)0.0240 (6)0.0202 (5)0.0099 (5)0.0079 (5)0.0082 (5)
C210.0207 (5)0.0186 (5)0.0195 (5)0.0050 (4)0.0056 (4)0.0069 (4)
C220.0238 (6)0.0286 (6)0.0280 (6)0.0048 (5)0.0127 (5)0.0099 (5)
C230.0295 (6)0.0222 (6)0.0268 (6)0.0075 (5)0.0084 (5)0.0093 (5)
Geometric parameters (Å, º) top
F1—C131.3603 (12)C11—H110.956 (14)
N1—C81.3851 (13)C12—C131.3799 (17)
N1—C21.3935 (14)C12—H120.979 (15)
N1—C101.4280 (13)C13—C141.3777 (17)
C2—C31.3799 (15)C14—C151.3906 (16)
C2—C161.4706 (14)C14—H140.959 (15)
C3—C91.4189 (15)C15—H150.979 (15)
C3—H20.976 (15)C16—C211.4007 (16)
C4—C91.5046 (15)C16—C171.4010 (15)
C4—C51.5360 (16)C17—C181.3894 (16)
C4—H4A1.000 (14)C17—H170.978 (14)
C4—H4B1.001 (14)C18—C191.3867 (18)
C5—C61.5414 (16)C18—H180.969 (15)
C5—H5A1.004 (14)C19—C201.3882 (17)
C5—H5B1.002 (14)C19—H190.968 (14)
C6—C231.5301 (16)C20—C211.3908 (16)
C6—C221.5317 (16)C20—H200.980 (15)
C6—C71.5457 (15)C21—H210.993 (14)
C7—C81.4944 (15)C22—H22A0.992 (17)
C7—H6A1.032 (12)C22—H22B0.998 (16)
C7—H6B1.005 (14)C22—H22C1.000 (17)
C8—C91.3685 (15)C23—H23A0.999 (16)
C10—C151.3890 (15)C23—H23B0.998 (16)
C10—C111.3911 (15)C23—H23C0.988 (16)
C11—C121.3894 (15)
C8—N1—C2108.80 (9)C10—C11—H11119.6 (8)
C8—N1—C10123.45 (9)C13—C12—C11118.02 (10)
C2—N1—C10127.58 (9)C13—C12—H12121.1 (9)
C3—C2—N1107.14 (9)C11—C12—H12120.9 (9)
C3—C2—C16128.65 (10)F1—C13—C14118.17 (10)
N1—C2—C16124.14 (9)F1—C13—C12118.48 (10)
C2—C3—C9108.20 (10)C14—C13—C12123.35 (10)
C2—C3—H2124.9 (8)C13—C14—C15118.08 (10)
C9—C3—H2126.8 (8)C13—C14—H14119.8 (9)
C9—C4—C5110.28 (9)C15—C14—H14122.1 (9)
C9—C4—H4A109.4 (8)C10—C15—C14119.98 (10)
C5—C4—H4A110.8 (8)C10—C15—H15119.2 (8)
C9—C4—H4B110.8 (8)C14—C15—H15120.8 (8)
C5—C4—H4B110.2 (8)C21—C16—C17117.85 (10)
H4A—C4—H4B105.2 (11)C21—C16—C2123.32 (10)
C4—C5—C6113.82 (9)C17—C16—C2118.78 (10)
C4—C5—H5A109.5 (8)C18—C17—C16121.23 (11)
C6—C5—H5A109.5 (8)C18—C17—H17119.5 (8)
C4—C5—H5B108.3 (8)C16—C17—H17119.3 (8)
C6—C5—H5B108.9 (8)C19—C18—C17120.24 (11)
H5A—C5—H5B106.6 (11)C19—C18—H18121.4 (9)
C23—C6—C22109.11 (10)C17—C18—H18118.3 (9)
C23—C6—C5110.21 (10)C18—C19—C20119.27 (10)
C22—C6—C5109.50 (9)C18—C19—H19121.2 (9)
C23—C6—C7110.68 (9)C20—C19—H19119.6 (9)
C22—C6—C7108.25 (9)C19—C20—C21120.69 (11)
C5—C6—C7109.06 (9)C19—C20—H20120.1 (9)
C8—C7—C6110.07 (9)C21—C20—H20119.2 (9)
C8—C7—H6A110.3 (7)C20—C21—C16120.69 (11)
C6—C7—H6A109.0 (7)C20—C21—H21118.7 (8)
C8—C7—H6B111.5 (8)C16—C21—H21120.6 (8)
C6—C7—H6B110.2 (8)C6—C22—H22A110.1 (9)
H6A—C7—H6B105.7 (10)C6—C22—H22B111.9 (9)
C9—C8—N1108.44 (9)H22A—C22—H22B108.3 (13)
C9—C8—C7126.84 (10)C6—C22—H22C110.8 (9)
N1—C8—C7124.67 (9)H22A—C22—H22C108.9 (13)
C8—C9—C3107.41 (9)H22B—C22—H22C106.8 (12)
C8—C9—C4121.72 (10)C6—C23—H23A110.5 (9)
C3—C9—C4130.87 (10)C6—C23—H23B112.1 (9)
C15—C10—C11120.56 (10)H23A—C23—H23B106.6 (12)
C15—C10—N1119.07 (9)C6—C23—H23C109.3 (9)
C11—C10—N1120.37 (9)H23A—C23—H23C109.8 (13)
C12—C11—C10119.99 (10)H23B—C23—H23C108.5 (12)
C12—C11—H11120.4 (8)
C8—N1—C2—C30.52 (12)C8—N1—C10—C1566.33 (14)
C10—N1—C2—C3175.81 (9)C2—N1—C10—C15119.02 (12)
C8—N1—C2—C16177.66 (9)C8—N1—C10—C11113.35 (12)
C10—N1—C2—C167.05 (16)C2—N1—C10—C1161.30 (14)
N1—C2—C3—C90.01 (12)C15—C10—C11—C120.16 (16)
C16—C2—C3—C9176.96 (10)N1—C10—C11—C12179.52 (9)
C9—C4—C5—C644.48 (13)C10—C11—C12—C131.13 (16)
C4—C5—C6—C2358.79 (12)C11—C12—C13—F1177.49 (9)
C4—C5—C6—C22178.82 (9)C11—C12—C13—C141.63 (17)
C4—C5—C6—C762.90 (12)F1—C13—C14—C15178.34 (9)
C23—C6—C7—C876.83 (11)C12—C13—C14—C150.78 (17)
C22—C6—C7—C8163.64 (9)C11—C10—C15—C141.03 (16)
C5—C6—C7—C844.57 (12)N1—C10—C15—C14178.65 (9)
C2—N1—C8—C90.86 (12)C13—C14—C15—C100.58 (16)
C10—N1—C8—C9176.39 (9)C3—C2—C16—C21143.96 (12)
C2—N1—C8—C7176.69 (10)N1—C2—C16—C2132.54 (16)
C10—N1—C8—C71.16 (16)C3—C2—C16—C1733.21 (16)
C6—C7—C8—C914.42 (15)N1—C2—C16—C17150.29 (10)
C6—C7—C8—N1162.68 (10)C21—C16—C17—C181.26 (16)
N1—C8—C9—C30.85 (12)C2—C16—C17—C18176.06 (10)
C7—C8—C9—C3176.64 (10)C16—C17—C18—C191.15 (17)
N1—C8—C9—C4179.35 (10)C17—C18—C19—C200.06 (17)
C7—C8—C9—C43.16 (17)C18—C19—C20—C211.12 (17)
C2—C3—C9—C80.53 (12)C19—C20—C21—C160.99 (17)
C2—C3—C9—C4179.69 (11)C17—C16—C21—C200.20 (16)
C5—C4—C9—C811.45 (15)C2—C16—C21—C20176.99 (10)
C5—C4—C9—C3168.80 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···F1i0.99 (2)2.50 (2)3.422 (2)154 (1)
C15—H15···Cg1ii0.98 (2)2.73 (2)3.549 (2)141 (1)
C12—H12···Cg2iii0.98 (2)2.62 (2)3.659 (2)154 (1)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC20H18FNC22H22FN
Mr291.35319.41
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)100100
a, b, c (Å)9.256 (6), 10.939 (7), 15.169 (9)9.273 (2), 10.786 (2), 10.936 (2)
α, β, γ (°)90, 97.75 (1), 9061.647 (3), 65.525 (3), 69.210 (3)
V3)1521.9 (17)858.9 (3)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.080.08
Crystal size (mm)0.60 × 0.20 × 0.200.55 × 0.50 × 0.40
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Bruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.912, 0.9840.938, 0.969
No. of measured, independent and
observed [I > 2σ(I)] reflections
15212, 3073, 2619 6945, 3474, 3193
Rint0.0300.011
(sin θ/λ)max1)0.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03 0.038, 0.097, 1.05
No. of reflections30733474
No. of parameters271305
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.29, 0.200.30, 0.26

Computer programs: SMART (Bruker, 2004), SMART, SAINT (Bruker, 2004), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-32 for Windows (Farrugia, 1997), POV-RAY (The POV-RAY Team, 2004) and CAMERON (Watkin et al., 1993), PLATON (Spek, 1990).

Selected torsion angles (º) for (I) top
C10—N1—C2—C163.09 (18)C6—C7—C8—C915.50 (18)
C6—C5—C4—C942.60 (16)C7—C8—C9—C43.6 (2)
C4—C5—C6—C764.40 (16)C5—C4—C9—C89.98 (17)
C5—C6—C7—C847.59 (16)C8—N1—C10—C11113.62 (13)
C10—N1—C8—C9175.33 (11)N1—C2—C16—C17138.10 (12)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C3—H3···F1i0.98 (2)2.56 (2)3.292 (2)131 (1)
C15—H15···Cg1ii0.98 (2)2.68 (2)3.495 (3)141 (1)
C11—H11···Cg1iii0.97 (2)2.82 (2)3.646 (3)144 (1)
C4—H4B···Cg2iv1.00 (2)2.82 (2)3.708 (3)149 (1)
Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y+1/2, z+1/2.
Selected torsion angles (º) for (II) top
C10—N1—C2—C167.05 (16)C6—C7—C8—C914.42 (15)
C9—C4—C5—C644.48 (13)C7—C8—C9—C43.16 (17)
C4—C5—C6—C762.90 (12)C8—N1—C10—C11113.35 (12)
C5—C6—C7—C844.57 (12)N1—C2—C16—C17150.29 (10)
C10—N1—C8—C9176.39 (9)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C22—H22A···F1i0.99 (2)2.50 (2)3.422 (2)154 (1)
C15—H15···Cg1ii0.98 (2)2.73 (2)3.549 (2)141 (1)
C12—H12···Cg2iii0.98 (2)2.62 (2)3.659 (2)154 (1)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x+1, y, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds