Download citation
Download citation
link to html
The title compound, C21H24O6, is the reduced form of curcumin, and exhibits important cosmoceutical properties. The mol­ecule is non-planar and the benzene rings positioned at the ends of the heptane chain are orthogonally placed, with a dihedral angle of 84.09 (7)° between them. The molecular geometry and H-atom locations reveal that the `heptane-3,5-dione' moiety exists in the keto–enol form, with the hydroxy H atom disordered over two adjacent sites. The packing of the mol­ecules in the lattice is directed by strong O—H...O intermolecular hydrogen bonds, which generate two-dimensional sheets. These sheets are linked by C—H...O hydrogen bonds and weak C—H...π interactions to develop a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104015549/fg1755sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104015549/fg1755Isup2.hkl
Contains datablock I

CCDC reference: 248179

Comment top

Tetrahydrocurcuminoids such as the title compound, (I), are derived from curcuminoids such as (II) and may be extracted from the roots of curcuma longa, commonly called turmeric root (Govindarajan, 1980). Tetrahydrocurcuminoids are colourless, unlike the yellow curcuminoids. They could therefore be used in colour-free foods and cosmetic products, which currently employ conventional synthetic antioxidants such as butylated hydroxytoluene (BHT). An antioxidant used in a cosmetic application should have the capability to quench efficiently any radicals on the surface of the skin. In this context, compound (I) displays superior free-radical scavenging ability and also exhibits antioxidant, antiinflammatory and skin-lightening actions (Sugiyama et al., 1996; Srihari Rao et al., 1982) and anticancer activity (Huang et al., 1995). It is thought that the p-hydroxy functional groups in (I) are responsible for the compound's antioxidant and chemopreventive action (Rao et al., 1995; Halliwell et al., 1985). We have established the crystal structure of (I) in the hope that it will assist in pharmocological studies of the compound. \sch

Electron delocalization and intramolecular hydrogen bonding in the keto-enol moiety –CO—HCC—OH have been studied in a number of molecules (Semmingsen, 1976) and in curcuminoid structures (Mostad, 1994; Arrieta et al., 2000; Tonnesen et al., 1982). Of the possible tautomeric forms, it appears that, in the crystal phase, β-diketones prefer the cis-enol arrangement stabilized by a strong intramolecular hydrogen bond.

A view of (I) with the labelling scheme is shown in Fig. 1 and the principal geometry details of the keto-enol function are given in Table 1. A difference map (Fig. 2) clearly established that there is only one H atom at C4 and that the `dione' adopts the expected keto-enol form, but with the hydroxy H atom essentially equally disordered between atoms O3 and O5 [respective hydroxy-atom occupancies 0.54 (4) and 0.46 (4)], corresponding to structures (Ia) and (Ib). The key bond lengths (Table 1) are entirely consistent with this disorder model and with strong intramolecular O3—H···O5 and O5—H···O3 hydrogen bonds (Table 2). The keto-enol moiety C3—C5/O3/O5 is planar [deviations in the range −0.012 (1) to 0.015 (1) Å]. The aromatic rings C11—C16 and C71—C76 form interplanar angles of 88.4 (1) and 9.9 (1)°, respectively, with the keto-enol plane and 88.4 (1)° with one another.

The unit-occupancy hydroxy groups O14—H14 and O74—H74 both take part in strong bifurcated intra- and intermolecular O—H···O hydrogen bonds which, with a C—H···O hydrogen bond (Table 2), serve to link the molecules into sheets in the (1,1,0) plane entirely by simple translation, as shown in Fig. 3. In this way, large R55(42) rings (Bernstein et al., 1995) are developed utilizing five O—H···O hydrogen bonds.

The packing of (I) is further stabilized into a three-dimensional network by C—H···O and by C—H···π intermolecular interactions, which serve to link inversion-related sheets. Fig. 4 shows an R22(30) ring generated by pairs of inversion-related C12—H12···O74(2 − x,1 − y,1 − z) hydrogen bonds (Table 2). The hydrogen-bonded sheets are further linked by weak C—H···π interactions between inversion- and translation-related molecules, as shown in Fig. 5 (details in Table 2). A combination of aromatic C—H···π and C—H···O interactions generate different packing motifs with altered molecular conformations. This may have a significant impact on the biological activity of the compound.

Table 2. Cg1 denotes the centroid of the C11–C16 ring and Cg2 denotes the centroid of the C71–C76 ring.

Experimental top

Curcumin, (II), was converted to tetrahydrocurcumin, (I), by hydrogenation, with PtO2 as the catalyst, according to the method of Uehara et al. (1987). Single crystals of (I) were grown by slow evaporation of a solution in methanol.

Refinement top

All H atoms were visible in difference maps. It was clear that there was H-atom disorder at the O3 and O5 sites, and this was allowed for by refinement of linked occupancy parameters for atoms H3 and H5 [final values 0.54 (4) and 0.46 (4)]. All H atoms were treated as riding, with C—H = 0.93 for aromatic H, 0.97 for CH2 H and 0.96 Å for CH3 H, and with Uiso(methyl H) = 1.5Ueq(C) and all other Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART; data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. The structure of (I), showing the atom-numbering scheme and with 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A difference map in the plane of the keto-enol system, showing the hydroxy H-atom disorder at O3 and O5 and the single H atom at C4. Contours are drawn at 0.05 e Å−3.
[Figure 3] Fig. 3. A packing diagram for (I), showing the hydrogen-bonded sheet of molecules. Atoms labelled with an asterisk (*), dollar () or hash (#) are at the symmetry positions (1 + x, 1 + y, 1 + z), (x, y, z − 1) and (x, y, 1 + z), respectively.
[Figure 4] Fig. 4. A diagram showing pairs of molecules about the inversion centre at (1,1/2,1/2) linked to form a dimer via C—H···O interactions. Atoms labelled with an asterisk (*) are at the symmetry position (2 − x,1 − y,1 − z).
[Figure 5] Fig. 5. A diagram showing the development of a chain of molecules in the c direction via weak C—H···π interactions, with links generated by a combination of inversion and translation. Atoms labelled with an asterisk (*), dollar () or hash (#) are at the symmetry positions (1 − x, 1 − y, −z), (x, y, 1 + z) and (1 − x, 1 − y, 1 − z), respectively.
1,7-Bis(4-hydroxy-3-methoxyphenyl)heptane-3,5-dione top
Crystal data top
C21H24O6Z = 2
Mr = 372.40F(000) = 396
Triclinic, P1Dx = 1.266 Mg m3
Hall symbol: -P 1Melting point = 371–372 K
a = 7.981 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.388 (3) ÅCell parameters from 400 reflections
c = 12.497 (3) Åθ = 2.6–20.9°
α = 117.065 (3)°µ = 0.09 mm1
β = 100.394 (10)°T = 293 K
γ = 94.856 (3)°Prism, off-white
V = 976.7 (5) Å30.40 × 0.35 × 0.30 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3933 independent reflections
Radiation source: fine-focus sealed3244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
Detector resolution: 0.3 pixels mm-1θmax = 27.1°, θmin = 1.9°
ϕ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1414
Tmin = 0.893, Tmax = 0.981l = 1515
10125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.171H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0943P)2 + 0.1978P]
where P = (Fo2 + 2Fc2)/3
3933 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C21H24O6γ = 94.856 (3)°
Mr = 372.40V = 976.7 (5) Å3
Triclinic, P1Z = 2
a = 7.981 (3) ÅMo Kα radiation
b = 11.388 (3) ŵ = 0.09 mm1
c = 12.497 (3) ÅT = 293 K
α = 117.065 (3)°0.40 × 0.35 × 0.30 mm
β = 100.394 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3244 reflections with I > 2σ(I)
Tmin = 0.893, Tmax = 0.981Rint = 0.014
10125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.171H-atom parameters constrained
S = 1.06Δρmax = 0.30 e Å3
3933 reflectionsΔρmin = 0.36 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O30.39116 (19)0.10484 (12)0.15185 (11)0.0695 (4)
H30.41560.11740.22330.083*0.54 (4)
O50.5533 (2)0.20794 (16)0.37143 (12)0.0866 (5)
H50.50180.14720.30240.104*0.46 (4)
O130.5788 (2)0.16537 (16)0.39619 (13)0.0808 (4)
O140.30604 (19)0.25057 (16)0.47282 (12)0.0746 (4)
H140.38680.22460.50400.089*
O731.0931 (2)0.91069 (13)0.84928 (12)0.0770 (4)
O741.17662 (19)0.85429 (13)1.03595 (12)0.0748 (4)
H741.20830.92161.03090.090*
C10.4644 (3)0.32948 (19)0.01914 (16)0.0664 (5)
H1A0.58920.35700.05170.080*
H1B0.41120.40130.07050.080*
C20.4046 (3)0.20418 (18)0.02555 (15)0.0629 (5)
H2A0.27870.18400.00160.075*
H2B0.44460.13030.03550.075*
C30.4626 (2)0.20850 (16)0.14839 (14)0.0519 (4)
C40.5807 (2)0.31142 (17)0.25120 (15)0.0586 (4)
H40.63120.38500.24640.070*
C50.6245 (2)0.30593 (19)0.36145 (15)0.0638 (5)
C60.7564 (3)0.4152 (3)0.47335 (18)0.0936 (8)
H6A0.86480.38330.47960.112*
H6B0.77720.49210.46000.112*
C70.7092 (3)0.4592 (2)0.58977 (19)0.0894 (7)
H7A0.68130.38090.60000.107*
H7B0.60400.49530.58430.107*
C110.4176 (2)0.30701 (18)0.11265 (16)0.0606 (4)
C120.5203 (2)0.24394 (18)0.19180 (16)0.0604 (4)
H120.61550.21480.16360.072*
C130.4842 (2)0.22343 (17)0.31199 (16)0.0573 (4)
C140.3407 (2)0.26661 (18)0.35512 (16)0.0585 (4)
C150.2363 (3)0.3266 (2)0.2782 (2)0.0697 (5)
H150.13970.35410.30690.084*
C160.2739 (3)0.3464 (2)0.1577 (2)0.0712 (5)
H160.20150.38670.10640.085*
C170.7194 (3)0.1110 (3)0.3642 (2)0.0909 (7)
H17A0.80350.18100.29340.136*
H17B0.77200.07200.43270.136*
H17C0.67870.04310.34470.136*
C710.8420 (2)0.56352 (18)0.70586 (16)0.0635 (5)
C720.9076 (2)0.68742 (18)0.71750 (15)0.0606 (4)
H720.87510.70430.65130.073*
C731.0208 (2)0.78580 (16)0.82674 (15)0.0541 (4)
C741.0678 (2)0.76016 (16)0.92587 (15)0.0536 (4)
C751.0056 (2)0.63703 (18)0.91353 (17)0.0615 (4)
H751.03930.61930.97910.074*
C760.8930 (2)0.53917 (19)0.80371 (18)0.0665 (5)
H760.85160.45630.79630.080*
C771.0531 (4)0.9437 (2)0.7527 (2)0.0900 (7)
H77A1.09130.88260.68270.135*
H77B1.11081.03380.78080.135*
H77C0.93000.93730.72900.135*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0938 (9)0.0544 (7)0.0412 (6)0.0169 (6)0.0000 (6)0.0183 (5)
O50.1199 (12)0.0797 (10)0.0417 (7)0.0229 (9)0.0039 (7)0.0293 (7)
O130.0994 (10)0.1012 (11)0.0644 (8)0.0414 (9)0.0281 (7)0.0519 (8)
O140.0819 (9)0.0921 (10)0.0566 (7)0.0116 (8)0.0003 (6)0.0485 (7)
O730.1028 (10)0.0530 (7)0.0555 (7)0.0058 (7)0.0200 (7)0.0273 (6)
O740.0913 (9)0.0552 (7)0.0546 (7)0.0109 (6)0.0246 (6)0.0264 (6)
C10.0852 (12)0.0603 (10)0.0480 (9)0.0045 (9)0.0094 (8)0.0252 (8)
C20.0742 (11)0.0594 (10)0.0432 (8)0.0036 (8)0.0028 (8)0.0217 (7)
C30.0593 (9)0.0511 (8)0.0389 (7)0.0051 (7)0.0111 (6)0.0175 (6)
C40.0665 (10)0.0553 (9)0.0421 (8)0.0086 (8)0.0095 (7)0.0183 (7)
C50.0692 (11)0.0664 (11)0.0395 (8)0.0097 (8)0.0054 (7)0.0186 (8)
C60.0854 (14)0.1123 (18)0.0437 (10)0.0374 (13)0.0029 (9)0.0207 (11)
C70.0701 (12)0.0857 (15)0.0587 (12)0.0178 (11)0.0075 (10)0.0014 (10)
C110.0731 (11)0.0568 (10)0.0525 (9)0.0052 (8)0.0091 (8)0.0301 (8)
C120.0680 (10)0.0652 (10)0.0534 (9)0.0130 (8)0.0054 (8)0.0364 (8)
C130.0671 (10)0.0589 (9)0.0515 (9)0.0106 (8)0.0098 (8)0.0330 (8)
C140.0630 (10)0.0600 (10)0.0535 (9)0.0002 (8)0.0014 (7)0.0357 (8)
C150.0619 (10)0.0831 (13)0.0764 (12)0.0160 (9)0.0092 (9)0.0511 (11)
C160.0754 (12)0.0785 (13)0.0722 (12)0.0213 (10)0.0233 (10)0.0436 (11)
C170.0986 (16)0.0971 (17)0.0854 (16)0.0427 (14)0.0287 (13)0.0446 (13)
C710.0540 (9)0.0585 (10)0.0497 (9)0.0053 (7)0.0069 (7)0.0074 (8)
C720.0583 (9)0.0628 (10)0.0417 (8)0.0052 (8)0.0028 (7)0.0157 (7)
C730.0548 (9)0.0461 (8)0.0475 (8)0.0062 (7)0.0030 (7)0.0170 (7)
C740.0527 (8)0.0480 (8)0.0456 (8)0.0057 (7)0.0038 (6)0.0169 (7)
C750.0645 (10)0.0570 (10)0.0571 (10)0.0042 (8)0.0047 (8)0.0273 (8)
C760.0689 (11)0.0526 (9)0.0626 (11)0.0031 (8)0.0126 (9)0.0188 (8)
C770.1248 (19)0.0683 (12)0.0658 (12)0.0005 (12)0.0125 (12)0.0389 (11)
Geometric parameters (Å, º) top
O3—C31.289 (2)C7—H7A0.97
O3—H30.82C7—H7B0.97
O5—C51.276 (2)C11—C121.383 (3)
O5—H50.82C11—C161.385 (3)
O13—C131.361 (2)C12—C131.381 (2)
O13—C171.408 (3)C12—H120.93
O14—C141.369 (2)C13—C141.399 (2)
O14—H140.82C14—C151.368 (3)
O73—C731.369 (2)C15—C161.388 (3)
O73—C771.412 (2)C15—H150.93
O74—C741.3657 (19)C16—H160.93
O74—H740.82C17—H17A0.96
C1—C21.508 (3)C17—H17B0.96
C1—C111.515 (2)C17—H17C0.96
C1—H1A0.97C71—C761.373 (3)
C1—H1B0.97C71—C721.395 (3)
C2—C31.498 (2)C72—C731.388 (2)
C2—H2A0.97C72—H720.93
C2—H2B0.97C73—C741.393 (2)
C3—C41.385 (2)C74—C751.376 (2)
C4—C51.390 (2)C75—C761.388 (3)
C4—H40.93C75—H750.93
C5—C61.509 (2)C76—H760.93
C6—C71.441 (3)C77—H77A0.96
C6—H6A0.97C77—H77B0.96
C6—H6B0.97C77—H77C0.96
C7—C711.518 (2)
C3—O3—H3109.5C11—C12—H12119.4
C5—O5—H5109.5O13—C13—C12125.91 (16)
C13—O13—C17118.73 (16)O13—C13—C14114.48 (15)
C14—O14—H14109.5C12—C13—C14119.61 (17)
C73—O73—C77117.94 (14)C15—C14—O14120.17 (16)
C74—O74—H74109.5C15—C14—C13119.51 (16)
C2—C1—C11111.59 (15)O14—C14—C13120.32 (17)
C2—C1—H1A109.3C14—C15—C16120.32 (18)
C11—C1—H1A109.3C14—C15—H15119.8
C2—C1—H1B109.3C16—C15—H15119.8
C11—C1—H1B109.3C11—C16—C15120.89 (19)
H1A—C1—H1B108.0C11—C16—H16119.6
C1—C2—C3116.56 (14)C15—C16—H16119.6
C3—C2—H2A108.2O13—C17—H17A109.5
C1—C2—H2A108.2O13—C17—H17B109.5
C3—C2—H2B108.2H17A—C17—H17B109.5
C1—C2—H2B108.2O13—C17—H17C109.5
H2A—C2—H2B107.3H17A—C17—H17C109.5
O3—C3—C2113.52 (14)H17B—C17—H17C109.5
O3—C3—C4121.12 (15)C76—C71—C72119.02 (15)
C2—C3—C4125.36 (15)C76—C71—C7119.99 (19)
C3—C4—C5120.71 (16)C72—C71—C7120.92 (19)
C3—C4—H4119.6C73—C72—C71120.80 (17)
C5—C4—H4119.6C73—C72—H72119.6
O5—C5—C4120.83 (15)C71—C72—H72119.6
O5—C5—C6117.67 (17)O73—C73—C72126.16 (16)
C4—C5—C6121.50 (17)O73—C73—C74114.58 (13)
C7—C6—C5115.39 (18)C72—C73—C74119.26 (16)
C7—C6—H6A108.4O74—C74—C75118.54 (15)
C5—C6—H6A108.4O74—C74—C73121.55 (15)
C7—C6—H6B108.4C75—C74—C73119.90 (15)
C5—C6—H6B108.4C74—C75—C76120.35 (17)
H6A—C6—H6B107.5C74—C75—H75119.8
C6—C7—C71117.27 (18)C76—C75—H75119.8
C6—C7—H7A108.0C71—C76—C75120.65 (17)
C71—C7—H7A108.0C71—C76—H76119.7
C6—C7—H7B108.0C75—C76—H76119.7
C71—C7—H7B108.0O73—C77—H77A109.5
H7A—C7—H7B107.2O73—C77—H77B109.5
C12—C11—C16118.39 (17)H77A—C77—H77B109.5
C12—C11—C1119.31 (17)O73—C77—H77C109.5
C16—C11—C1122.30 (18)H77A—C77—H77C109.5
C13—C12—C11121.26 (16)H77B—C77—H77C109.5
C13—C12—H12119.4
C11—C1—C2—C3172.57 (16)O14—C14—C15—C16178.18 (17)
C1—C2—C3—O3172.36 (17)C13—C14—C15—C161.0 (3)
C1—C2—C3—C47.5 (3)C12—C11—C16—C151.8 (3)
O3—C3—C4—C50.4 (3)C1—C11—C16—C15178.82 (17)
C2—C3—C4—C5179.42 (18)C14—C15—C16—C110.5 (3)
C3—C4—C5—O52.0 (3)C6—C7—C71—C76125.7 (3)
C3—C4—C5—C6178.3 (2)C6—C7—C71—C7257.5 (3)
O5—C5—C6—C743.9 (4)C76—C71—C72—C730.9 (3)
C4—C5—C6—C7135.7 (3)C7—C71—C72—C73175.95 (17)
C5—C6—C7—C71176.7 (2)C77—O73—C73—C721.3 (3)
C2—C1—C11—C1280.3 (2)C77—O73—C73—C74179.3 (2)
C2—C1—C11—C1699.1 (2)C71—C72—C73—O73179.85 (17)
C16—C11—C12—C131.7 (3)C71—C72—C73—C740.5 (3)
C1—C11—C12—C13178.90 (16)O73—C73—C74—O740.4 (3)
C17—O13—C13—C125.2 (3)C72—C73—C74—O74178.99 (16)
C17—O13—C13—C14176.06 (19)O73—C73—C74—C75178.86 (16)
C11—C12—C13—O13178.44 (17)C72—C73—C74—C751.7 (3)
C11—C12—C13—C140.3 (3)O74—C74—C75—C76179.18 (17)
O13—C13—C14—C15179.96 (17)C73—C74—C75—C761.5 (3)
C12—C13—C14—C151.1 (3)C72—C71—C76—C751.1 (3)
O13—C13—C14—O140.8 (2)C7—C71—C76—C75175.75 (18)
C12—C13—C14—O14178.08 (16)C74—C75—C76—C710.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.821.742.472 (2)147
O5—H5···O30.821.752.472 (2)146
O14—H14···O5i0.822.182.934 (2)153
O14—H14···O130.822.212.655 (2)114
O74—H74···O3ii0.822.142.773 (2)134
O74—H74···O730.822.232.678 (2)115
C7—H7A···O13iii0.972.543.510 (3)173
C12—H12···O74iv0.932.513.411 (2)162
C1—H1B···Cg1v0.973.293.891122
C2—H2A···Cg2vi0.973.203.821123
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC21H24O6
Mr372.40
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.981 (3), 11.388 (3), 12.497 (3)
α, β, γ (°)117.065 (3), 100.394 (10), 94.856 (3)
V3)976.7 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.35 × 0.30
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.893, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10125, 3933, 3244
Rint0.014
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.171, 1.06
No. of reflections3933
No. of parameters251
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.36

Computer programs: SMART (Bruker, 1998), SMART, SAINT (Bruker, 1998), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), PLATON.

Selected geometric parameters (Å, º) top
O3—C31.289 (2)C3—C41.385 (2)
O5—C51.276 (2)C4—C51.390 (2)
C1—C21.508 (3)C5—C61.509 (2)
C1—C111.515 (2)C6—C71.441 (3)
C2—C31.498 (2)C7—C711.518 (2)
C1—C2—C3116.56 (14)C3—C4—C5120.71 (16)
O3—C3—C2113.52 (14)O5—C5—C4120.83 (15)
O3—C3—C4121.12 (15)O5—C5—C6117.67 (17)
C2—C3—C4125.36 (15)C4—C5—C6121.50 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.821.742.472 (2)147
O5—H5···O30.821.752.472 (2)146
O14—H14···O5i0.822.182.934 (2)153
O14—H14···O130.822.212.655 (2)114
O74—H74···O3ii0.822.142.773 (2)134
O74—H74···O730.822.232.678 (2)115
C7—H7A···O13iii0.972.543.510 (3)173
C12—H12···O74iv0.932.513.411 (2)162
C1—H1B···Cg1v0.973.293.891122
C2—H2A···Cg2vi0.973.203.821123
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z+1; (iii) x, y, z+1; (iv) x+2, y+1, z+1; (v) x+1, y+1, z; (vi) x+1, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds