Download citation
Download citation
link to html
The bimetallic title complex, [CuFe(CN)5(C12H30N6O2)(NO)] or [Cu(L)Fe(CN)5(NO)] [where L is 1,8-bis(2-hydroxy­ethyl)-1,3,6,8,10,13-hexa­aza­cyclo­tetra­decane], has a one-dimensional zigzag polymeric –Cu(L)–NC–Fe(NO)(CN)3–CN–Cu(L)– chain, in which the CuII and FeII centres are linked by two CN groups. In the complex, the CuII ion is coordinated by four N atoms from the L ligand [Cu—N(L) = 1.999 (2)–2.016 (2) Å] and two cyanide N atoms [Cu—N = 2.383 (2) and 2.902 (3) Å], and has an elongated octahedral geometry. The FeII centre is in a distorted octahedral environment, with Fe—N(nitroso) = 1.656 (2) Å and Fe—C(CN) = 1.938 (3)–1.948 (3) Å. The one-dimensional zigzag chains are linked to form a three-dimensional network via N—H...N and O—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104004706/fg1736sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104004706/fg1736Isup2.hkl
Contains datablock I

CCDC reference: 187385

Comment top

The coordination chemistry of cyanide-bridged metal complexes, especially ferro- and ferricyanides, has become of remarkable interest in recent years due to their unusual electronic state, magnetic behaviour and photochemical properties (Alcock et al., 1993; Entley & Giroloni, 1994; Clemente-Leon et al., 2001). Several studies have been carried out with the [Fe(CN)5(NO)]2− anion (Olabe et al., 1984; Zhan et al., 1999), but the interesting cyanide-bridged polymeric complexes based on azamacrocylic nickel(II) or copper(II) and the nitroprusside were only developed very recently (Kou et al., 2000; Lu et al., 2000). We report here the preparation and structure of a new cyano-bridged Cu—Fe complex, the title compound, (I). \sch

The asymmetric unit of (I) consists of one [Cu(L)]2+ cation linked to an [Fe(CN)5(NO)]2− anion. As shown in Fig. 1, two cyano N atoms in cis mode coordinate to the adjacent Cu atoms, to form a one-dimensional zigzag chain which extends in the b direction. The coordination environment of the Cu atom can be described as elongated octahedral. The basal plane is constructed by the coordination of four secondary N atoms of the tetradentate azamacrocycle ligand (L), with two N atoms of the cyanide group occupying the axial positions. The Cu—N(azamacrocycle) bond distances range from 1.999 (2) to 2.016 (2) Å, close to the values of 2.002 and 2.018 Å in [CuL(H2O)]n[(CuL)Fe(CN)6]2n (Lu et al., 2000). The axial Cu—N7 and Cu—N9i bonds [Table 1; symmetry code: (i) 1/2 − x, 1/2 + y, 3/2 − z]) are elongated significantly, owning to the Jahn-Teller effect of the d9 electronic configuration of CuII. This was also present in [CuL(H2O)]n[(CuL)Fe(CN)6]2n (Lu et al., 2000) and {[Cu(en)2[Fe(CN)5(NO)]2}[Cu(en)2] (where en is ethylenediammine; Zhan et al., 1999).

The average bite distances of the five- and six-membered chelate rings are 2.736 (3) and 2.939 (3) Å, repectively, and the average bite angles of the five- and six-membered chelate rings are 85.80 (9) and 92.47 (9)°, respectively. These values are similar to those in [Cu(L)(SCN)2] (Shen, 2002). The six-membered chelate rings adopt a chair conformation and the alkyl chains on the bridgehead N atoms are axial. The five-membered chelate rings assume a gauche conformation. The average N—C bond distance on the azamacrocycle is 1.46 (3) Å.

The FeII atom in (I) is in a slightly deformed octahedral arrangement. The equatorial plane is defined by four cyanide C atoms, and the two axial sites are occupied by a cyanide C atom and the nitrosyl N atom. The Fe—C, Fe—N, C—N and N—O bond lengths in the [Fe(CN)5(NO)] moiety are comparable with those found in previously reported multinuclear [Fe(CN)5(NO)]2− complexes (Zhan et al., 1999; Shen et al., 2002). The Fe—N distance [1.656 (2) Å] is much shorter than the other five Fe—C distances, which are in the range 1.938 (3)–1.948 (2) Å. Hence,the NO ligand is perfectly localized in the structure.

According to molecular orbital theory, M—NO+ should be nearly linear, and the observed Fe—N—O bond angle in (I) is 175.9 (2)°. The Fe—C—N bond angles [in the range 176.3 (2)–178.5 (3)°] are also essentially linear. The Cu—N7—C13 and Cu—N9i—C14i bond angles are 147.2 (2) and 133.9 (2)°, respectively, resulting in a one-dimensional zigzag chain being formed.

Hydrogen-bonding interactions (Table 2) play an important role in the solid-state structure of (I). As shown in Fig. 2, the one-dimensional zigzag chains are linked to form a three-dimensional network via N—H···N and O—H···N hydrogen bonds. In addition, there are some weak C—H···O interactions (Table 2).

Experimental top

The starting material, Cu(L)(ClO4)2 [L is 1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13-hexaazacyclotetradecane] was prepared according to the literature method of Shen (2002). To an aqueous solution (15 ml) of Cu(L)(ClO4)2 (0.48 g, 1 mmol), an aqueous solution (15 ml) containing Na2[Fe(CN)5(NO)]·2H2O (0.29 g, 1 mmol) was added dropwise. After stirring for 30 min at room temperature, the resulting precipitate was collected by suction filtration. Dark-purple single crystals of (I) were obtained by recrystallizing from water in a dark place.

Refinement top

The H atoms were geometrically located and allowed to ride on their parent atoms, with C—H distances of 0.97 Å, N—H distances of 0.91 Å and O—H distances of 0.82 Å, and with Uiso(H) = 1.2Ueq(parent). Please check added text. There is some disorder of the terminal O1—H11 and O2—H12 hydroxy groups, over two orientations in each case. This was allowed for by appropriate occupancy refinement, and resulted in occupancies of 0.724 (5)/0.276 (5) and 0.636 (4)/0.364 (4) for the O1/O1' and O2/O2' sites, respectively.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of (I) and some immediately adjacent atoms which generate the polymeric chain. The minor-occupancy disordered hydroxy groups are not shown. Displacement ellipsoids are drawn at the 30% probability level [symmetry codes: (i) 1/2 − x, 1/2 + y, 3/2 − z; (ii) 1/2 − x, y − 1/2, 3/2 − z].
[Figure 2] Fig. 2. A packing diagram for (I), viewed along the a axis.
catena-Poly[[[1,8-bis(2-hydroxyethyl)-1,3,6,8,10,13- hexaazacyclotetradecane]copper(II)]-µ-cyano-[tricyanonitrosoiron(III)]- µ-cyano] top
Crystal data top
[CuFe(CN)5(C12H30N6O2)(NO)]F(000) = 1180
Mr = 569.92Dx = 1.545 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 28 reflections
a = 12.885 (2) Åθ = 2.7–15.1°
b = 14.089 (2) ŵ = 1.51 mm1
c = 13.519 (3) ÅT = 296 K
β = 93.35 (1)°Prism, purple
V = 2450.0 (7) Å30.40 × 0.36 × 0.36 mm
Z = 4
Data collection top
Siemens P4
diffractometer
3303 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.015
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω scansh = 015
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 016
Tmin = 0.549, Tmax = 0.582l = 1616
4892 measured reflections3 standard reflections every 97 reflections
4324 independent reflections intensity decay: 5.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0405P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
4324 reflectionsΔρmax = 0.42 e Å3
332 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0010 (3)
Crystal data top
[CuFe(CN)5(C12H30N6O2)(NO)]V = 2450.0 (7) Å3
Mr = 569.92Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.885 (2) ŵ = 1.51 mm1
b = 14.089 (2) ÅT = 296 K
c = 13.519 (3) Å0.40 × 0.36 × 0.36 mm
β = 93.35 (1)°
Data collection top
Siemens P4
diffractometer
3303 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.015
Tmin = 0.549, Tmax = 0.5823 standard reflections every 97 reflections
4892 measured reflections intensity decay: 5.2%
4324 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 0.97Δρmax = 0.42 e Å3
4324 reflectionsΔρmin = 0.31 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.38418 (2)0.25509 (2)0.70272 (2)0.03287 (11)
Fe0.20441 (3)0.01323 (3)0.48800 (3)0.03253 (12)
O10.3315 (3)0.0383 (2)1.0973 (2)0.0789 (14)0.724 (5)
H110.32010.03871.15630.095*0.724 (5)
O20.2995 (3)0.2581 (2)0.4000 (3)0.0521 (11)0.636 (4)
H120.28550.20330.38360.063*0.636 (4)
O1'0.4084 (10)0.1594 (7)1.1621 (6)0.093 (4)0.276 (5)
H1'0.38290.13031.20720.112*0.276 (5)
O2'0.3773 (9)0.2577 (6)0.2877 (5)0.105 (3)0.364 (4)
H2'0.36340.20130.27930.125*0.364 (4)
O30.06231 (19)0.11195 (18)0.36358 (17)0.0692 (7)
N10.28276 (18)0.32092 (15)0.60727 (17)0.0394 (6)
H10.26790.28020.55620.047*
N20.26164 (17)0.23212 (15)0.78535 (16)0.0366 (5)
H20.26380.27710.83370.044*
N30.3519 (2)0.11880 (16)0.89814 (17)0.0448 (6)
N40.48410 (18)0.19866 (15)0.80508 (16)0.0368 (5)
H40.49420.24190.85470.044*
N50.51106 (17)0.28837 (15)0.62940 (16)0.0371 (5)
H50.51630.24480.58020.045*
N60.4192 (2)0.40059 (17)0.51878 (17)0.0489 (7)
N70.36072 (19)0.10973 (16)0.61411 (17)0.0422 (6)
N80.11865 (19)0.07351 (17)0.41689 (17)0.0413 (6)
N90.1124 (2)0.06859 (19)0.68614 (19)0.0536 (7)
N100.3177 (3)0.0508 (2)0.3055 (2)0.0687 (9)
N110.0866 (2)0.1769 (2)0.47318 (19)0.0574 (7)
N120.3591 (2)0.17890 (19)0.52350 (19)0.0535 (7)
C10.1860 (2)0.3355 (2)0.6581 (2)0.0529 (8)
H1A0.12820.34440.60970.063*
H1B0.19200.39180.69930.063*
C20.1667 (2)0.2496 (2)0.7213 (2)0.0523 (8)
H2A0.10810.26100.76160.063*
H2B0.15110.19480.67960.063*
C30.2615 (3)0.1379 (2)0.8355 (2)0.0477 (8)
H3A0.20100.13420.87490.057*
H3B0.25460.08870.78530.057*
C40.4472 (3)0.10900 (19)0.8499 (2)0.0472 (8)
H4A0.43780.06150.79820.057*
H4B0.50050.08610.89770.057*
C50.5841 (2)0.1864 (2)0.7584 (2)0.0474 (8)
H5A0.58110.13160.71490.057*
H5B0.64000.17720.80860.057*
C60.6019 (2)0.2754 (2)0.7001 (2)0.0503 (8)
H6A0.60920.32960.74430.060*
H6B0.66490.26960.66470.060*
C70.5078 (3)0.3843 (2)0.5822 (2)0.0494 (8)
H7A0.51060.43210.63400.059*
H7B0.56920.39200.54470.059*
C80.3227 (3)0.4109 (2)0.5636 (2)0.0529 (9)
H8A0.27120.43420.51430.064*
H8B0.33060.45820.61560.064*
C90.3594 (3)0.1711 (2)0.9926 (2)0.0538 (9)
H9A0.29210.19841.00430.065*
H9B0.40850.22290.98760.065*
C100.3929 (3)0.1107 (3)1.0775 (2)0.0722 (12)
H10A0.46120.08571.06590.087*
H10B0.40010.15061.13600.087*
C110.4204 (3)0.3753 (2)0.4144 (2)0.0665 (10)
H11A0.48830.39130.39180.080*
H11B0.36990.41490.37780.080*
C120.3981 (4)0.2748 (3)0.3874 (3)0.0738 (12)
H12A0.41310.26360.31890.089*
H12B0.44140.23280.42910.089*
C130.3052 (2)0.06183 (18)0.56653 (19)0.0334 (6)
C140.1454 (2)0.04565 (19)0.6131 (2)0.0368 (6)
C150.2786 (3)0.0267 (2)0.3745 (2)0.0451 (7)
C160.1273 (2)0.1057 (2)0.47955 (19)0.0391 (7)
C170.3028 (2)0.1169 (2)0.50964 (19)0.0379 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03360 (19)0.02835 (18)0.03625 (19)0.00066 (14)0.00141 (14)0.00592 (14)
Fe0.0423 (2)0.0291 (2)0.0258 (2)0.00181 (18)0.00071 (16)0.00139 (16)
O10.134 (3)0.067 (2)0.0356 (18)0.044 (2)0.000 (2)0.0081 (16)
O20.051 (2)0.048 (2)0.056 (2)0.0105 (17)0.0016 (17)0.0048 (18)
O1'0.147 (10)0.093 (8)0.039 (5)0.057 (7)0.005 (6)0.001 (5)
O2'0.152 (8)0.113 (7)0.051 (5)0.029 (7)0.020 (5)0.032 (4)
O30.0733 (17)0.0764 (17)0.0559 (15)0.0188 (14)0.0142 (13)0.0197 (13)
N10.0433 (14)0.0340 (13)0.0402 (13)0.0080 (11)0.0025 (11)0.0010 (10)
N20.0416 (13)0.0312 (12)0.0373 (13)0.0043 (10)0.0055 (10)0.0050 (10)
N30.0717 (18)0.0305 (12)0.0324 (13)0.0010 (12)0.0035 (13)0.0033 (10)
N40.0466 (14)0.0314 (12)0.0316 (12)0.0047 (11)0.0041 (11)0.0052 (10)
N50.0423 (14)0.0319 (12)0.0373 (13)0.0051 (11)0.0023 (11)0.0040 (10)
N60.075 (2)0.0351 (14)0.0375 (14)0.0018 (13)0.0090 (14)0.0069 (11)
N70.0495 (15)0.0347 (13)0.0419 (14)0.0034 (12)0.0011 (12)0.0045 (11)
N80.0494 (15)0.0406 (14)0.0333 (13)0.0010 (12)0.0015 (12)0.0036 (11)
N90.0575 (17)0.0624 (18)0.0411 (15)0.0019 (14)0.0045 (13)0.0075 (13)
N100.100 (2)0.0612 (18)0.0473 (17)0.0028 (18)0.0261 (17)0.0033 (15)
N110.070 (2)0.0535 (18)0.0476 (16)0.0178 (15)0.0021 (14)0.0063 (13)
N120.0578 (18)0.0449 (16)0.0584 (17)0.0090 (14)0.0081 (14)0.0008 (13)
C10.0430 (19)0.057 (2)0.058 (2)0.0154 (16)0.0028 (16)0.0029 (16)
C20.0350 (16)0.067 (2)0.0549 (19)0.0011 (16)0.0021 (14)0.0077 (17)
C30.064 (2)0.0365 (16)0.0433 (17)0.0151 (15)0.0127 (16)0.0017 (13)
C40.075 (2)0.0265 (15)0.0392 (17)0.0094 (15)0.0057 (16)0.0033 (13)
C50.0426 (18)0.0548 (19)0.0434 (17)0.0095 (15)0.0083 (14)0.0054 (15)
C60.0343 (17)0.066 (2)0.0501 (18)0.0081 (15)0.0002 (14)0.0142 (16)
C70.064 (2)0.0375 (16)0.0478 (18)0.0143 (15)0.0120 (16)0.0035 (14)
C80.079 (2)0.0324 (16)0.0468 (19)0.0124 (16)0.0033 (17)0.0069 (14)
C90.091 (3)0.0365 (17)0.0349 (17)0.0036 (17)0.0073 (17)0.0000 (13)
C100.104 (3)0.074 (3)0.038 (2)0.025 (2)0.004 (2)0.0069 (18)
C110.087 (3)0.060 (2)0.054 (2)0.007 (2)0.0095 (19)0.0056 (18)
C120.097 (3)0.064 (2)0.059 (2)0.007 (2)0.009 (2)0.0139 (19)
C130.0427 (17)0.0273 (14)0.0304 (14)0.0034 (13)0.0046 (13)0.0017 (12)
C140.0440 (17)0.0308 (14)0.0352 (16)0.0014 (13)0.0024 (13)0.0002 (12)
C150.067 (2)0.0376 (16)0.0309 (16)0.0019 (15)0.0048 (15)0.0026 (13)
C160.0466 (18)0.0418 (17)0.0282 (15)0.0010 (15)0.0042 (13)0.0039 (12)
C170.0475 (18)0.0353 (16)0.0315 (15)0.0046 (15)0.0060 (13)0.0022 (13)
Geometric parameters (Å, º) top
Cu—N41.999 (2)N4—C41.491 (3)
Cu—N12.009 (2)N4—H40.91
Cu—N22.013 (2)N5—C61.479 (3)
Cu—N52.016 (2)N5—C71.494 (3)
Cu—N72.383 (2)N5—H50.91
Cu—N9i2.902 (3)N6—C71.407 (4)
Fe—N81.656 (2)N6—C81.423 (4)
Fe—C151.938 (3)N6—C111.456 (4)
Fe—C131.942 (3)N7—C131.152 (3)
Fe—C171.946 (3)N9—C141.145 (3)
Fe—C161.947 (3)N10—C151.138 (4)
Fe—C141.948 (3)N11—C161.134 (4)
O1—C101.327 (5)N12—C171.144 (4)
O1—H110.82C1—C21.511 (4)
O2—C121.313 (5)C1—H1A0.97
O2—H120.82C1—H1B0.97
C10—C91.474 (4)C2—H2A0.97
C10—H10A0.97C2—H2B0.97
C10—H10B0.97C3—H3A0.97
C12—C111.485 (5)C3—H3B0.97
C12—H12A0.97C4—H4A0.97
C12—H12B0.97C4—H4B0.97
O1'—H1'0.82C5—C61.506 (4)
O2'—H2'0.82C5—H5A0.97
O3—N81.131 (3)C5—H5B0.97
N1—C11.473 (4)C6—H6A0.97
N1—C81.501 (4)C6—H6B0.97
N1—H10.91C7—H7A0.97
N2—C21.477 (4)C7—H7B0.97
N2—C31.491 (3)C8—H8A0.97
N2—H20.91C8—H8B0.97
N3—C31.425 (4)C9—H9A0.97
N3—C41.430 (4)C9—H9B0.97
N3—C91.472 (3)C11—H11A0.97
N4—C51.477 (4)C11—H11B0.97
N4—Cu—N1175.33 (9)Cu—N5—H5107.4
N4—Cu—N292.65 (9)C7—N6—C8117.1 (2)
N1—Cu—N285.91 (9)C7—N6—C11119.8 (3)
N4—Cu—N585.69 (9)C8—N6—C11119.8 (3)
N1—Cu—N595.31 (9)C14—N9—Cuii133.9 (2)
N2—Cu—N5174.37 (9)C13—N7—Cu147.2 (2)
N4—Cu—N793.66 (8)O3—N8—Fe175.9 (2)
N1—Cu—N790.87 (9)N1—C1—C2108.9 (2)
N2—Cu—N793.45 (8)N1—C1—H1A109.9
N5—Cu—N792.03 (9)C2—C1—H1A109.9
N4—Cu—N9i89.56 (8)N1—C1—H1B109.9
N1—Cu—N9i85.82 (8)C2—C1—H1B109.9
N2—Cu—N9i80.74 (8)H1A—C1—H1B108.3
N5—Cu—N9i93.86 (8)N2—C2—C1107.9 (2)
N7—Cu—N9i173.49 (8)N2—C2—H2A110.1
N8—Fe—C1591.89 (12)C1—C2—H2A110.1
N8—Fe—C13177.34 (11)N2—C2—H2B110.1
C15—Fe—C1385.94 (12)C1—C2—H2B110.1
N8—Fe—C1796.26 (12)H2A—C2—H2B108.4
C15—Fe—C1789.43 (12)N3—C3—N2114.5 (2)
C13—Fe—C1785.27 (11)N3—C3—H3A108.6
N8—Fe—C1694.96 (12)N2—C3—H3A108.6
C15—Fe—C1688.68 (12)N3—C3—H3B108.6
C13—Fe—C1683.46 (11)N2—C3—H3B108.6
C17—Fe—C16168.68 (12)H3A—C3—H3B107.6
N8—Fe—C1495.88 (11)N3—C4—N4114.0 (2)
C15—Fe—C14172.16 (12)N3—C4—H4A108.8
C13—Fe—C1486.32 (11)N4—C4—H4A108.8
C17—Fe—C1488.70 (11)N3—C4—H4B108.8
C16—Fe—C1491.67 (11)N4—C4—H4B108.8
C10—O1—H11109.5H4A—C4—H4B107.7
C12—O2—H12109.5N4—C5—C6106.8 (2)
C10—O1'—H1'109.5N4—C5—H5A110.4
C12—O2'—H2'109.5C6—C5—H5A110.4
O1—C10—C9116.7 (4)N4—C5—H5B110.4
O1—C10—H10A108.1C6—C5—H5B110.4
C9—C10—H10A108.1H5A—C5—H5B108.6
O1—C10—H10B108.1N5—C6—C5107.5 (2)
C9—C10—H10B108.1N5—C6—H6A110.2
H10A—C10—H10B107.3C5—C6—H6A110.2
O2—C12—C11108.3 (4)N5—C6—H6B110.2
O2—C12—H12A110.0C5—C6—H6B110.2
C11—C12—H12A110.0H6A—C6—H6B108.5
O2—C12—H12B110.0N6—C7—N5114.2 (2)
C11—C12—H12B110.0N6—C7—H7A108.7
H12A—C12—H12B108.4N5—C7—H7A108.7
C1—N1—C8112.6 (2)N6—C7—H7B108.7
C1—N1—Cu107.53 (17)N5—C7—H7B108.7
C8—N1—Cu114.65 (19)H7A—C7—H7B107.6
C1—N1—H1107.2N6—C8—N1114.2 (2)
C8—N1—H1107.2N6—C8—H8A108.7
Cu—N1—H1107.2N1—C8—H8A108.7
C2—N2—C3113.1 (2)N6—C8—H8B108.7
C2—N2—Cu107.32 (17)N1—C8—H8B108.7
C3—N2—Cu114.69 (18)H8A—C8—H8B107.6
C2—N2—H2107.1N3—C9—C10112.8 (3)
C3—N2—H2107.1N3—C9—H9A109.0
Cu—N2—H2107.1C10—C9—H9A109.0
C3—N3—C4116.2 (2)N3—C9—H9B109.0
C3—N3—C9115.5 (3)C10—C9—H9B109.0
C4—N3—C9115.4 (3)H9A—C9—H9B107.8
C5—N4—C4112.4 (2)N6—C11—C12117.3 (3)
C5—N4—Cu107.04 (16)N6—C11—H11A108.0
C4—N4—Cu114.22 (18)C12—C11—H11A108.0
C5—N4—H4107.6N6—C11—H11B108.0
C4—N4—H4107.6C12—C11—H11B108.0
Cu—N4—H4107.6H11A—C11—H11B107.2
C6—N5—C7112.9 (2)N7—C13—Fe176.3 (2)
C6—N5—Cu106.71 (17)N9—C14—Fe177.0 (3)
C7—N5—Cu114.66 (18)N10—C15—Fe176.7 (3)
C6—N5—H5107.4N11—C16—Fe176.7 (3)
C7—N5—H5107.4N12—C17—Fe178.5 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.202.958 (5)141
N4—H4···N11iii0.912.253.103 (3)156
N5—H5···N12iv0.912.383.139 (3)141
O1—H11···N10v0.822.032.836 (4)170
O2—H12···N100.822.443.202 (4)155
C5—H5B···O2iii0.972.513.370 (5)148
C8—H8A···O1i0.972.443.376 (4)162
C9—H9A···N12i0.972.623.517 (4)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y, z+1.

Experimental details

Crystal data
Chemical formula[CuFe(CN)5(C12H30N6O2)(NO)]
Mr569.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)12.885 (2), 14.089 (2), 13.519 (3)
β (°) 93.35 (1)
V3)2450.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.51
Crystal size (mm)0.40 × 0.36 × 0.36
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.549, 0.582
No. of measured, independent and
observed [I > 2σ(I)] reflections
4892, 4324, 3303
Rint0.015
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.076, 0.97
No. of reflections4324
No. of parameters332
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.31

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXTL (Sheldrick, 1990), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Cu—N41.999 (2)Fe—C171.946 (3)
Cu—N12.009 (2)Fe—C161.947 (3)
Cu—N22.013 (2)Fe—C141.948 (3)
Cu—N52.016 (2)O3—N81.131 (3)
Cu—N72.383 (2)N7—C131.152 (3)
Cu—N9i2.902 (3)N9—C141.145 (3)
Fe—N81.656 (2)N10—C151.138 (4)
Fe—C151.938 (3)N11—C161.134 (4)
Fe—C131.942 (3)N12—C171.144 (4)
N4—Cu—N1175.33 (9)C14—N9—Cuii133.9 (2)
N4—Cu—N292.65 (9)C13—N7—Cu147.2 (2)
N1—Cu—N285.91 (9)O3—N8—Fe175.9 (2)
N4—Cu—N585.69 (9)N7—C13—Fe176.3 (2)
N1—Cu—N595.31 (9)N9—C14—Fe177.0 (3)
N2—Cu—N5174.37 (9)N10—C15—Fe176.7 (3)
N8—Fe—C13177.34 (11)N11—C16—Fe176.7 (3)
C17—Fe—C16168.68 (12)N12—C17—Fe178.5 (3)
C15—Fe—C14172.16 (12)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.912.202.958 (5)141
N4—H4···N11iii0.912.253.103 (3)156
N5—H5···N12iv0.912.383.139 (3)141
O1—H11···N10v0.822.032.836 (4)170
O2—H12···N100.822.443.202 (4)155
C5—H5B···O2iii0.972.513.370 (5)148
C8—H8A···O1i0.972.443.376 (4)162
C9—H9A···N12i0.972.623.517 (4)155
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z+1; (v) x, y, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds