Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, [Eu(C9H9O4)3]n or [Eu(2,3-DMOBA)3]n, where 2,3-DMOBA is 2,3-di­methoxy­benzoate, is an infinite one-dimensional non-centrosymmetric coordination polymer. The unique EuIII atom is bridged by six carboxyl­ate ligands; it is ennea-coordinated and has a distorted tricapped trigonal prism geometry. The Eu—O distances are in the range 2.315 (3)–2.959 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104006080/fg1732sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104006080/fg1732Isup2.hkl
Contains datablock I

CCDC reference: 241209

Comment top

The variety of coordinating structures of lanthanide(III) carboxylates and their potential chemical and biological applications in luminescent probes and labels are interesting themes of coordination chemistry. Lanthanide(III) carboxylates are found to form many kinds of one-, two- and three-dimensional coordination polymers, where the carboxylate ligands act as the bridges between the metal atoms. In ennea-coordinated lanthanide(III) complexes, the central metal atom is in a monocapped square antiprism or tricapped trigonal prism geometry. The geometries of these complexes are thought to depend on the size of the ligand compared with that of the metal atom, as well as on the substituted groups of the carboxylate. Here, we report the preparation and crystal structure of the title compound, (I). \sch

Compound (I) is a infinite one-dimensional non-centrosymmetric coordination polymer. The unique EuIII atom is bridged by six carboxylate ligands (Fig. 1); each EuIII atom is coordinated to nine O atoms of six carboxylate ligands. A distorted tricapped trigonal prism arrangement is found. Atoms O1i, O6 and O9, and atoms O2, O7i and O10i, take the tips of the upper and lower triangles of the prism, respectively, and the dihedral angle between them is 6.0° [symmetry code: (i) −x, 1/2 + y, 1/2 − z]. Atoms O1, O5 and O6i take the three cap positions (Fig. 2). A similar coordination environment has been observed previously for lanthanide(III) complexes such as cerium(III) acetate (Sadikov et al., 1967), neodymium(III) (methylthio)acetate (Kondo et al., 1982), and [Eu3(ClCH2CO2)9(H2O)5]n, [Nd3(ClCH2CO2)9(H2O)5]n and [La3(ClCH2CO2)9(H2O)5]n (Imai et al., 1987).

All the carboxylate ligands are coordinated to the EuIII atoms and can be classified into three different coordination modes in the crystal structure of (I). In the first of these, the carboxylate ligand is in a tridentate coordination mode: carboxyl group O1—C1—O2 is in a bridging-chelating mode, in which both O atoms chelate one EuIII atom and one of them is also simultaneously linked to another EuIII atom, to form a tridentate bridge. In the second, the carboxylate ligand is in a bidentate coordination mode: carboxyl group O9—C19—O10 is in a conventional bridging mode, in which two O atoms coordinate to two different EuIII atoms to form a bidentate bridge. In the third, the carboxylate ligand is in a tetradentate coordination mode: carboxyl group O5—C10—O6 is in a bridging-chelating mode, with the O atom of the methoxy group coordinated to the EuIII atom to form a tetradentate bridge.

In the tridentate coordination mode, the two C—O bond lengths of the carboxyl group (C1—O1 and C1—O2) are not significantly different and the C—O double bond is delocalized. In the typical form of a bridging-chelating mode, the Ln—O, Ln—O' and Ln'-O' bond lengths (Ln and Ln' are adjacent lanthanide atoms, and O' is the O atom which is simultaneously bonded to two lanthanide atoms) are about the same, and the Ln—O—C, Ln—O'-C and Ln'-O'-C bond angles are in the ranges 90–100, 90–100 and 140–150°, respectively. Many complexes containing a bridging-chelating mode are deformed from the ideal shape. In the case of (I), the Eu1—O1 bond length and C1—O2—Eu1 bond angle increase, while the C1—O1—Eu1 bond angle decreases. This deformation of the tridentate coordination ligand is thought to tend toward the form of the bidentate one.

In the bidentate coordination mode, the two C—O bond lengths of the carboxyl group (C19—O9 and C19—O10) are not significantly different and the C—O double bond is probably delocalized. These angles in (I) are in the normal ranges and the difference between the two Eu—O bonds is very small. Therefore, the deformation of this mode is thought to be small.

In the tetradentate coordination mode, the Ln—O, Ln—O' and Ln'-O' bond lengths (Eu1—O5, Eu1—O6 and Eu1i—O6) are in the range 2.409 (3)–2.500 (4) Å, and the Ln—O—C and Ln—O'-C bond angles (Eu1—O5—C10 and Eu1—O6—C10) are in the range 93.9 (3)–93.9 (3)°. These data show that this mode has the ideal shape for a bridging-chelating mode. Atom O7 of the methoxy group in one of the aromatic carboxylate ligands bonds with an adjacent Eu atom, similar to what is found in the complex Nd(2—CH3OC6H4COO)3·4H2O (Polynova et al., 1987). The Eu—O(methoxy) bond length [2.703 (4) Å] is comparable with the corresponding values for the analogous bonds in the complexes [Eu(2,2,6,6-tetramethylheptan-3,5-dione)3]2(2,5,8,11-tetraoxadodecane) (Drake et al., 1993), Eu(hexafluoroacetylacetonato)3(diglyme) (Kang et al., 1997) and Eu2(5,11,17,23-tetrabutyl-25,27-dihydroxy-26-carboxymethoxy- 28-diethylamidomethoxycalix(4)arene]2(EtOH)3(CH2Cl2)2 (Beer et al., 1996).

Experimental top

2,3-Dimethoxybenzoic acid (1.5 mmol, 255 mg) was dissolved in ethanol (20 ml). The pH of the solution was adjusted to 6 with 2M NaOH solution. To the resulting solution was added Eu(NO3)3·6H2O (0.5 mmol, 223 mg) in water (5 ml). The reaction was stirred for 4 h at 333 K. A white precipitate was formed and filtered. Crystals of (I) suitable for X-ray analysis were obtained from the filtrate after several days at room temperature. Analysis found: C 46.21, H 3.74%; calculated for C27H27EuO12: C 46.63, H 3.91%.

Refinement top

H atoms were placed at calculated positions and refined in a riding model, with C—H distances in the range 0.93–0.96 Å and Uiso(H) = 1.2Ueq(C) (1.5 for methyl C).

Computing details top

Data collection: RAPID AUTO (Rigaku, 2001); cell refinement: RAPID AUTO; data reduction: RAPID AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXTL (Siemens, 1995).

Figures top
[Figure 1] Fig. 1. The coordination environment of the EuIII atom in (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme. H atoms have been omitted for clarity [symmetry code: (i) −x, 1/2 + y, 1/2 − z]. Please check added symmetry code.
[Figure 2] Fig. 2. The schematic representation of the coordination geometry of the EuIII atom in (I) [symmetry code: (i) −x, 1/2 + y, 1/2 − z].
catena-Poly[europium(III)-tri-µ-2,3-dimethoxybenzoato] top
Crystal data top
[Eu(C9H9O4)3]Dx = 1.767 Mg m3
Mr = 695.45Melting point: Not measured K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
a = 18.9555 (14) ÅCell parameters from 20233 reflections
b = 8.0426 (4) Åθ = 2.5–27.5°
c = 17.1475 (10) ŵ = 2.47 mm1
V = 2614.2 (3) Å3T = 293 K
Z = 4Block, colourless
F(000) = 13920.33 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID image-plate
diffractometer
5640 independent reflections
Radiation source: rotating anode4984 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.000
oscillation scansθmax = 27.5°, θmin = 2.5°
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
h = 2424
Tmin = 0.543, Tmax = 0.674k = 1010
5640 measured reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0212P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.004
5640 reflectionsΔρmax = 0.86 e Å3
367 parametersΔρmin = 0.80 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2495 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (15)
Crystal data top
[Eu(C9H9O4)3]V = 2614.2 (3) Å3
Mr = 695.45Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 18.9555 (14) ŵ = 2.47 mm1
b = 8.0426 (4) ÅT = 293 K
c = 17.1475 (10) Å0.33 × 0.21 × 0.16 mm
Data collection top
Rigaku R-AXIS RAPID image-plate
diffractometer
5640 independent reflections
Absorption correction: empirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
4984 reflections with I > 2σ(I)
Tmin = 0.543, Tmax = 0.674Rint = 0.000
5640 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.86 e Å3
S = 1.03Δρmin = 0.80 e Å3
5640 reflectionsAbsolute structure: Flack (1983), with 2495 Friedel pairs
367 parametersAbsolute structure parameter: 0.011 (15)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.01194 (1)0.40310 (2)0.28583 (1)0.02322 (6)
O10.0782 (2)0.0713 (6)0.27178 (19)0.0462 (12)
O20.0619 (2)0.2178 (4)0.3776 (2)0.0364 (10)
O30.1354 (3)0.1169 (6)0.5053 (2)0.0460 (11)
O40.2473 (3)0.0423 (6)0.5598 (2)0.0474 (12)
O50.0969 (2)0.3125 (5)0.3565 (2)0.0389 (10)
O60.0654 (2)0.1594 (4)0.25658 (19)0.0301 (9)
O70.1539 (2)0.0733 (4)0.20444 (19)0.0324 (8)
O80.2813 (2)0.2100 (5)0.2143 (3)0.0529 (11)
O90.0317 (2)0.3494 (4)0.15500 (18)0.0385 (11)
O100.0015 (2)0.0942 (4)0.11301 (13)0.0316 (9)
O110.0279 (2)0.0764 (5)0.0421 (2)0.0422 (11)
O120.0161 (3)0.1671 (5)0.18185 (18)0.0491 (12)
C10.0951 (3)0.1042 (7)0.3419 (3)0.0322 (11)
C20.1577 (3)0.0210 (6)0.3758 (3)0.0318 (12)
C30.1749 (3)0.0254 (7)0.4548 (3)0.0336 (13)
C40.2351 (3)0.0580 (7)0.4821 (3)0.0387 (14)
C50.2786 (4)0.1429 (7)0.4313 (4)0.0425 (15)
H5A0.31870.19720.44940.051*
C60.2612 (4)0.1459 (7)0.3518 (3)0.0404 (14)
H6A0.29020.20220.31690.048*
C70.2017 (4)0.0665 (6)0.3249 (3)0.0356 (13)
H7A0.19050.07110.27210.043*
C80.1042 (5)0.0288 (10)0.5697 (4)0.060 (2)
H8A0.05650.06590.57690.090*
H8B0.13080.05020.61620.090*
H8C0.10440.08830.55890.090*
C90.3065 (4)0.1269 (9)0.5918 (4)0.0526 (18)
H9A0.30670.11390.64740.079*
H9B0.34910.08100.57050.079*
H9C0.30370.24290.57900.079*
C100.1098 (3)0.1952 (6)0.3095 (3)0.0274 (11)
C110.1783 (3)0.1038 (7)0.3165 (2)0.0284 (10)
C120.1984 (3)0.0174 (7)0.2632 (3)0.0327 (12)
C130.2651 (3)0.0917 (8)0.2698 (3)0.0401 (13)
C140.3098 (4)0.0464 (8)0.3303 (4)0.0476 (16)
H14A0.35360.09730.33560.057*
C150.2891 (4)0.0742 (9)0.3825 (3)0.0484 (16)
H15A0.31930.10540.42270.058*
C160.2240 (4)0.1490 (7)0.3755 (3)0.0391 (15)
H16A0.21060.23080.41090.047*
C170.1752 (4)0.0157 (8)0.1264 (3)0.0468 (16)
H17A0.22340.04640.11700.070*
H17B0.14550.06620.08780.070*
H17C0.17060.10300.12360.070*
C180.3433 (4)0.3042 (8)0.2262 (5)0.060 (2)
H18A0.34980.37940.18340.090*
H18B0.38320.23080.22960.090*
H18C0.33920.36630.27380.090*
C190.0210 (3)0.2425 (5)0.1022 (2)0.0263 (11)
C200.0361 (3)0.2994 (6)0.0193 (2)0.0278 (12)
C210.0169 (4)0.2092 (6)0.0469 (3)0.0318 (12)
C220.0389 (4)0.2645 (7)0.1205 (3)0.0360 (13)
C230.0793 (3)0.4041 (7)0.1287 (2)0.0355 (12)
H23A0.09460.43620.17800.043*
C240.0976 (4)0.4985 (6)0.0639 (3)0.0381 (15)
H24A0.12350.59600.06910.046*
C250.0758 (4)0.4423 (6)0.0094 (3)0.0378 (15)
H25A0.08860.50330.05330.045*
C260.0062 (5)0.0834 (6)0.0407 (3)0.061 (2)
H26A0.02750.16720.02630.092*
H26B0.04390.08170.00340.092*
H26C0.02480.10790.09150.092*
C270.0394 (4)0.2127 (11)0.2567 (3)0.059 (2)
H27A0.02070.13650.29450.088*
H27B0.09000.20960.25820.088*
H27C0.02340.32320.26840.088*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.02751 (12)0.02260 (8)0.01956 (8)0.00044 (11)0.00105 (11)0.00003 (8)
O10.035 (2)0.080 (3)0.0237 (17)0.023 (2)0.0042 (16)0.0009 (18)
O20.041 (3)0.0279 (16)0.0404 (19)0.0065 (18)0.0070 (19)0.0033 (14)
O30.052 (3)0.051 (2)0.0350 (18)0.016 (2)0.0019 (18)0.0012 (18)
O40.041 (3)0.068 (3)0.0326 (18)0.012 (2)0.015 (2)0.0073 (16)
O50.044 (3)0.0386 (18)0.0340 (17)0.0019 (19)0.0101 (19)0.0136 (15)
O60.030 (2)0.0298 (16)0.0308 (17)0.0056 (16)0.0064 (16)0.0009 (13)
O70.032 (2)0.0352 (17)0.0302 (16)0.0023 (16)0.0044 (16)0.0001 (14)
O80.040 (3)0.047 (2)0.072 (3)0.014 (2)0.003 (3)0.013 (2)
O90.052 (3)0.0408 (17)0.0228 (15)0.0076 (18)0.0060 (17)0.0034 (12)
O100.051 (3)0.0249 (11)0.0184 (10)0.003 (2)0.0046 (15)0.0098 (10)
O110.049 (3)0.041 (2)0.0364 (16)0.012 (2)0.0008 (18)0.0034 (15)
O120.068 (3)0.060 (2)0.0194 (14)0.009 (3)0.000 (2)0.0046 (14)
C10.025 (3)0.034 (2)0.037 (2)0.009 (3)0.001 (2)0.008 (2)
C20.029 (4)0.032 (2)0.034 (3)0.006 (2)0.005 (2)0.0005 (19)
C30.032 (4)0.043 (2)0.026 (2)0.001 (3)0.002 (2)0.0024 (19)
C40.031 (4)0.048 (3)0.037 (2)0.002 (3)0.003 (3)0.003 (2)
C50.027 (4)0.045 (3)0.055 (3)0.002 (3)0.002 (3)0.001 (2)
C60.038 (4)0.035 (3)0.048 (3)0.004 (3)0.005 (3)0.004 (2)
C70.044 (4)0.030 (2)0.032 (2)0.001 (2)0.001 (2)0.0037 (18)
C80.056 (5)0.073 (4)0.052 (4)0.003 (4)0.016 (4)0.018 (3)
C90.047 (5)0.060 (4)0.051 (3)0.008 (4)0.019 (3)0.008 (3)
C100.033 (3)0.024 (2)0.025 (2)0.004 (2)0.002 (2)0.0045 (16)
C110.031 (3)0.0267 (19)0.0271 (18)0.006 (3)0.009 (2)0.0016 (19)
C120.029 (3)0.035 (2)0.034 (3)0.004 (2)0.004 (2)0.0041 (19)
C130.032 (3)0.040 (2)0.048 (3)0.002 (3)0.001 (2)0.004 (3)
C140.031 (4)0.051 (3)0.061 (4)0.010 (3)0.008 (3)0.001 (3)
C150.039 (4)0.056 (4)0.050 (3)0.001 (3)0.018 (3)0.002 (3)
C160.043 (4)0.037 (3)0.037 (3)0.002 (3)0.005 (3)0.006 (2)
C170.050 (5)0.059 (3)0.032 (3)0.014 (3)0.009 (3)0.005 (2)
C180.038 (4)0.045 (3)0.098 (6)0.005 (3)0.007 (4)0.004 (3)
C190.029 (4)0.0262 (19)0.0234 (18)0.001 (2)0.004 (2)0.0026 (14)
C200.037 (4)0.0258 (19)0.0202 (19)0.005 (2)0.003 (2)0.0010 (16)
C210.036 (3)0.031 (2)0.029 (2)0.002 (3)0.003 (3)0.0048 (16)
C220.038 (4)0.045 (3)0.024 (2)0.001 (3)0.003 (2)0.0035 (19)
C230.044 (4)0.037 (2)0.025 (2)0.002 (3)0.005 (2)0.002 (2)
C240.056 (5)0.028 (2)0.030 (3)0.009 (3)0.008 (3)0.0032 (19)
C250.054 (5)0.034 (3)0.026 (2)0.007 (3)0.001 (3)0.0013 (17)
C260.107 (7)0.033 (2)0.045 (2)0.012 (5)0.004 (4)0.012 (2)
C270.063 (5)0.088 (5)0.024 (2)0.016 (4)0.011 (3)0.008 (3)
Geometric parameters (Å, º) top
Eu1—O12.959 (5)C6—H6A0.93
Eu1—O1i2.392 (4)C7—H7A0.93
Eu1—O22.365 (4)C8—H8A0.96
Eu1—O52.500 (4)C8—H8B0.96
Eu1—O62.498 (4)C8—H8C0.96
Eu1—O6i2.409 (3)C9—H9A0.96
Eu1—O7i2.703 (4)C9—H9B0.96
Eu1—O92.315 (3)C9—H9C0.96
Eu1—O10i2.332 (3)C10—C111.497 (8)
Eu1—Eu1ii4.2291 (2)C11—C161.380 (7)
O1—C11.272 (6)C11—C121.389 (7)
O1—Eu1ii2.392 (4)C12—C131.404 (9)
O2—C11.267 (7)C13—C141.389 (8)
O3—C31.361 (7)C14—C151.376 (9)
O3—C81.440 (8)C14—H14A0.93
O4—C41.360 (6)C15—C161.379 (10)
O4—C91.422 (8)C15—H15A0.93
O5—C101.264 (6)C16—H16A0.93
O6—C101.271 (6)C17—H17A0.96
O6—Eu1ii2.409 (3)C17—H17B0.96
O7—C121.388 (6)C17—H17C0.96
O7—C171.472 (6)C18—H18A0.96
O7—Eu1ii2.703 (4)C18—H18B0.96
O8—C131.380 (7)C18—H18C0.96
O8—C181.413 (8)C19—C201.521 (6)
O9—C191.265 (5)C20—C251.384 (7)
O10—C191.262 (6)C20—C211.396 (6)
O10—Eu1ii2.332 (3)C21—C221.402 (7)
O11—C211.367 (7)C22—C231.366 (8)
O11—C261.438 (7)C23—C241.390 (7)
O12—C221.381 (6)C23—H23A0.93
O12—C271.406 (6)C24—C251.398 (7)
C1—C21.481 (8)C24—H24A0.93
C2—C31.393 (7)C25—H25A0.93
C2—C71.398 (8)C26—H26A0.96
C3—C41.404 (8)C26—H26B0.96
C4—C51.380 (8)C26—H26C0.96
C5—C61.402 (8)C27—H27A0.96
C5—H5A0.93C27—H27B0.96
C6—C71.376 (9)C27—H27C0.96
O9—Eu1—O10i149.50 (11)C2—C3—C4120.2 (5)
O9—Eu1—O2117.54 (14)O4—C4—C5124.3 (6)
O10i—Eu1—O287.94 (12)O4—C4—C3114.9 (5)
O9—Eu1—O1i79.69 (14)C5—C4—C3120.8 (5)
O10i—Eu1—O1i81.75 (13)C4—C5—C6118.8 (6)
O2—Eu1—O1i156.45 (15)C4—C5—H5A120.6
O9—Eu1—O6i78.41 (12)C6—C5—H5A120.6
O10i—Eu1—O6i72.93 (12)C7—C6—C5120.7 (6)
O2—Eu1—O6i124.87 (15)C7—C6—H6A119.7
O1i—Eu1—O6i72.06 (16)C5—C6—H6A119.7
O9—Eu1—O675.77 (12)C6—C7—C2120.9 (5)
O10i—Eu1—O6127.04 (13)C6—C7—H7A119.5
O2—Eu1—O682.76 (13)C2—C7—H7A119.5
O1i—Eu1—O686.65 (15)O3—C8—H8A109.5
O6i—Eu1—O6149.02 (4)O3—C8—H8B109.5
O9—Eu1—O5123.28 (14)H8A—C8—H8B109.5
O10i—Eu1—O575.03 (12)O3—C8—H8C109.5
O2—Eu1—O579.87 (15)H8A—C8—H8C109.5
O1i—Eu1—O577.04 (15)H8B—C8—H8C109.5
O6i—Eu1—O5137.94 (13)O4—C9—H9A109.5
O6—Eu1—O552.02 (11)O4—C9—H9B109.5
O9—Eu1—O7i84.93 (14)H9A—C9—H9B109.5
O10i—Eu1—O7i90.94 (12)O4—C9—H9C109.5
O2—Eu1—O7i66.72 (13)H9A—C9—H9C109.5
O1i—Eu1—O7i134.17 (14)H9B—C9—H9C109.5
O6i—Eu1—O7i62.60 (12)O5—C10—O6119.7 (5)
O6—Eu1—O7i130.67 (11)O5—C10—C11119.0 (5)
O5—Eu1—O7i144.27 (12)O6—C10—C11121.3 (4)
O9—Eu1—C1099.11 (13)O5—C10—Eu160.1 (3)
O10i—Eu1—C10100.97 (13)O6—C10—Eu160.0 (3)
O2—Eu1—C1082.00 (14)C11—C10—Eu1172.7 (3)
O1i—Eu1—C1079.29 (16)C16—C11—C12119.7 (5)
O6i—Eu1—C10151.25 (14)C16—C11—C10118.2 (5)
O6—Eu1—C1026.14 (12)C12—C11—C10122.0 (4)
O5—Eu1—C1025.98 (12)O7—C12—C11122.6 (5)
O7i—Eu1—C10146.12 (13)O7—C12—C13117.9 (5)
O9—Eu1—O171.58 (11)C11—C12—C13119.5 (5)
O10i—Eu1—O1134.54 (10)O8—C13—C14124.1 (6)
O2—Eu1—O146.85 (11)O8—C13—C12116.0 (5)
O1i—Eu1—O1141.19 (11)C14—C13—C12119.9 (6)
O6i—Eu1—O1124.65 (12)C15—C14—C13119.8 (6)
O6—Eu1—O161.65 (12)C15—C14—H14A120.1
O5—Eu1—O197.28 (12)C13—C14—H14A120.1
O7i—Eu1—O169.26 (11)C14—C15—C16120.5 (6)
C10—Eu1—O180.09 (13)C14—C15—H15A119.8
O9—Eu1—C194.31 (14)C16—C15—H15A119.8
O10i—Eu1—C1110.10 (13)C15—C16—C11120.7 (5)
O2—Eu1—C123.23 (13)C15—C16—H16A119.7
O1i—Eu1—C1161.92 (16)C11—C16—H16A119.7
O6i—Eu1—C1123.75 (14)O7—C17—H17A109.5
O6—Eu1—C175.32 (13)O7—C17—H17B109.5
O5—Eu1—C192.53 (14)H17A—C17—H17B109.5
O7i—Eu1—C161.21 (12)O7—C17—H17C109.5
C10—Eu1—C184.92 (14)H17A—C17—H17C109.5
O1—Eu1—C124.49 (12)H17B—C17—H17C109.5
O9—Eu1—Eu1ii63.79 (9)O8—C18—H18A109.5
O10i—Eu1—Eu1ii146.23 (8)O8—C18—H18B109.5
O2—Eu1—Eu1ii68.71 (9)H18A—C18—H18B109.5
O1i—Eu1—Eu1ii109.95 (12)O8—C18—H18C109.5
O6i—Eu1—Eu1ii140.43 (8)H18A—C18—H18C109.5
O6—Eu1—Eu1ii29.89 (9)H18B—C18—H18C109.5
O5—Eu1—Eu1ii77.02 (8)O10—C19—O9125.7 (4)
O7i—Eu1—Eu1ii101.02 (7)O10—C19—C20118.5 (4)
C10—Eu1—Eu1ii53.35 (9)O9—C19—C20115.8 (4)
O1—Eu1—Eu1ii33.30 (8)C25—C20—C21118.3 (5)
C1—Eu1—Eu1ii52.68 (10)C25—C20—C19117.8 (4)
C1—O1—Eu1ii133.5 (4)C21—C20—C19123.7 (4)
C1—O1—Eu180.9 (4)O11—C21—C20121.3 (4)
Eu1ii—O1—Eu1103.92 (16)O11—C21—C22119.2 (5)
C1—O2—Eu1109.4 (3)C20—C21—C22119.3 (5)
C3—O3—C8116.6 (5)C23—C22—O12124.3 (5)
C4—O4—C9117.9 (5)C23—C22—C21121.3 (5)
C10—O5—Eu194.0 (3)O12—C22—C21114.4 (5)
C10—O6—Eu1ii133.5 (3)C22—C23—C24120.4 (5)
C10—O6—Eu193.9 (3)C22—C23—H23A119.8
Eu1ii—O6—Eu1119.00 (17)C24—C23—H23A119.8
C12—O7—C17113.0 (4)C23—C24—C25118.0 (5)
C12—O7—Eu1ii125.6 (3)C23—C24—H24A121.0
C17—O7—Eu1ii110.6 (3)C25—C24—H24A121.0
C13—O8—C18117.0 (5)C20—C25—C24122.6 (5)
C19—O9—Eu1142.6 (3)C20—C25—H25A118.7
C19—O10—Eu1ii139.8 (3)C24—C25—H25A118.7
C21—O11—C26114.8 (5)O11—C26—H26A109.5
C22—O12—C27116.6 (5)O11—C26—H26B109.5
O2—C1—O1118.8 (5)H26A—C26—H26B109.5
O2—C1—C2122.3 (5)O11—C26—H26C109.5
O1—C1—C2118.6 (5)H26A—C26—H26C109.5
O2—C1—Eu147.4 (3)H26B—C26—H26C109.5
O1—C1—Eu174.6 (4)O12—C27—H27A109.5
C2—C1—Eu1154.1 (4)O12—C27—H27B109.5
C3—C2—C7118.7 (5)H27A—C27—H27B109.5
C3—C2—C1123.9 (5)O12—C27—H27C109.5
C7—C2—C1117.4 (5)H27A—C27—H27C109.5
O3—C3—C2120.2 (5)H27B—C27—H27C109.5
O3—C3—C4119.6 (5)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Eu(C9H9O4)3]
Mr695.45
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)18.9555 (14), 8.0426 (4), 17.1475 (10)
V3)2614.2 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.47
Crystal size (mm)0.33 × 0.21 × 0.16
Data collection
DiffractometerRigaku R-AXIS RAPID image-plate
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.543, 0.674
No. of measured, independent and
observed [I > 2σ(I)] reflections
5640, 5640, 4984
Rint0.000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.067, 1.03
No. of reflections5640
No. of parameters367
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.86, 0.80
Absolute structureFlack (1983), with 2495 Friedel pairs
Absolute structure parameter0.011 (15)

Computer programs: RAPID AUTO (Rigaku, 2001), RAPID AUTO, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1994), SHELXTL (Siemens, 1995).

Selected geometric parameters (Å, º) top
Eu1—O12.959 (5)Eu1—O10i2.332 (3)
Eu1—O1i2.392 (4)O1—C11.272 (6)
Eu1—O22.365 (4)O2—C11.267 (7)
Eu1—O52.500 (4)O5—C101.264 (6)
Eu1—O62.498 (4)O6—C101.271 (6)
Eu1—O6i2.409 (3)O9—C191.265 (5)
Eu1—O7i2.703 (4)O10—C191.262 (6)
Eu1—O92.315 (3)
O9—Eu1—O10i149.50 (11)O1i—Eu1—O577.04 (15)
O9—Eu1—O2117.54 (14)O6i—Eu1—O5137.94 (13)
O10i—Eu1—O287.94 (12)O6—Eu1—O552.02 (11)
O9—Eu1—O1i79.69 (14)O9—Eu1—O7i84.93 (14)
O10i—Eu1—O1i81.75 (13)O10i—Eu1—O7i90.94 (12)
O2—Eu1—O1i156.45 (15)O2—Eu1—O7i66.72 (13)
O9—Eu1—O6i78.41 (12)O1i—Eu1—O7i134.17 (14)
O10i—Eu1—O6i72.93 (12)O6i—Eu1—O7i62.60 (12)
O2—Eu1—O6i124.87 (15)O6—Eu1—O7i130.67 (11)
O1i—Eu1—O6i72.06 (16)O5—Eu1—O7i144.27 (12)
O9—Eu1—O675.77 (12)O9—Eu1—O171.58 (11)
O10i—Eu1—O6127.04 (13)O10i—Eu1—O1134.54 (10)
O2—Eu1—O682.76 (13)O2—Eu1—O146.85 (11)
O1i—Eu1—O686.65 (15)O1i—Eu1—O1141.19 (11)
O6i—Eu1—O6149.02 (4)O6i—Eu1—O1124.65 (12)
O9—Eu1—O5123.28 (14)O6—Eu1—O161.65 (12)
O10i—Eu1—O575.03 (12)O5—Eu1—O197.28 (12)
O2—Eu1—O579.87 (15)O7i—Eu1—O169.26 (11)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds