Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal and molecular structures of the three 4-ketotetrahydro­indoles 2-(4-chloro­phenyl)-1-(4-fluoro­phenyl)-6,6-dimethyl-4,5,6,7-tetra­hydro-1H-indol-4-one (C22H19ClFNO), (I), 1-(4-fluoro­phenyl)-2-(4-methoxy­phenyl)-6,6-di­methyl-4,5,6,7-tetra­hydro-1H-indol-4-one (C23H22FNO2), (II), and 6,6-dimethyl-1,2-di­phenyl-4,5,6,7-tetra­hydro-1H-indol-4-one (C22H21NO), (III), have been determined via single-crystal X-ray diffraction in order to study the intermolecular interactions therein. All three structures are stabilized via intermolecular C—H...O and C—H...π interactions, generating different molecular motifs.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104002707/fg1731sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104002707/fg1731Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104002707/fg1731IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104002707/fg1731IIIsup4.hkl
Contains datablock III

CCDC references: 235354; 235355; 235356

Comment top

The generation of different types of packing motifs in crystalline lattices has been illustrated in detail in the literature. Different types of intermolecular interactions, such as hydrogen bonding (Desiraju, 1989, 2000, 2002; Aakeroy, 1997; Guru Row, 1999; Hunter et al., 2001), C—H···π interactions (Nishio et al., 1995; Umezawa et al., 1999; Takahashi et al., 2000), ππ stacking (Hunter, 1993, 1994) and C—H···O hydrogen bonding (Desiraju & Steiner, 1999; Steiner, 2002) have been reviewed extensively. Recently, it has been shown that `organic fluorine' provides similar interactions, to generate packing motifs in the presence or absence of other intermolecular forces (Prasanna & Guru Row, 2000a,b,c, 2001). We have been interested in the study of the role of organic fluorine in the packing of organic molecules which show biological activity (Choudhury Urs Guru Row & Nagarajan, 2002; Choudhury Urs Smith et al., 2002). Against this background, we report here the crystal and molecular structures of 2-(4-chlorophenyl)-1-(4-fluorophenyl)-6,6-dimethyl-4,5,6,7-tetrahydro- −1H-indol-4-one, (I), and 1-(4-fluorophenyl)-2-(4-methoxyphenyl)-6,6- dimethyl-4,5,6,7-tetrahydro-1H-indol-4-one, (II), and compare these with the corresponding unsubstituted compound 6,6-dimethyl-1,2-diphenyl-4,5,6,7-tetrahydro-1H-indol-4-one, (III) (Varghese et al., 1986), the structure of which we have redetermined. \sch

Most unsubstituted 4-ketotetrahydroindoles have been found to be biologically inactive (Remers et al., 1971) and the inactivity was attributed to the extended conjugation of the CO group with the indole N atom (Weiss et al., 1968). In order to delocalize the lone pair of electrons on N and to facilitate the activity of the keto function, a series of 1,2-diaryl derivatives were synthesized (Nagarajan et al., 1985). It was found that differently substituted phenyl groups on the 1- or 2-positions facilitate biological activity. Compound (I) of the present study was inactive, whereas (II) showed considerable activity, as reported by Nagarajan et al. (1985). We have redetermined the structure of the unsubstituted compound, (III), since the intermolecular interactions were not discussed in detail in the earlier report by Varghese et al. (1986).

In compound (I), the six-membered ring of the tetrahydroindole (Fig. 1) has an envelope conformation, with atom C5 − 0.641 (3) Å from the C3/C4/C6/C7/C8 plane. Selected torsion angles are given in Table 1. The dihedral angle between the 1-(4-fluorophenyl) and 2-(4-chlorophenyl) rings is 69.84 (7)°. The packing of the molecules in the crystal lattice (Fig. 2) is stabilized via C—H···O and C—H···π interactions (Table 2). There are two independent C—H···π interactions, which link the molecules in the b direction. Thus, molecules packed around the inversion centres at (1/2,1/2,1/2) and (1,1/2,1/2) are linked by pairs of independent C—H···π interactions. C—H···O interactions about the inversion centre at (1/2,1,1/2) then serve to link these chains to form sheets of molecules in the bc plane In Fig. 2 and Table 2, Cg1 is the centroid of the five-membered N1/C1/C2/C8/C7 ring and Cg2 is the centroid of the C9—C14 phenyl ring. It is of interest to note that there are no interactions involving the halogen atoms, though the structure contains a Cl as well as an F.

In compound (II), the six-membered ring of the tetrahydroindole (Fig. 3) has an envelope conformation, with atom C5 − 0.618 (2) Å from the C3/C4/C6/C7/C8 plane, similar to what was observed for (I). Selected torsion angles are given in Table 3. The dihedral angle between the 1-(4-fluorophenyl) and 2-(4-methoxyphenyl) rings is 60.94 (4)°. The molecules pack in the unit cell (Fig. 4) via two different C—H···O interactions (Table 4) in the (101) plane, generating a sheet structure. This is further stabilized by an additional C—H···π interaction which reinforces the two-dimensional sheet (Fig. 4). In Table 4, Cg1 is the centroid of the five-membered N1/C1/C2/C8/C7 ring. Once again, it is to be noted that the F atom does not generate any significant interaction.

In compound (III), the six-membered ring of the tetrahydroindole (Fig. 5) has an envelope conformation, with atom C5 − 0.632 (2) Å from the C3/C4/C6/C7/C8 plane. Selected torsion angles are given in Table 5. The dihedral angle between the 1-phenyl and 2-phenyl rings is 62.99 (6)°. The variation in dihedral angles in (I), (II) and (III) clearly shows that the conformations of the molecules are significantly different among the three compounds. The molecules of (III) pack in the unit cell via two different C—H···O interactions (Fig. 6 and Table 6) generating a `ladder' motif, which is further reinforced by a C—H···π interaction involving C4—H4B (Table 6). In Table 6, Cg1 is the centroid of the five-membered N1/C1/C2/C8/C7 ring and Cg2 is the centroid of the C9–C14 phenyl ring. These ladders are then linked to form a two-dimensional sheet in the (101) plane via a further C—H···π interaction involving C11—H11 and the centroid Cg2 at (-x, 1 − y, 2 − z).

These three structures illustrate the coexistance of C—H···O and C—H···π interactions to generate different packing motifs with altered molecular conformations. Such subtle variations might have a significant impact on the biological activities of such compounds. Indeed, only compound (II) is found to be biologically active.

Experimental top

Compounds (I)-(III) were synthesized using the procedure of Nagarajan et al. (1985). Single crystals suitable for X-ray diffraction studies were grown from solutions in acetone (analytical reagent) by slow evaporation at 283 K.

Refinement top

The ranges of the C—H bond lengths in (I), (II) and (III) are 0.91 (3)–1.08 (3), 0.93 (2)–1.01 (3) and 0.93 (2)–1.05 (2) Å, respectively.

Computing details top

For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997), CAMERON (Watkin et al., 1993) and PLATON (Spek 2003); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A packing diagram for (I), showing the C—H···O hydrogen-bonded dimer and the intermolecular C—H···π interaction. Cg1 is the centroid of the five-membered N1/C1/C2/C8/C7 ring and Cg2 is the centroid of the C9—C14 phenyl ring. Atoms labelled with a dollar sign (), hash (#) or asterisk (*) are at symmetry positions (1 − x, 2 − y, 1 − z), (2 − x, 1 − y, 1 − z) and (1 − x, 1 − y, 1 − z), respectively.
[Figure 3] Fig. 3. A view of the molecule of (II), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 4] Fig. 4. A stereo view of the packing of (II), showing the C—H···O hydrogen-bonded sheet motif and C—H···π interactions.
[Figure 5] Fig. 5. A view of the molecule of (III), showing the atom-numbering scheme and with displacement ellipsoids drawn at the 50% probability level. H atoms have been omitted for clarity.
[Figure 6] Fig. 6. A stereo view of the packing of (III), showing the C—H···O hydrogen-bonded ladder motif and C—H···π interactions
(I) 2-(4-chlorophenyl)-1-(4-fluorophenyl)-6,6-dimethyl-4,5,6,7-tetrahydro- 1H-indol-4-one top
Crystal data top
C22H19ClFNOZ = 2
Mr = 367.83F(000) = 384
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Melting point: 507 K
a = 9.246 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.228 (4) ÅCell parameters from 2435 reflections
c = 11.177 (4) Åθ = 2.3–21.2°
α = 80.529 (6)°µ = 0.22 mm1
β = 86.335 (7)°T = 293 K
γ = 65.120 (6)°Plate, colourless
V = 945.7 (6) Å30.50 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3788 independent reflections
Radiation source: fine-focus sealed tube2811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 26.4°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.844, Tmax = 0.957k = 1212
9987 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0455P)2 + 0.2584P]
where P = (Fo2 + 2Fc2)/3
3788 reflections(Δ/σ)max < 0.001
311 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H19ClFNOγ = 65.120 (6)°
Mr = 367.83V = 945.7 (6) Å3
Triclinic, P1Z = 2
a = 9.246 (3) ÅMo Kα radiation
b = 10.228 (4) ŵ = 0.22 mm1
c = 11.177 (4) ÅT = 293 K
α = 80.529 (6)°0.50 × 0.30 × 0.20 mm
β = 86.335 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3788 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2811 reflections with I > 2σ(I)
Tmin = 0.844, Tmax = 0.957Rint = 0.024
9987 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.118All H-atom parameters refined
S = 1.04Δρmax = 0.20 e Å3
3788 reflectionsΔρmin = 0.22 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.66030 (9)0.27487 (8)0.99603 (6)0.0893 (3)
N10.74427 (17)0.54652 (15)0.39864 (14)0.0445 (4)
O10.5159 (3)1.04382 (16)0.30251 (16)0.0989 (7)
F11.1009 (2)0.02663 (15)0.34244 (18)0.1180 (6)
C10.6736 (2)0.60481 (19)0.50405 (17)0.0449 (4)
C20.6048 (2)0.7529 (2)0.47288 (19)0.0505 (5)
C30.5853 (3)0.9258 (2)0.2686 (2)0.0588 (5)
C40.6250 (3)0.9138 (2)0.1373 (2)0.0600 (6)
C50.7828 (3)0.7863 (2)0.1146 (2)0.0594 (5)
C60.7775 (3)0.6433 (2)0.1792 (2)0.0572 (5)
C70.7189 (2)0.65797 (19)0.30515 (17)0.0466 (4)
C80.6317 (2)0.78683 (19)0.34852 (18)0.0487 (5)
C90.8369 (2)0.39556 (18)0.38695 (17)0.0451 (4)
C100.9871 (3)0.3220 (2)0.4367 (2)0.0607 (6)
C111.0767 (3)0.1786 (2)0.4214 (3)0.0760 (7)
C121.0124 (3)0.1143 (2)0.3575 (2)0.0734 (7)
C130.8633 (3)0.1833 (3)0.3088 (2)0.0772 (7)
C140.7741 (3)0.3273 (2)0.3234 (2)0.0637 (6)
C150.6749 (2)0.51810 (19)0.62245 (17)0.0457 (4)
C160.6757 (3)0.5763 (2)0.72673 (19)0.0551 (5)
C170.6686 (3)0.5037 (2)0.8405 (2)0.0620 (6)
C180.6626 (2)0.3697 (2)0.85213 (19)0.0570 (5)
C190.6614 (2)0.3093 (2)0.7518 (2)0.0562 (5)
C200.6669 (2)0.3830 (2)0.6379 (2)0.0508 (5)
C210.8021 (5)0.7823 (4)0.0217 (3)0.0885 (9)
C220.9196 (4)0.8080 (4)0.1648 (4)0.0913 (9)
H20.547 (2)0.817 (2)0.5230 (17)0.049 (5)*
H4A0.625 (2)1.005 (2)0.0972 (19)0.063 (6)*
H4B0.539 (3)0.900 (2)0.1011 (19)0.068 (6)*
H6A0.880 (3)0.563 (2)0.1784 (18)0.061 (6)*
H6B0.705 (2)0.619 (2)0.1332 (18)0.057 (6)*
H101.029 (3)0.369 (2)0.483 (2)0.072 (7)*
H111.181 (3)0.129 (3)0.458 (2)0.093 (8)*
H130.823 (3)0.136 (3)0.265 (2)0.087 (8)*
H140.672 (3)0.380 (3)0.289 (2)0.083 (8)*
H160.683 (2)0.666 (2)0.7170 (18)0.058 (6)*
H170.669 (3)0.548 (2)0.909 (2)0.070 (7)*
H190.659 (2)0.217 (2)0.7612 (18)0.060 (6)*
H200.663 (2)0.341 (2)0.5701 (19)0.056 (6)*
H21A0.813 (3)0.870 (3)0.066 (3)0.105 (9)*
H21B0.711 (4)0.768 (3)0.060 (3)0.122 (12)*
H21C0.897 (3)0.703 (3)0.033 (2)0.082 (8)*
H22A1.010 (4)0.731 (4)0.149 (3)0.115 (11)*
H22B0.910 (4)0.811 (3)0.261 (3)0.121 (11)*
H22C0.926 (3)0.894 (3)0.123 (3)0.110 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.1093 (6)0.0859 (5)0.0681 (4)0.0433 (4)0.0167 (4)0.0020 (3)
N10.0443 (9)0.0342 (8)0.0510 (9)0.0102 (6)0.0023 (7)0.0121 (7)
O10.1506 (18)0.0356 (9)0.0811 (12)0.0081 (10)0.0041 (11)0.0136 (8)
F10.1249 (14)0.0436 (8)0.1618 (17)0.0023 (8)0.0004 (12)0.0426 (9)
C10.0418 (10)0.0387 (10)0.0535 (11)0.0126 (8)0.0030 (8)0.0151 (8)
C20.0500 (11)0.0385 (10)0.0581 (13)0.0091 (9)0.0026 (9)0.0189 (9)
C30.0648 (13)0.0404 (11)0.0633 (14)0.0118 (10)0.0105 (10)0.0106 (10)
C40.0698 (15)0.0411 (11)0.0642 (14)0.0197 (10)0.0120 (11)0.0001 (10)
C50.0628 (13)0.0518 (12)0.0597 (13)0.0213 (10)0.0017 (10)0.0061 (10)
C60.0633 (14)0.0435 (11)0.0578 (13)0.0140 (10)0.0020 (11)0.0125 (10)
C70.0457 (10)0.0376 (10)0.0533 (11)0.0126 (8)0.0071 (9)0.0088 (8)
C80.0497 (11)0.0372 (10)0.0544 (12)0.0112 (8)0.0080 (9)0.0106 (8)
C90.0470 (11)0.0340 (9)0.0521 (11)0.0131 (8)0.0021 (8)0.0117 (8)
C100.0505 (12)0.0414 (11)0.0883 (16)0.0140 (9)0.0091 (11)0.0161 (11)
C110.0538 (14)0.0440 (12)0.116 (2)0.0049 (11)0.0105 (14)0.0133 (13)
C120.0820 (17)0.0346 (11)0.0926 (18)0.0094 (11)0.0063 (14)0.0240 (11)
C130.097 (2)0.0520 (13)0.0861 (18)0.0246 (14)0.0119 (15)0.0310 (13)
C140.0649 (14)0.0492 (12)0.0741 (15)0.0148 (11)0.0128 (12)0.0218 (11)
C150.0384 (10)0.0385 (10)0.0564 (12)0.0101 (8)0.0006 (8)0.0127 (9)
C160.0665 (13)0.0401 (11)0.0595 (13)0.0209 (10)0.0032 (10)0.0142 (10)
C170.0736 (15)0.0586 (13)0.0546 (13)0.0254 (11)0.0065 (11)0.0187 (11)
C180.0514 (12)0.0539 (12)0.0599 (13)0.0180 (9)0.0083 (10)0.0069 (10)
C190.0509 (12)0.0448 (11)0.0736 (15)0.0213 (9)0.0075 (10)0.0099 (11)
C200.0483 (11)0.0454 (11)0.0609 (13)0.0188 (9)0.0031 (9)0.0164 (10)
C210.113 (3)0.0669 (18)0.0729 (18)0.0294 (19)0.0206 (18)0.0073 (14)
C220.0693 (19)0.086 (2)0.123 (3)0.0384 (17)0.0025 (18)0.010 (2)
Geometric parameters (Å, º) top
Cl1—C181.740 (2)C10—C111.381 (3)
N1—C71.364 (2)C10—H100.96 (2)
N1—C11.405 (2)C11—C121.355 (4)
N1—C91.440 (2)C11—H110.96 (3)
O1—C31.217 (2)C12—C131.358 (4)
F1—C121.358 (2)C13—C141.384 (3)
C1—C21.365 (3)C13—H130.93 (3)
C1—C151.464 (3)C14—H140.94 (2)
C2—C81.409 (3)C15—C161.395 (3)
C2—H20.91 (2)C15—C201.397 (3)
C3—C81.456 (3)C16—C171.375 (3)
C3—C41.502 (3)C16—H160.94 (2)
C4—C51.534 (3)C17—C181.379 (3)
C4—H4A0.96 (2)C17—H170.95 (2)
C4—H4B0.98 (2)C18—C191.370 (3)
C5—C221.527 (4)C19—C201.378 (3)
C5—C211.528 (4)C19—H190.94 (2)
C5—C61.540 (3)C20—H200.94 (2)
C6—C71.483 (3)C21—H21A0.99 (3)
C6—H6A0.96 (2)C21—H21B1.04 (3)
C6—H6B1.00 (2)C21—H21C0.93 (3)
C7—C81.374 (2)C22—H22A0.91 (3)
C9—C101.373 (3)C22—H22B1.08 (3)
C9—C141.373 (3)C22—H22C0.95 (3)
C7—N1—C1109.06 (14)C12—C11—C10118.4 (2)
C7—N1—C9123.19 (15)C12—C11—H11123.1 (15)
C1—N1—C9127.67 (15)C10—C11—H11118.4 (16)
C2—C1—N1106.91 (17)C11—C12—F1118.3 (2)
C2—C1—C15128.35 (17)C11—C12—C13123.2 (2)
N1—C1—C15124.73 (15)F1—C12—C13118.5 (2)
C1—C2—C8108.24 (17)C12—C13—C14118.3 (2)
C1—C2—H2125.5 (12)C12—C13—H13120.8 (16)
C8—C2—H2126.2 (12)C14—C13—H13120.9 (16)
O1—C3—C8123.9 (2)C9—C14—C13119.7 (2)
O1—C3—C4121.3 (2)C9—C14—H14119.4 (15)
C8—C3—C4114.77 (17)C13—C14—H14120.9 (15)
C3—C4—C5114.82 (18)C16—C15—C20117.46 (19)
C3—C4—H4A108.7 (12)C16—C15—C1118.54 (17)
C5—C4—H4A110.3 (12)C20—C15—C1123.91 (17)
C3—C4—H4B107.5 (13)C17—C16—C15121.4 (2)
C5—C4—H4B107.6 (12)C17—C16—H16120.7 (12)
H4A—C4—H4B107.7 (17)C15—C16—H16117.9 (12)
C22—C5—C21110.6 (3)C16—C17—C18119.5 (2)
C22—C5—C4108.9 (2)C16—C17—H17118.5 (14)
C21—C5—C4108.9 (2)C18—C17—H17122.0 (14)
C22—C5—C6110.3 (2)C19—C18—C17120.8 (2)
C21—C5—C6109.5 (2)C19—C18—Cl1119.62 (17)
C4—C5—C6108.68 (18)C17—C18—Cl1119.60 (18)
C7—C6—C5110.59 (17)C18—C19—C20119.6 (2)
C7—C6—H6A110.9 (13)C18—C19—H19119.8 (13)
C5—C6—H6A111.2 (13)C20—C19—H19120.6 (13)
C7—C6—H6B109.6 (12)C19—C20—C15121.3 (2)
C5—C6—H6B109.4 (11)C19—C20—H20118.5 (12)
H6A—C6—H6B105.0 (17)C15—C20—H20120.2 (12)
N1—C7—C8108.00 (17)C5—C21—H21A111.8 (17)
N1—C7—C6126.16 (16)C5—C21—H21B113.2 (18)
C8—C7—C6125.83 (18)H21A—C21—H21B110 (2)
C7—C8—C2107.78 (17)C5—C21—H21C107.5 (16)
C7—C8—C3120.59 (19)H21A—C21—H21C107 (2)
C2—C8—C3131.62 (17)H21B—C21—H21C107 (2)
C10—C9—C14120.58 (18)C5—C22—H22A105 (2)
C10—C9—N1120.35 (17)C5—C22—H22B112.7 (17)
C14—C9—N1119.06 (17)H22A—C22—H22B110 (3)
C9—C10—C11119.8 (2)C5—C22—H22C110.8 (19)
C9—C10—H10120.1 (13)H22A—C22—H22C108 (3)
C11—C10—H10120.1 (14)H22B—C22—H22C110 (3)
C7—N1—C1—C20.2 (2)C4—C3—C8—C2174.4 (2)
C9—N1—C1—C2177.12 (17)C7—N1—C9—C10106.0 (2)
C7—N1—C1—C15179.41 (16)C1—N1—C9—C1070.5 (3)
C9—N1—C1—C153.7 (3)C7—N1—C9—C1472.7 (3)
N1—C1—C2—C80.3 (2)C1—N1—C9—C14110.7 (2)
C15—C1—C2—C8178.91 (18)C14—C9—C10—C110.9 (4)
O1—C3—C4—C5145.5 (2)N1—C9—C10—C11177.9 (2)
C8—C3—C4—C536.3 (3)C9—C10—C11—C120.3 (4)
C3—C4—C5—C2262.9 (3)C10—C11—C12—F1179.9 (2)
C3—C4—C5—C21176.5 (2)C10—C11—C12—C130.8 (4)
C3—C4—C5—C657.3 (3)C11—C12—C13—C141.2 (4)
C22—C5—C6—C772.3 (3)F1—C12—C13—C14179.5 (2)
C21—C5—C6—C7165.8 (2)C10—C9—C14—C130.4 (4)
C4—C5—C6—C747.0 (2)N1—C9—C14—C13178.3 (2)
C1—N1—C7—C80.6 (2)C12—C13—C14—C90.6 (4)
C9—N1—C7—C8177.68 (16)C2—C1—C15—C1632.3 (3)
C1—N1—C7—C6178.39 (19)N1—C1—C15—C16148.67 (18)
C9—N1—C7—C61.3 (3)C2—C1—C15—C20144.2 (2)
C5—C6—C7—N1158.22 (18)N1—C1—C15—C2034.9 (3)
C5—C6—C7—C820.6 (3)C20—C15—C16—C170.1 (3)
N1—C7—C8—C20.7 (2)C1—C15—C16—C17176.55 (19)
C6—C7—C8—C2178.24 (19)C15—C16—C17—C180.9 (3)
N1—C7—C8—C3179.65 (17)C16—C17—C18—C190.9 (3)
C6—C7—C8—C31.4 (3)C16—C17—C18—Cl1177.85 (17)
C1—C2—C8—C70.6 (2)C17—C18—C19—C200.2 (3)
C1—C2—C8—C3179.8 (2)Cl1—C18—C19—C20178.56 (15)
O1—C3—C8—C7175.8 (2)C18—C19—C20—C150.6 (3)
C4—C3—C8—C76.1 (3)C16—C15—C20—C190.6 (3)
O1—C3—C8—C23.7 (4)C1—C15—C20—C19177.08 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.90 (2)2.50 (2)3.358 (3)158 (2)
C10—H10···Cg1ii0.96 (2)2.933.723 (3)142
C14—H14···Cg2iii0.94 (2)2.903.804 (3)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
(II) 1-(4-fluorophenyl)-2-(4-methoxyphenyl)-6,6-dimethyl-4,5,6,7-tetrahydro- 1H-indol-4-one top
Crystal data top
C23H22FNO2F(000) = 768
Mr = 363.42Dx = 1.237 Mg m3
Monoclinic, P21/nMelting point: 494 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 10.112 (2) ÅCell parameters from 974 reflections
b = 19.073 (4) Åθ = 2.7–24.3°
c = 11.287 (3) ŵ = 0.09 mm1
β = 116.348 (3)°T = 293 K
V = 1950.8 (8) Å3Prism, colourless
Z = 40.40 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3562 independent reflections
Radiation source: sealed tube2818 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 25.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.887, Tmax = 0.983k = 2221
14313 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0502P)2 + 0.3423P]
where P = (Fo2 + 2Fc2)/3
3562 reflections(Δ/σ)max < 0.001
332 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C23H22FNO2V = 1950.8 (8) Å3
Mr = 363.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.112 (2) ŵ = 0.09 mm1
b = 19.073 (4) ÅT = 293 K
c = 11.287 (3) Å0.40 × 0.30 × 0.20 mm
β = 116.348 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3562 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2818 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.983Rint = 0.024
14313 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.106All H-atom parameters refined
S = 1.04Δρmax = 0.15 e Å3
3562 reflectionsΔρmin = 0.19 e Å3
332 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.25458 (15)0.35840 (6)0.68136 (15)0.1001 (5)
O10.81733 (13)0.04919 (6)0.59350 (12)0.0591 (3)
O20.74360 (13)0.41255 (7)0.27699 (13)0.0692 (4)
N10.58615 (13)0.15763 (6)0.58559 (12)0.0422 (3)
C10.66762 (15)0.16589 (8)0.51285 (15)0.0421 (3)
C20.73415 (17)0.10389 (8)0.51610 (15)0.0439 (4)
C30.73646 (16)0.01635 (8)0.62834 (15)0.0438 (4)
C40.6681 (2)0.05015 (9)0.70871 (18)0.0511 (4)
C50.63399 (19)0.00126 (9)0.79896 (16)0.0539 (4)
C60.5407 (2)0.06088 (9)0.71829 (18)0.0519 (4)
C70.60495 (16)0.09075 (7)0.63381 (14)0.0417 (3)
C80.69592 (15)0.05605 (8)0.59254 (14)0.0419 (3)
C90.50004 (16)0.21030 (7)0.61026 (15)0.0419 (3)
C100.56745 (19)0.26830 (9)0.68513 (18)0.0548 (4)
C110.4849 (2)0.31890 (9)0.7094 (2)0.0643 (5)
C120.3365 (2)0.30926 (9)0.6576 (2)0.0625 (5)
C130.2667 (2)0.25201 (10)0.5838 (2)0.0642 (5)
C140.34993 (18)0.20199 (9)0.55971 (18)0.0522 (4)
C150.67816 (16)0.23226 (8)0.45051 (14)0.0427 (4)
C160.81536 (18)0.25265 (9)0.46274 (18)0.0529 (4)
C170.83263 (19)0.31212 (9)0.40332 (18)0.0573 (4)
C180.71305 (17)0.35407 (8)0.32950 (15)0.0473 (4)
C190.57575 (19)0.33536 (9)0.31572 (17)0.0543 (4)
C200.55954 (18)0.27460 (9)0.37593 (18)0.0555 (4)
C210.5437 (4)0.04221 (14)0.8545 (3)0.0829 (7)
C220.7775 (3)0.02470 (16)0.9109 (2)0.0837 (7)
C230.6276 (3)0.45901 (14)0.2033 (3)0.0835 (7)
H20.7935 (17)0.0944 (8)0.4719 (14)0.045 (4)*
H4A0.7330 (19)0.0871 (9)0.7600 (16)0.059 (5)*
H4B0.575 (2)0.0728 (9)0.6444 (17)0.060 (5)*
H6A0.532 (2)0.0967 (10)0.7770 (18)0.067 (5)*
H6B0.437 (2)0.0456 (9)0.6609 (17)0.061 (5)*
H100.674 (2)0.2724 (9)0.7212 (17)0.068 (5)*
H110.529 (2)0.3602 (11)0.762 (2)0.078 (6)*
H130.161 (2)0.2480 (10)0.5496 (18)0.077 (6)*
H140.3025 (17)0.1611 (9)0.5099 (16)0.052 (4)*
H160.901 (2)0.2242 (10)0.5145 (17)0.066 (5)*
H170.930 (2)0.3261 (10)0.4126 (18)0.071 (5)*
H190.489 (2)0.3630 (9)0.2640 (17)0.065 (5)*
H200.462 (2)0.2606 (9)0.3635 (17)0.066 (5)*
H21A0.838 (2)0.0544 (12)0.882 (2)0.094 (7)*
H21B0.840 (3)0.0166 (14)0.959 (3)0.113 (9)*
H21C0.758 (3)0.0566 (13)0.970 (3)0.116 (9)*
H22A0.604 (2)0.0790 (13)0.910 (2)0.096 (7)*
H23B0.575 (3)0.4718 (13)0.252 (3)0.114 (9)*
H22C0.522 (3)0.0119 (14)0.911 (3)0.116 (9)*
H23A0.555 (3)0.4363 (13)0.124 (3)0.112 (9)*
H22B0.447 (3)0.0596 (15)0.783 (3)0.130 (11)*
H23C0.671 (2)0.4962 (12)0.181 (2)0.092 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.1069 (10)0.0639 (7)0.1599 (13)0.0262 (7)0.0866 (10)0.0064 (8)
O10.0650 (7)0.0424 (6)0.0790 (8)0.0106 (5)0.0402 (7)0.0023 (6)
O20.0616 (7)0.0595 (8)0.0907 (9)0.0040 (6)0.0375 (7)0.0307 (7)
N10.0440 (7)0.0343 (7)0.0515 (7)0.0028 (5)0.0240 (6)0.0015 (6)
C10.0405 (8)0.0382 (8)0.0486 (9)0.0014 (6)0.0205 (7)0.0011 (7)
C20.0441 (8)0.0419 (9)0.0513 (9)0.0017 (7)0.0261 (7)0.0001 (7)
C30.0404 (8)0.0380 (8)0.0477 (9)0.0008 (6)0.0146 (7)0.0026 (7)
C40.0518 (10)0.0401 (9)0.0580 (10)0.0037 (8)0.0213 (8)0.0095 (8)
C50.0616 (10)0.0524 (10)0.0488 (9)0.0055 (8)0.0256 (8)0.0092 (8)
C60.0602 (11)0.0470 (10)0.0577 (10)0.0059 (8)0.0344 (9)0.0067 (8)
C70.0431 (8)0.0359 (8)0.0456 (8)0.0010 (6)0.0193 (7)0.0014 (6)
C80.0419 (8)0.0365 (8)0.0473 (8)0.0017 (6)0.0196 (7)0.0003 (7)
C90.0442 (8)0.0354 (8)0.0483 (8)0.0030 (6)0.0225 (7)0.0023 (7)
C100.0478 (9)0.0457 (10)0.0683 (11)0.0037 (8)0.0234 (9)0.0082 (8)
C110.0736 (13)0.0419 (10)0.0824 (13)0.0031 (9)0.0393 (11)0.0156 (9)
C120.0724 (12)0.0415 (10)0.0892 (13)0.0145 (9)0.0500 (11)0.0037 (9)
C130.0465 (10)0.0550 (11)0.0947 (14)0.0075 (9)0.0346 (10)0.0043 (10)
C140.0457 (9)0.0419 (9)0.0669 (11)0.0016 (7)0.0231 (8)0.0031 (8)
C150.0437 (8)0.0379 (8)0.0473 (8)0.0003 (6)0.0210 (7)0.0009 (7)
C160.0439 (9)0.0492 (10)0.0678 (11)0.0064 (8)0.0269 (8)0.0127 (8)
C170.0451 (9)0.0554 (11)0.0770 (12)0.0007 (8)0.0323 (9)0.0142 (9)
C180.0518 (9)0.0430 (9)0.0513 (9)0.0018 (7)0.0267 (8)0.0056 (7)
C190.0456 (9)0.0536 (10)0.0603 (10)0.0060 (8)0.0205 (8)0.0151 (8)
C200.0396 (8)0.0557 (10)0.0684 (11)0.0023 (8)0.0212 (8)0.0124 (9)
C210.111 (2)0.0746 (15)0.0873 (17)0.0171 (15)0.0656 (17)0.0314 (14)
C220.0902 (16)0.0896 (18)0.0526 (12)0.0009 (15)0.0149 (12)0.0037 (12)
C230.0764 (15)0.0693 (15)0.1024 (19)0.0072 (13)0.0374 (15)0.0427 (14)
Geometric parameters (Å, º) top
F1—C121.3545 (18)C10—H100.972 (18)
O1—C31.2252 (17)C11—C121.359 (3)
O2—C181.3613 (18)C11—H110.97 (2)
O2—C231.409 (2)C12—C131.365 (3)
N1—C71.3667 (18)C13—C141.377 (2)
N1—C11.4065 (18)C13—H130.96 (2)
N1—C91.4352 (18)C14—H140.956 (17)
C1—C21.353 (2)C15—C201.380 (2)
C1—C151.475 (2)C15—C161.388 (2)
C2—C81.422 (2)C16—C171.368 (2)
C2—H20.953 (15)C16—H160.968 (19)
C3—C81.446 (2)C17—C181.379 (2)
C3—C41.508 (2)C17—H170.976 (19)
C4—C51.529 (2)C18—C191.374 (2)
C4—H4A0.962 (18)C19—C201.389 (2)
C4—H4B0.996 (18)C19—H190.967 (19)
C5—C221.523 (3)C20—H200.974 (18)
C5—C211.531 (3)C21—H22A0.96 (2)
C5—C61.537 (2)C21—H22C0.96 (3)
C6—C71.485 (2)C21—H22B1.01 (3)
C6—H6A0.981 (19)C22—H21A0.99 (2)
C6—H6B1.001 (18)C22—H21B1.01 (3)
C7—C81.3717 (19)C22—H21C0.99 (3)
C9—C141.373 (2)C23—H23B0.95 (3)
C9—C101.375 (2)C23—H23A0.97 (3)
C10—C111.381 (2)C23—H23C0.93 (2)
C18—O2—C23118.80 (15)F1—C12—C11118.46 (17)
C7—N1—C1108.84 (11)F1—C12—C13118.56 (17)
C7—N1—C9124.41 (12)C11—C12—C13122.98 (16)
C1—N1—C9126.72 (12)C12—C13—C14118.60 (17)
C2—C1—N1107.42 (12)C12—C13—H13119.2 (12)
C2—C1—C15128.52 (13)C14—C13—H13122.1 (12)
N1—C1—C15124.03 (12)C9—C14—C13119.86 (17)
C1—C2—C8108.15 (13)C9—C14—H14120.8 (9)
C1—C2—H2124.9 (9)C13—C14—H14119.4 (9)
C8—C2—H2126.9 (9)C20—C15—C16117.19 (14)
O1—C3—C8123.05 (14)C20—C15—C1124.48 (13)
O1—C3—C4121.62 (14)C16—C15—C1118.28 (13)
C8—C3—C4115.30 (13)C17—C16—C15121.55 (15)
C3—C4—C5116.06 (14)C17—C16—H16119.1 (10)
C3—C4—H4A107.6 (10)C15—C16—H16119.4 (10)
C5—C4—H4A110.0 (10)C16—C17—C18120.58 (15)
C3—C4—H4B106.5 (9)C16—C17—H17121.0 (11)
C5—C4—H4B109.3 (10)C18—C17—H17118.4 (11)
H4A—C4—H4B107.0 (14)O2—C18—C19125.22 (15)
C22—C5—C4109.72 (17)O2—C18—C17115.52 (14)
C22—C5—C21110.4 (2)C19—C18—C17119.25 (15)
C4—C5—C21108.26 (17)C18—C19—C20119.60 (16)
C22—C5—C6110.44 (17)C18—C19—H19121.9 (10)
C4—C5—C6109.65 (13)C20—C19—H19118.5 (10)
C21—C5—C6108.35 (16)C15—C20—C19121.82 (15)
C7—C6—C5110.33 (13)C15—C20—H20118.7 (10)
C7—C6—H6A111.2 (10)C19—C20—H20119.5 (10)
C5—C6—H6A110.5 (10)C5—C21—H22A108.5 (13)
C7—C6—H6B109.2 (10)C5—C21—H22C108.7 (16)
C5—C6—H6B110.5 (10)H22A—C21—H22C106 (2)
H6A—C6—H6B105.0 (14)C5—C21—H22B112.7 (15)
N1—C7—C8108.11 (12)H22A—C21—H22B113 (2)
N1—C7—C6126.19 (13)H22C—C21—H22B108 (2)
C8—C7—C6125.70 (14)C5—C22—H21A114.4 (13)
C7—C8—C2107.48 (13)C5—C22—H21B109.5 (15)
C7—C8—C3121.03 (13)H21A—C22—H21B107.3 (19)
C2—C8—C3131.49 (13)C5—C22—H21C111.0 (15)
C14—C9—C10120.20 (14)H21A—C22—H21C102 (2)
C14—C9—N1119.51 (14)H21B—C22—H21C112 (2)
C10—C9—N1120.28 (13)O2—C23—H23B110.7 (16)
C9—C10—C11120.37 (16)O2—C23—H23A110.7 (16)
C9—C10—H10118.5 (10)H23B—C23—H23A105 (2)
C11—C10—H10121.2 (10)O2—C23—H23C105.8 (14)
C12—C11—C10117.98 (17)H23B—C23—H23C115 (2)
C12—C11—H11119.7 (12)H23A—C23—H23C110 (2)
C10—C11—H11122.4 (12)
C7—N1—C1—C20.61 (16)C7—N1—C9—C1466.4 (2)
C9—N1—C1—C2178.88 (14)C1—N1—C9—C14115.63 (17)
C7—N1—C1—C15177.52 (13)C7—N1—C9—C10112.95 (17)
C9—N1—C1—C150.7 (2)C1—N1—C9—C1065.1 (2)
N1—C1—C2—C80.56 (17)C14—C9—C10—C110.4 (3)
C15—C1—C2—C8177.46 (14)N1—C9—C10—C11179.74 (15)
O1—C3—C4—C5151.96 (15)C9—C10—C11—C120.2 (3)
C8—C3—C4—C529.9 (2)C10—C11—C12—F1179.66 (17)
C3—C4—C5—C2268.4 (2)C10—C11—C12—C130.4 (3)
C3—C4—C5—C21171.05 (18)F1—C12—C13—C14179.90 (16)
C3—C4—C5—C653.03 (19)C11—C12—C13—C140.6 (3)
C22—C5—C6—C774.1 (2)C10—C9—C14—C130.2 (3)
C4—C5—C6—C746.9 (2)N1—C9—C14—C13179.50 (15)
C21—C5—C6—C7164.91 (18)C12—C13—C14—C90.3 (3)
C1—N1—C7—C80.41 (16)C2—C1—C15—C20135.86 (18)
C9—N1—C7—C8178.73 (13)N1—C1—C15—C2046.4 (2)
C1—N1—C7—C6178.56 (15)C2—C1—C15—C1641.5 (2)
C9—N1—C7—C60.2 (2)N1—C1—C15—C16136.24 (16)
C5—C6—C7—N1155.93 (15)C20—C15—C16—C170.1 (3)
C5—C6—C7—C822.9 (2)C1—C15—C16—C17177.44 (16)
N1—C7—C8—C20.06 (17)C15—C16—C17—C180.4 (3)
C6—C7—C8—C2178.92 (15)C23—O2—C18—C190.7 (3)
N1—C7—C8—C3179.97 (13)C23—O2—C18—C17178.3 (2)
C6—C7—C8—C31.0 (2)C16—C17—C18—O2178.84 (16)
C1—C2—C8—C70.32 (17)C16—C17—C18—C190.2 (3)
C1—C2—C8—C3179.58 (16)O2—C18—C19—C20179.13 (16)
O1—C3—C8—C7179.99 (15)C17—C18—C19—C200.1 (3)
C4—C3—C8—C71.9 (2)C16—C15—C20—C190.3 (3)
O1—C3—C8—C20.1 (3)C1—C15—C20—C19177.66 (15)
C4—C3—C8—C2178.19 (16)C18—C19—C20—C150.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.97 (2)2.41 (2)3.366 (2)169 (1)
C14—H14···O1ii0.96 (2)2.48 (2)3.428 (2)173 (1)
C4—H4B···Cg1ii1.00 (2)2.693.606 (2)166
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z+1.
(III) 6,6-dimethyl-1,2-diphenyl-4,5,6,7-tetrahydro-1H-indol-4-one top
Crystal data top
C22H21NOZ = 2
Mr = 315.40F(000) = 336
Triclinic, P1Dx = 1.169 Mg m3
Hall symbol: -P 1Melting point: 482 K
a = 9.315 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.793 (5) ÅCell parameters from 985 reflections
c = 11.048 (6) Åθ = 2.4–24.2°
α = 81.362 (9)°µ = 0.07 mm1
β = 65.691 (7)°T = 293 K
γ = 77.999 (8)°Block, colourless
V = 896.0 (8) Å30.35 × 0.30 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3259 independent reflections
Radiation source: sealed tube2604 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.014
ϕ and ω scansθmax = 25.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.946, Tmax = 0.986k = 1111
7395 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104All H-atom parameters refined
S = 1.04 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.121P]
where P = (Fo2 + 2Fc2)/3
3259 reflections(Δ/σ)max < 0.001
301 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C22H21NOγ = 77.999 (8)°
Mr = 315.40V = 896.0 (8) Å3
Triclinic, P1Z = 2
a = 9.315 (5) ÅMo Kα radiation
b = 9.793 (5) ŵ = 0.07 mm1
c = 11.048 (6) ÅT = 293 K
α = 81.362 (9)°0.35 × 0.30 × 0.20 mm
β = 65.691 (7)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3259 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2604 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.986Rint = 0.014
7395 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.104All H-atom parameters refined
S = 1.04Δρmax = 0.13 e Å3
3259 reflectionsΔρmin = 0.17 e Å3
301 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.28072 (13)0.23798 (11)0.69871 (10)0.0393 (3)
O10.49380 (13)0.19296 (13)0.25063 (10)0.0642 (3)
C10.15640 (15)0.26748 (14)0.65309 (13)0.0394 (3)
C20.22397 (16)0.25684 (15)0.51884 (13)0.0420 (3)
C30.51835 (16)0.19015 (15)0.35162 (13)0.0431 (3)
C40.68424 (17)0.14790 (18)0.35118 (15)0.0487 (4)
C50.71311 (16)0.21092 (15)0.45697 (14)0.0457 (3)
C60.58507 (17)0.17938 (17)0.59576 (15)0.0455 (3)
C70.42332 (15)0.21093 (14)0.59246 (13)0.0384 (3)
C80.39170 (15)0.22049 (14)0.48016 (13)0.0394 (3)
C90.26477 (16)0.24451 (14)0.83309 (12)0.0403 (3)
C100.20043 (18)0.36894 (16)0.89371 (15)0.0489 (4)
C110.1867 (2)0.37528 (19)1.02188 (16)0.0562 (4)
C120.2375 (2)0.2583 (2)1.08890 (16)0.0605 (5)
C130.3022 (2)0.1343 (2)1.02774 (16)0.0649 (5)
C140.3162 (2)0.12617 (17)0.89933 (15)0.0547 (4)
C150.01448 (16)0.29904 (15)0.73970 (13)0.0424 (3)
C160.11164 (17)0.40663 (17)0.69814 (15)0.0508 (4)
C170.27475 (19)0.4344 (2)0.77108 (19)0.0637 (5)
C180.3431 (2)0.3564 (2)0.8878 (2)0.0696 (5)
C190.2492 (2)0.2513 (2)0.93185 (19)0.0705 (5)
C200.0853 (2)0.22134 (18)0.85879 (16)0.0584 (4)
C210.8764 (2)0.1419 (2)0.4570 (2)0.0680 (5)
C220.7097 (3)0.36887 (19)0.4255 (2)0.0652 (5)
H20.1666 (17)0.2680 (14)0.4612 (14)0.045 (4)*
H4A0.761 (2)0.1727 (17)0.2616 (18)0.066 (5)*
H4B0.701 (2)0.0449 (19)0.3678 (16)0.067 (5)*
H6A0.6068 (17)0.0805 (17)0.6255 (14)0.050 (4)*
H6B0.5899 (18)0.2307 (16)0.6634 (16)0.054 (4)*
H100.165 (2)0.4500 (18)0.8462 (16)0.065 (5)*
H110.143 (2)0.463 (2)1.0643 (17)0.072 (5)*
H120.230 (2)0.2643 (18)1.1758 (18)0.072 (5)*
H130.337 (2)0.050 (2)1.0744 (19)0.086 (6)*
H140.361 (2)0.039 (2)0.8553 (18)0.071 (5)*
H160.061 (2)0.4652 (18)0.6129 (17)0.067 (5)*
H170.342 (2)0.513 (2)0.7411 (19)0.085 (6)*
H180.457 (3)0.377 (2)0.938 (2)0.093 (6)*
H190.288 (2)0.198 (2)1.012 (2)0.090 (6)*
H200.018 (2)0.1455 (18)0.8871 (16)0.060 (5)*
H21A0.723 (2)0.416 (2)0.494 (2)0.091 (7)*
H21B0.609 (2)0.417 (2)0.4139 (17)0.075 (5)*
H21C0.800 (3)0.386 (2)0.337 (2)0.095 (7)*
H22A0.960 (3)0.158 (2)0.369 (2)0.099 (7)*
H22B0.880 (2)0.034 (2)0.478 (2)0.092 (6)*
H22C0.896 (2)0.178 (2)0.528 (2)0.089 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0375 (6)0.0475 (7)0.0306 (6)0.0048 (5)0.0117 (5)0.0048 (5)
O10.0511 (6)0.1027 (9)0.0342 (6)0.0018 (6)0.0143 (5)0.0137 (5)
C10.0350 (7)0.0462 (8)0.0361 (7)0.0062 (6)0.0129 (6)0.0038 (6)
C20.0366 (7)0.0553 (9)0.0346 (7)0.0062 (6)0.0149 (6)0.0040 (6)
C30.0418 (8)0.0486 (8)0.0354 (8)0.0058 (6)0.0119 (6)0.0049 (6)
C40.0379 (8)0.0564 (10)0.0429 (9)0.0015 (7)0.0083 (7)0.0086 (7)
C50.0350 (7)0.0514 (8)0.0482 (8)0.0049 (6)0.0145 (6)0.0048 (6)
C60.0424 (8)0.0537 (9)0.0432 (8)0.0059 (6)0.0208 (7)0.0029 (7)
C70.0365 (7)0.0424 (7)0.0347 (7)0.0059 (5)0.0125 (6)0.0032 (5)
C80.0362 (7)0.0471 (8)0.0325 (7)0.0059 (6)0.0112 (6)0.0040 (5)
C90.0398 (7)0.0484 (8)0.0317 (7)0.0076 (6)0.0124 (6)0.0041 (6)
C100.0519 (9)0.0498 (9)0.0447 (8)0.0034 (7)0.0198 (7)0.0065 (7)
C110.0569 (10)0.0655 (11)0.0468 (9)0.0026 (8)0.0187 (8)0.0215 (8)
C120.0609 (10)0.0862 (13)0.0355 (8)0.0107 (9)0.0186 (8)0.0107 (8)
C130.0783 (12)0.0709 (12)0.0437 (9)0.0018 (9)0.0295 (9)0.0032 (8)
C140.0690 (10)0.0510 (9)0.0409 (8)0.0006 (8)0.0222 (8)0.0052 (7)
C150.0378 (7)0.0510 (8)0.0368 (7)0.0095 (6)0.0099 (6)0.0100 (6)
C160.0421 (8)0.0638 (10)0.0440 (9)0.0036 (7)0.0145 (7)0.0104 (7)
C170.0430 (9)0.0809 (12)0.0659 (11)0.0009 (8)0.0189 (8)0.0243 (9)
C180.0384 (9)0.0863 (13)0.0745 (13)0.0114 (9)0.0033 (9)0.0321 (10)
C190.0604 (11)0.0804 (13)0.0532 (11)0.0303 (10)0.0051 (9)0.0086 (9)
C200.0526 (9)0.0614 (10)0.0500 (9)0.0139 (8)0.0083 (8)0.0005 (8)
C210.0403 (9)0.0882 (15)0.0744 (13)0.0021 (9)0.0237 (9)0.0108 (11)
C220.0676 (12)0.0571 (10)0.0710 (13)0.0197 (9)0.0248 (10)0.0015 (9)
Geometric parameters (Å, º) top
N1—C71.3696 (17)C11—C121.376 (2)
N1—C11.4057 (18)C11—H110.974 (19)
N1—C91.4399 (18)C12—C131.379 (3)
O1—C31.2231 (17)C12—H120.945 (18)
C1—C21.363 (2)C13—C141.383 (2)
C1—C151.4747 (19)C13—H130.97 (2)
C2—C81.419 (2)C14—H140.976 (19)
C2—H20.968 (15)C15—C201.392 (2)
C3—C81.4486 (19)C15—C161.393 (2)
C3—C41.512 (2)C16—C171.385 (2)
C4—C51.537 (2)C16—H161.011 (18)
C4—H4A0.984 (17)C17—C181.372 (3)
C4—H4B0.989 (18)C17—H171.00 (2)
C5—C221.530 (2)C18—C191.374 (3)
C5—C211.530 (2)C18—H180.97 (2)
C5—C61.541 (2)C19—C201.392 (3)
C6—C71.488 (2)C19—H190.93 (2)
C6—H6A0.982 (16)C20—H200.970 (17)
C6—H6B0.982 (17)C21—H22A0.98 (2)
C7—C81.3745 (19)C21—H22B1.05 (2)
C9—C101.380 (2)C21—H22C1.00 (2)
C9—C141.383 (2)C22—H21A1.01 (2)
C10—C111.378 (2)C22—H21B1.01 (2)
C10—H100.963 (16)C22—H21C1.01 (2)
C7—N1—C1108.99 (11)C12—C11—C10120.19 (16)
C7—N1—C9124.53 (11)C12—C11—H11120.0 (10)
C1—N1—C9126.34 (11)C10—C11—H11119.8 (10)
C2—C1—N1107.35 (12)C11—C12—C13119.92 (16)
C2—C1—C15128.18 (12)C11—C12—H12119.6 (11)
N1—C1—C15124.44 (12)C13—C12—H12120.4 (11)
C1—C2—C8107.92 (12)C12—C13—C14120.55 (16)
C1—C2—H2125.7 (9)C12—C13—H13120.9 (12)
C8—C2—H2126.4 (9)C14—C13—H13118.6 (12)
O1—C3—C8122.93 (13)C9—C14—C13118.94 (16)
O1—C3—C4121.66 (13)C9—C14—H14119.7 (10)
C8—C3—C4115.36 (12)C13—C14—H14121.3 (10)
C3—C4—C5115.46 (12)C20—C15—C16118.15 (14)
C3—C4—H4A107.9 (10)C20—C15—C1122.82 (14)
C5—C4—H4A110.2 (10)C16—C15—C1118.95 (13)
C3—C4—H4B106.3 (10)C17—C16—C15121.34 (16)
C5—C4—H4B108.0 (10)C17—C16—H16119.7 (10)
H4A—C4—H4B108.7 (14)C15—C16—H16119.0 (10)
C22—C5—C21109.51 (15)C18—C17—C16119.88 (18)
C22—C5—C4110.08 (14)C18—C17—H17119.7 (11)
C21—C5—C4108.92 (14)C16—C17—H17120.3 (12)
C22—C5—C6110.67 (14)C17—C18—C19119.79 (17)
C21—C5—C6108.03 (14)C17—C18—H18119.1 (12)
C4—C5—C6109.59 (13)C19—C18—H18121.1 (12)
C7—C6—C5110.56 (12)C18—C19—C20120.91 (18)
C7—C6—H6A109.4 (9)C18—C19—H19123.8 (13)
C5—C6—H6A110.0 (9)C20—C19—H19115.2 (13)
C7—C6—H6B111.1 (9)C15—C20—C19119.92 (17)
C5—C6—H6B111.4 (9)C15—C20—H20118.2 (10)
H6A—C6—H6B104.2 (12)C19—C20—H20121.8 (10)
N1—C7—C8107.92 (12)C5—C21—H22A110.1 (13)
N1—C7—C6126.65 (12)C5—C21—H22B109.9 (11)
C8—C7—C6125.42 (12)H22A—C21—H22B108.1 (17)
C7—C8—C2107.81 (12)C5—C21—H22C110.6 (12)
C7—C8—C3121.25 (13)H22A—C21—H22C110.7 (18)
C2—C8—C3130.89 (13)H22B—C21—H22C107.4 (16)
C10—C9—C14120.72 (14)C5—C22—H21A113.3 (12)
C10—C9—N1119.78 (12)C5—C22—H21B112.2 (11)
C14—C9—N1119.49 (13)H21A—C22—H21B108.6 (16)
C11—C10—C9119.68 (15)C5—C22—H21C108.6 (12)
C11—C10—H10120.9 (10)H21A—C22—H21C108.1 (17)
C9—C10—H10119.5 (10)H21B—C22—H21C105.7 (15)
C7—N1—C1—C20.61 (15)C4—C3—C8—C70.08 (19)
C9—N1—C1—C2176.41 (12)O1—C3—C8—C20.3 (2)
C7—N1—C1—C15178.82 (12)C4—C3—C8—C2177.02 (14)
C9—N1—C1—C155.4 (2)C7—N1—C9—C10115.85 (15)
N1—C1—C2—C80.02 (15)C1—N1—C9—C1059.32 (18)
C15—C1—C2—C8178.14 (13)C7—N1—C9—C1463.29 (18)
O1—C3—C4—C5152.69 (14)C1—N1—C9—C14121.54 (16)
C8—C3—C4—C529.93 (19)C14—C9—C10—C110.3 (2)
C3—C4—C5—C2268.18 (17)N1—C9—C10—C11179.40 (13)
C3—C4—C5—C21171.73 (14)C9—C10—C11—C120.3 (2)
C3—C4—C5—C653.75 (17)C10—C11—C12—C130.1 (3)
C22—C5—C6—C774.74 (17)C11—C12—C13—C140.2 (3)
C21—C5—C6—C7165.38 (14)C10—C9—C14—C130.0 (2)
C4—C5—C6—C746.84 (17)N1—C9—C14—C13179.14 (14)
C1—N1—C7—C80.96 (15)C12—C13—C14—C90.2 (3)
C9—N1—C7—C8176.85 (11)C2—C1—C15—C20132.34 (17)
C1—N1—C7—C6177.94 (13)N1—C1—C15—C2045.5 (2)
C9—N1—C7—C62.0 (2)C2—C1—C15—C1644.4 (2)
C5—C6—C7—N1158.14 (13)N1—C1—C15—C16137.79 (15)
C5—C6—C7—C820.6 (2)C20—C15—C16—C171.4 (2)
N1—C7—C8—C20.94 (15)C1—C15—C16—C17175.52 (14)
C6—C7—C8—C2177.98 (13)C15—C16—C17—C180.9 (3)
N1—C7—C8—C3176.76 (12)C16—C17—C18—C190.2 (3)
C6—C7—C8—C34.3 (2)C17—C18—C19—C200.8 (3)
C1—C2—C8—C70.56 (16)C16—C15—C20—C190.7 (2)
C1—C2—C8—C3176.83 (14)C1—C15—C20—C19176.04 (15)
O1—C3—C8—C7177.42 (14)C18—C19—C20—C150.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.97 (2)2.57 (2)3.533 (3)173 (1)
C19—H19···O1ii0.93 (2)2.58 (2)3.389 (3)145 (2)
C4—H4B···Cg1i0.99 (2)2.743.723 (3)172
C11—H11···Cg2iii0.97 (2)2.753.620 (3)149
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1; (iii) x, y+1, z+2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC22H19ClFNOC23H22FNO2C22H21NO
Mr367.83363.42315.40
Crystal system, space groupTriclinic, P1Monoclinic, P21/nTriclinic, P1
Temperature (K)293293293
a, b, c (Å)9.246 (3), 10.228 (4), 11.177 (4)10.112 (2), 19.073 (4), 11.287 (3)9.315 (5), 9.793 (5), 11.048 (6)
α, β, γ (°)80.529 (6), 86.335 (7), 65.120 (6)90, 116.348 (3), 9081.362 (9), 65.691 (7), 77.999 (8)
V3)945.7 (6)1950.8 (8)896.0 (8)
Z242
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.220.090.07
Crystal size (mm)0.50 × 0.30 × 0.200.40 × 0.30 × 0.200.35 × 0.30 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.844, 0.9570.887, 0.9830.946, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
9987, 3788, 2811 14313, 3562, 2818 7395, 3259, 2604
Rint0.0240.0240.014
(sin θ/λ)max1)0.6250.6020.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.118, 1.04 0.041, 0.106, 1.04 0.040, 0.104, 1.04
No. of reflections378835623259
No. of parameters311332301
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.20, 0.220.15, 0.190.13, 0.17

Computer programs: SMART (Bruker, 2000), SMART, SAINT (Bruker, 2000), SIR92 (Altomare et al., 1993), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), CAMERON (Watkin et al., 1993) and PLATON (Spek 2003), WinGX (Farrugia, 1999) and PLATON.

Selected torsion angles (º) for (I) top
C9—N1—C1—C153.7 (3)C5—C6—C7—C820.6 (3)
O1—C3—C4—C5145.5 (2)C6—C7—C8—C31.4 (3)
C8—C3—C4—C536.3 (3)C4—C3—C8—C76.1 (3)
C3—C4—C5—C657.3 (3)C7—N1—C9—C10106.0 (2)
C4—C5—C6—C747.0 (2)N1—C1—C15—C16148.67 (18)
C9—N1—C7—C8177.68 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i0.90 (2)2.50 (2)3.358 (3)158 (2)
C10—H10···Cg1ii0.96 (2)2.933.723 (3)142
C14—H14···Cg2iii0.94 (2)2.903.804 (3)162
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y+1, z+1.
Selected torsion angles (º) for (II) top
C9—N1—C1—C150.7 (2)C5—C6—C7—C822.9 (2)
O1—C3—C4—C5151.96 (15)C6—C7—C8—C31.0 (2)
C8—C3—C4—C529.9 (2)C4—C3—C8—C71.9 (2)
C3—C4—C5—C653.03 (19)C7—N1—C9—C10112.95 (17)
C4—C5—C6—C746.9 (2)N1—C1—C15—C16136.24 (16)
C9—N1—C7—C8178.73 (13)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C11—H11···O1i0.97 (2)2.41 (2)3.366 (2)169 (1)
C14—H14···O1ii0.96 (2)2.48 (2)3.428 (2)173 (1)
C4—H4B···Cg1ii1.00 (2)2.693.606 (2)166
Symmetry codes: (i) x+3/2, y+1/2, z+3/2; (ii) x+1, y, z+1.
Selected torsion angles (º) for (III) top
C9—N1—C1—C155.4 (2)C5—C6—C7—C820.6 (2)
O1—C3—C4—C5152.69 (14)C6—C7—C8—C34.3 (2)
C8—C3—C4—C529.93 (19)C4—C3—C8—C70.08 (19)
C3—C4—C5—C653.75 (17)C7—N1—C9—C10115.85 (15)
C4—C5—C6—C746.84 (17)N1—C1—C15—C16137.79 (15)
C9—N1—C7—C8176.85 (11)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C14—H14···O1i0.97 (2)2.57 (2)3.533 (3)173 (1)
C19—H19···O1ii0.93 (2)2.58 (2)3.389 (3)145 (2)
C4—H4B···Cg1i0.99 (2)2.743.723 (3)172
C11—H11···Cg2iii0.97 (2)2.753.620 (3)149
Symmetry codes: (i) x+1, y, z+1; (ii) x1, y, z+1; (iii) x, y+1, z+2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds