Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structures of the title compounds, [SnCl4(C2H3N)2]·C2H3N, [SnCl4(C3H5N)2]·C3H5N, [SnCl4(C4H7N)2], [SnCl4(C7H11N)2] and [SnCl4(C8H7N)2], were determined with the intention of examining the effect of various substituent types in nitrile ligands, RCN, behaving in a common σ-donor situation {in this case, as cis-bis complexes with SnCl4, viz. [SnCl4(RCN)2]}, on (i) the strength of complex formation with the metal atom and (ii) other bonding behaviour of the metal (for example, trans effects). The five structures exhibit no non-trivial systematic perturbation that can be said to be contingent on the substituent type.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103012642/fg1697sup1.cif
Contains datablocks global, I, II, III, IV, V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012642/fg1697Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012642/fg1697IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012642/fg1697IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012642/fg1697IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103012642/fg1697Vsup6.hkl
Contains datablock V

CCDC references: 221059; 221060; 221061; 221062; 221063

Comment top

Organic nitrile ligands in their coordination complexes with metal atoms are commonly regarded as both σ-donors and π-donors, which, having a triple bond (RCN), should be particularly appropriate for the transmission of electronic effects of the R substituent through the bonding scheme linking it to the metal. Presumably, any such effect will be superimposed on the common observation of the lengthening of the CN bond on coordination. The substituent is well removed from the metal and should not interact sterically with the rest of the coordination environment, unless the substituent is unusually bulky. However, the rod-like nature of the ligand may render it susceptible to substantial consequences of packing forces, which are usually manifest in deviations from linearity of the MNC linkage, NCR being less susceptible. Such effects can be explored spectroscopically, but in the present context, we wanted to examine the question from a structural perspective. The chosen vehicle for the study was the array of bis(monodentate-nitrile) complexes of stannic chloride. Only the structure of the acetonitrile complex has been previously recorded (Webster & Blayden, 1969), showing the metal-atom stereochemistry to be quasi-octahedral six-coordinate, with the nitrile ligands cis in the coordination sphere, cis-[(MeCN)2SnCl4], in a situation where the σ-donor character of the ligand might be expected to predominate. [Two determinations of the one-dimensional polymer formed by stannic chloride–glutaronitrile (1:1) are recorded (Barnhart et al., 1968; Liu, 1985), also with two nitrile donors from different ligands cis in the coordination sphere.]

Attempts were made to crystallize a number of such complexes from solutions of stannic chloride in various nitriles, under Schlenk conditions, by volume reduction and/or by cooling as necessary. Well formed colourless crystals were obtained for a diverse array of substituents, R (R = methyl, ethyl, iso-propyl, cyclo-hexyl and ortho-tolyl), and the title compounds, viz. [SnCl4(C2H3N)2]·C2H3N, (I), [SnCl4(C3H5N)2]·C3H5N, (II), [SnCl4(C4H7N)2], (III), [SnCl4(C7H11N)2], (IV) and [SnCl4(C8H7N)2], (V), were subjected to structural study. Stannic chloride crystallizes from acetonitrile solution as SnCl4·3MeCN; in the belief that one of the acetonitriles was uncoordinated in the original determination, SnCl4·2MeCN was obtained by pumping on the solid in vacuo and recrystallizing the material from carbon tetrachloride, the results of the determination establishing the stereochemistry (Webster & Blayden, 1969). In the present study, it was considered worth establishing the nature of the 3MeCN adduct, which was found to be the monosolvate of the cis-bis complex cis-[(MeCN)2SnCl4]·MeCN. One-half of the formula unit composes the asymmetric unit of the structure. The complex molecule is disposed about the crystallographic mirror plane in space group Pnma, and the Sn atom and the pair of mutually trans Cl atoms lie in the plane. The substrate molecule is well defined (Fig. 1a) but not so much as to permit refinement of the H-atom parameters at the periphery of the ligand, where displacement parameters are higher. The MeCN molecule of crystallization is more problematic; it is seemingly disordered over a continuous undulating sequence of residues passing through the cell in the b direction and is modelled with the terminal C atom in the mirror plane with full site occupancy and the CN group disposed to either side with an occupancy of 0.5 (Fig. 1 b).

The propionitrile adduct, similarly a cis-bis(ligand) complex, is also a monosolvate, cis-[(EtCN)2SnCl4]·EtCN, (II), and there is one formula unit devoid of crystallographic symmetry in the asymmetric unit of the structure. A projection of the molecule is shown in Fig. 2(a); the molecules stack in columns along b, with the voids between them occupied by the uncoordinated solvent molecules (Fig. 2 b). The cyclohexylcarbonitrile adduct is also of the same type, viz. it is unsolvated and there is one molecule of cis-[(cyCN)2SnCl4], devoid of crystallographic symmetry, in the asymmetric unit of the structure (Fig. 3a); the cyclohexyl rings adopt 'chair' configurations with their associated CN substituents appended axially.

The ortho-toluonitrile adduct, cis-[(o-tolCN)2SnCl4], is likewise unsolvated, with one molecule (Fig. 3 b) in the asymmetric unit of the structure. The iso-butyronitrile adduct, [(iPrCN)2SnCl4], also similar, has two molecules devoid of crystallographic symmetry in the asymmetric unit. Geometric parameters of the individual molecules are summarized in Tables 1–5 and the molecules are depicted, with unit cells where useful, in Figs. 1–4. The earlier determination of [(MeCN)2SnCl4] (Webster & Blayden, 1969) is derivative of a room-temperature film determination, and, although not inharmonious with the present, does not offer a sufficient degree of precision to justify inclusion in any survey for trends or correlations. In general, in all cases, the molecules of the four complexes are of the form cis-[(nitrile ligand)2SnCl4], with or without uncoordinated solvent. Defining the trans Cl—Sn—Cl array as 'axial' and the remaining N2SnCl2 quasi-plane as 'equatorial' (eq), we find in all cases that the Cleq—Sn—Cleq angle is enlarged beyond 90° by a significant margin, while the N—Sn—N angle is concomitantly diminished, consistent with the Sn—N bonds being weaker than the Sn—Cl bonds. The Clax—Sn—Clax array deviates significantly from linearity, being folded towards the N atoms and away from the 'equatorial' Cl atoms, which again is consistent with the bonds from the latter being stronger (Kepert, 1982).

Focusing more tightly on possible correlations between stereochemical parameters and substituents produces little more enlightenment. The Sn—Clax and Sn—Cleq bonds are both tightly ranged [2.352 (1)–2.376 (1) Å] across the whole array, with wide divergences in any given type for a specific compound (e.g. the Sn—Clax bonds for R = cy are 2.3488 (5) and 2.3732 (5) Å]. The Sn—N distances range between 2.255 (1) and 2.276 (2) Å, again with disparities within the familial groups (these two values are extremal for the iso-butyronitrile adduct), rendering attempts to extract significance out of what is again a tight array thoroughly insecure. The same is true of the N—C distances [1.126 (6)–1.143 (2) Å]. These values are similar to those recently reported for a free acetonitrile ligand [1.141 (2) Å; Brackemeyer et al., 1997), which implies that the numerous suggestions of a dependence of this bond on coordination, admittedly contingent on the nature of the metal, perhaps should be subject to closer scrutiny and that libration corrections may be necessary. The range of Sn—N—C angles found in single compounds [e.g. 158.2 (2)—167.9 (1) for R = o-tol and 163.2 (4)–174.8 (3)° for R= iPr] suggest that 'packing forces' may be responsible for the many substantial perturbations and variations evident in the other angles. The above results suggest that substituent effects in nitrile ligand complexes such as those presented here may be difficult to detect and apprehend by structural methods alone and that spectroscopic methods (e.g. Kawano et al., 1976) may be more apposite when based on precise geometries as are offered here. Finally, note that, although the cis configuration of the above compounds is consistent with weak Sn—N bonds (as supported by bond-angle evidence), the Sn—N and Sn—Cl distances are little different from those in [(bpy)SnCl4] [Sn—N = 2.226 (4) and 2.247 (4) Å, and Sn—Cl = 2.359 (2)–2.409 (1) Å; Zakharov et al., 1991] and [(phen)SnCl4]·C6H6 [Sn—N = 2.234 (8)–2.251 (8), and Sn—Cl = 2.361 (3)–2.410 (4) Å; Hall & Tiekink, 1996).

Experimental top

All compounds, being highly sensitive to air, were obtained by the addition of distilled stannic chloride to the appropriate nitrile (ca 10 ml, freshly distilled from calcium hydride) in a Schlenk tube and were allowed to stand until crystals deposited. These were transferred directly from the Schlenk tube to the low-temperature stream.

Refinement top

H atoms were located from difference Fourier maps. For (I), (II), (III) and (V), H atoms were then placed at idealized positions [C—H = 0.95 Å, Uiso(H) = 1.25Ueq(C) for CH and CH2, and Uiso(H) = 1.5Ueq(C) for CH3]. For (IV), H atoms were refined isotropically, resulting in refined C—H distances in the range 0.79 (2)–1.06 (2) Å.

Structure description top

Organic nitrile ligands in their coordination complexes with metal atoms are commonly regarded as both σ-donors and π-donors, which, having a triple bond (RCN), should be particularly appropriate for the transmission of electronic effects of the R substituent through the bonding scheme linking it to the metal. Presumably, any such effect will be superimposed on the common observation of the lengthening of the CN bond on coordination. The substituent is well removed from the metal and should not interact sterically with the rest of the coordination environment, unless the substituent is unusually bulky. However, the rod-like nature of the ligand may render it susceptible to substantial consequences of packing forces, which are usually manifest in deviations from linearity of the MNC linkage, NCR being less susceptible. Such effects can be explored spectroscopically, but in the present context, we wanted to examine the question from a structural perspective. The chosen vehicle for the study was the array of bis(monodentate-nitrile) complexes of stannic chloride. Only the structure of the acetonitrile complex has been previously recorded (Webster & Blayden, 1969), showing the metal-atom stereochemistry to be quasi-octahedral six-coordinate, with the nitrile ligands cis in the coordination sphere, cis-[(MeCN)2SnCl4], in a situation where the σ-donor character of the ligand might be expected to predominate. [Two determinations of the one-dimensional polymer formed by stannic chloride–glutaronitrile (1:1) are recorded (Barnhart et al., 1968; Liu, 1985), also with two nitrile donors from different ligands cis in the coordination sphere.]

Attempts were made to crystallize a number of such complexes from solutions of stannic chloride in various nitriles, under Schlenk conditions, by volume reduction and/or by cooling as necessary. Well formed colourless crystals were obtained for a diverse array of substituents, R (R = methyl, ethyl, iso-propyl, cyclo-hexyl and ortho-tolyl), and the title compounds, viz. [SnCl4(C2H3N)2]·C2H3N, (I), [SnCl4(C3H5N)2]·C3H5N, (II), [SnCl4(C4H7N)2], (III), [SnCl4(C7H11N)2], (IV) and [SnCl4(C8H7N)2], (V), were subjected to structural study. Stannic chloride crystallizes from acetonitrile solution as SnCl4·3MeCN; in the belief that one of the acetonitriles was uncoordinated in the original determination, SnCl4·2MeCN was obtained by pumping on the solid in vacuo and recrystallizing the material from carbon tetrachloride, the results of the determination establishing the stereochemistry (Webster & Blayden, 1969). In the present study, it was considered worth establishing the nature of the 3MeCN adduct, which was found to be the monosolvate of the cis-bis complex cis-[(MeCN)2SnCl4]·MeCN. One-half of the formula unit composes the asymmetric unit of the structure. The complex molecule is disposed about the crystallographic mirror plane in space group Pnma, and the Sn atom and the pair of mutually trans Cl atoms lie in the plane. The substrate molecule is well defined (Fig. 1a) but not so much as to permit refinement of the H-atom parameters at the periphery of the ligand, where displacement parameters are higher. The MeCN molecule of crystallization is more problematic; it is seemingly disordered over a continuous undulating sequence of residues passing through the cell in the b direction and is modelled with the terminal C atom in the mirror plane with full site occupancy and the CN group disposed to either side with an occupancy of 0.5 (Fig. 1 b).

The propionitrile adduct, similarly a cis-bis(ligand) complex, is also a monosolvate, cis-[(EtCN)2SnCl4]·EtCN, (II), and there is one formula unit devoid of crystallographic symmetry in the asymmetric unit of the structure. A projection of the molecule is shown in Fig. 2(a); the molecules stack in columns along b, with the voids between them occupied by the uncoordinated solvent molecules (Fig. 2 b). The cyclohexylcarbonitrile adduct is also of the same type, viz. it is unsolvated and there is one molecule of cis-[(cyCN)2SnCl4], devoid of crystallographic symmetry, in the asymmetric unit of the structure (Fig. 3a); the cyclohexyl rings adopt 'chair' configurations with their associated CN substituents appended axially.

The ortho-toluonitrile adduct, cis-[(o-tolCN)2SnCl4], is likewise unsolvated, with one molecule (Fig. 3 b) in the asymmetric unit of the structure. The iso-butyronitrile adduct, [(iPrCN)2SnCl4], also similar, has two molecules devoid of crystallographic symmetry in the asymmetric unit. Geometric parameters of the individual molecules are summarized in Tables 1–5 and the molecules are depicted, with unit cells where useful, in Figs. 1–4. The earlier determination of [(MeCN)2SnCl4] (Webster & Blayden, 1969) is derivative of a room-temperature film determination, and, although not inharmonious with the present, does not offer a sufficient degree of precision to justify inclusion in any survey for trends or correlations. In general, in all cases, the molecules of the four complexes are of the form cis-[(nitrile ligand)2SnCl4], with or without uncoordinated solvent. Defining the trans Cl—Sn—Cl array as 'axial' and the remaining N2SnCl2 quasi-plane as 'equatorial' (eq), we find in all cases that the Cleq—Sn—Cleq angle is enlarged beyond 90° by a significant margin, while the N—Sn—N angle is concomitantly diminished, consistent with the Sn—N bonds being weaker than the Sn—Cl bonds. The Clax—Sn—Clax array deviates significantly from linearity, being folded towards the N atoms and away from the 'equatorial' Cl atoms, which again is consistent with the bonds from the latter being stronger (Kepert, 1982).

Focusing more tightly on possible correlations between stereochemical parameters and substituents produces little more enlightenment. The Sn—Clax and Sn—Cleq bonds are both tightly ranged [2.352 (1)–2.376 (1) Å] across the whole array, with wide divergences in any given type for a specific compound (e.g. the Sn—Clax bonds for R = cy are 2.3488 (5) and 2.3732 (5) Å]. The Sn—N distances range between 2.255 (1) and 2.276 (2) Å, again with disparities within the familial groups (these two values are extremal for the iso-butyronitrile adduct), rendering attempts to extract significance out of what is again a tight array thoroughly insecure. The same is true of the N—C distances [1.126 (6)–1.143 (2) Å]. These values are similar to those recently reported for a free acetonitrile ligand [1.141 (2) Å; Brackemeyer et al., 1997), which implies that the numerous suggestions of a dependence of this bond on coordination, admittedly contingent on the nature of the metal, perhaps should be subject to closer scrutiny and that libration corrections may be necessary. The range of Sn—N—C angles found in single compounds [e.g. 158.2 (2)—167.9 (1) for R = o-tol and 163.2 (4)–174.8 (3)° for R= iPr] suggest that 'packing forces' may be responsible for the many substantial perturbations and variations evident in the other angles. The above results suggest that substituent effects in nitrile ligand complexes such as those presented here may be difficult to detect and apprehend by structural methods alone and that spectroscopic methods (e.g. Kawano et al., 1976) may be more apposite when based on precise geometries as are offered here. Finally, note that, although the cis configuration of the above compounds is consistent with weak Sn—N bonds (as supported by bond-angle evidence), the Sn—N and Sn—Cl distances are little different from those in [(bpy)SnCl4] [Sn—N = 2.226 (4) and 2.247 (4) Å, and Sn—Cl = 2.359 (2)–2.409 (1) Å; Zakharov et al., 1991] and [(phen)SnCl4]·C6H6 [Sn—N = 2.234 (8)–2.251 (8), and Sn—Cl = 2.361 (3)–2.410 (4) Å; Hall & Tiekink, 1996).

Computing details top

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995). Data reduction: Xtal3.5 (Hall et al., 1995) for (I), (II), (IV); Xtal3.5 (Hall, King, and Stewart, 1995) for (III), (V). Program(s) used to solve structure: Xtal3.5 for (I), (III), (V); SIMPEL in Xtal3.5 for (II), (IV). Program(s) used to refine structure: CRYLSQ n Xtal3.5 for (I); CRYLSQ in Xtal3.5 for (II), (III), (IV), (V). For all compounds, molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
Fig. 1 (a). A molecular projection of cis-[(MeCN)2SnCl4]. Displacement ellipsoids are shown at the 50% probability level for non-H atoms.

(b). A projection of the unit cell along c. The crystallographic mirror plane passing through the molecule lies at y=0.25 etc. The strings of solvate residues passing through the structure in the b direction are shown.

Fig. 2(a). A molecular projection of cis-[(EtCN)2SnCl4]. Displacement ellipsoids at the 50% probability level are shown for the non-H atoms

(b) A projection of the unit cell along b, showing the tunnels through the structure containing the additional molecules of solvation.

Fig. 3. Molecular projections of (a) cis-[(cyCN)2SnCl4] (b) cis-[(o-tolCN)2SnCl4]. (c) (i),(ii) cis-[(iPrCN)2SnCl4] (molecules 1,2). Displacement ellipsoids at the 50% probability level are shown for non-H atoms.
(I) top
Crystal data top
[SnCl4(C2H3N)2]·C2H3NF(000) = 736
Mr = 383.68Dx = 1.808 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2nCell parameters from 8148 reflections
a = 10.480 (2) Åθ = 2.6–26°
b = 13.783 (2) ŵ = 2.54 mm1
c = 9.758 (2) ÅT = 150 K
V = 1409.5 (4) Å3Prism, colourless
Z = 40.24 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
1841 independent reflections
Radiation source: sealed tube1726 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 28.4°, θmin = 2.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1313
Tmin = 0.64, Tmax = 0.80k = 1818
13399 measured reflectionsl = 1313
Refinement top
Refinement on FSecondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019H-atom parameters not refined
wR(F2) = 0.022 w = [1/σ2(F) + 0.0002F2]
S = 1.18(Δ/σ)max = 0.024
1726 reflectionsΔρmax = 0.57 e Å3
80 parametersΔρmin = 0.54 e Å3
0 restraintsExtinction correction: Zachariasen, equation (22) of Larson (1970)
0 constraintsExtinction coefficient: 1070 (45)
Primary atom site location: structure-invariant direct methods
Crystal data top
[SnCl4(C2H3N)2]·C2H3NV = 1409.5 (4) Å3
Mr = 383.68Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 10.480 (2) ŵ = 2.54 mm1
b = 13.783 (2) ÅT = 150 K
c = 9.758 (2) Å0.24 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
1841 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
1726 reflections with I > 2.00 σ(I)
Tmin = 0.64, Tmax = 0.80Rint = 0.025
13399 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.022H-atom parameters not refined
S = 1.18Δρmax = 0.57 e Å3
1726 reflectionsΔρmin = 0.54 e Å3
80 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn0.44736 (2)0.250000.49194 (2)0.01575 (11)
Cl10.26305 (8)0.250000.62943 (10)0.0288 (4)
Cl20.59261 (9)0.250000.30658 (9)0.0279 (4)
Cl30.54915 (6)0.37967 (4)0.60668 (6)0.0272 (3)
N110.3411 (2)0.14065 (14)0.3627 (2)0.0244 (10)
C110.2897 (3)0.08439 (18)0.2987 (3)0.0283 (12)
C120.2215 (4)0.0133 (2)0.2165 (4)0.055 (2)
N210.4795 (10)0.0570 (8)0.0023 (10)0.093 (7).50000
C210.4548 (9)0.1367 (11)0.0103 (9)0.076 (6).50000
C220.4239 (6)0.250000.0291 (6)0.094 (5)
H12a0.222820.032040.122540.08000*
H12b0.135110.008660.246280.08000*
H12c0.260980.048590.225170.08000*
H22a0.396220.277850.055670.04200*.50000
H22b0.495200.284260.062190.04200*.50000
H22c0.357070.257580.094520.04200*.50000
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01542 (11)0.01333 (10)0.01850 (11)0.000000.00125 (8)0.00000
Cl10.0239 (4)0.0277 (4)0.0347 (5)0.000000.0093 (4)0.00000
Cl20.0297 (4)0.0253 (4)0.0287 (4)0.000000.0099 (3)0.00000
Cl30.0284 (3)0.0221 (3)0.0310 (3)0.0043 (2)0.0055 (2)0.0066 (2)
N110.0260 (10)0.0189 (9)0.0283 (10)0.0008 (8)0.0054 (9)0.0004 (8)
C110.0313 (13)0.0192 (11)0.0343 (13)0.0027 (10)0.0115 (11)0.0007 (10)
C120.070 (2)0.0242 (14)0.070 (2)0.0011 (15)0.047 (2)0.0071 (14)
N210.098 (7)0.124 (8)0.058 (5)0.022 (7)0.006 (5)0.006 (7)
C210.048 (4)0.145 (10)0.036 (4)0.009 (6)0.002 (4)0.000 (6)
C220.045 (3)0.199 (10)0.038 (3)0.000000.001 (3)0.00000
Geometric parameters (Å, º) top
Sn—Cl12.3518 (10)C12—H12c0.952
Sn—Cl22.3641 (10)N21—C211.137 (18)
Sn—Cl32.3635 (7)C21—C221.605 (15)
Sn—N112.259 (2)C22—H22a0.957
Sn—Cl3i2.3635 (7)C22—H22b0.941
Sn—N11i2.259 (2)C22—H22c0.953
N11—C111.132 (3)C22—H22ai0.957
C11—C121.453 (4)C22—H22bi0.941
C12—H12a0.953C22—H22ci0.953
C12—H12b0.953
Cl1—Sn—Cl2164.87 (3)C11—C12—H12b110.2
Cl1—Sn—Cl395.77 (2)C11—C12—H12c110.0
Cl1—Sn—N1185.03 (6)H12a—C12—H12b108.9
Cl1—Sn—Cl3i95.77 (2)H12a—C12—H12c108.8
Cl1—Sn—N11i85.03 (6)H12b—C12—H12c109.0
Cl2—Sn—Cl394.12 (2)N21—C21—C22178.5 (10)
Cl2—Sn—N1183.71 (6)C21—C22—H22a110.6
Cl2—Sn—Cl3i94.12 (2)C21—C22—H22b111.5
Cl2—Sn—N11i83.71 (6)C21—C22—H22c109.4
Cl3—Sn—N11172.56 (5)H22a—C22—H22b109.6
Cl3—Sn—Cl3i98.26 (2)H22a—C22—H22c108.2
Cl3—Sn—N11i89.00 (5)H22b—C22—H22c107.4
N11—Sn—Cl3i89.00 (5)C21i—C22—H22ai110.6
N11—Sn—N11i83.70 (7)C21i—C22—H22bi111.5
Cl3i—Sn—N11i172.56 (5)C21i—C22—H22ci109.4
Sn—N11—C11178.5 (2)H22ai—C22—H22bi109.6
N11—C11—C12178.9 (3)H22ai—C22—H22ci108.2
C11—C12—H12a110.0H22bi—C22—H22ci107.4
Symmetry code: (i) x, y+1/2, z.
(II) top
Crystal data top
[SnCl4(C3H5N)2]·C3H5NF(000) = 1664
Mr = 425.76Dx = 1.68 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ac 2abCell parameters from 6924 reflections
a = 11.274 (2) Åθ = 2.6–29.3°
b = 13.822 (2) ŵ = 2.14 mm1
c = 21.606 (3) ÅT = 150 K
V = 3366.8 (9) Å3Block, colourless
Z = 80.4 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
6697 independent reflections
Radiation source: sealed tube4991 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 34.1°, θmin = 1.9°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1717
Tmin = 0.43, Tmax = 0.75k = 2121
50732 measured reflectionsl = 3434
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.034H-atom parameters not refined
S = 1.07 w = [1/σ2(F) + 0.0004F2]
4991 reflections(Δ/σ)max = 0.008
154 parametersΔρmax = 0.93 e Å3
0 restraintsΔρmin = 0.76 e Å3
0 constraints
Crystal data top
[SnCl4(C3H5N)2]·C3H5NV = 3366.8 (9) Å3
Mr = 425.76Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.274 (2) ŵ = 2.14 mm1
b = 13.822 (2) ÅT = 150 K
c = 21.606 (3) Å0.4 × 0.2 × 0.15 mm
Data collection top
Bruker SMART CCD
diffractometer
6697 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
4991 reflections with I > 2.00 σ(I)
Tmin = 0.43, Tmax = 0.75Rint = 0.042
50732 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.034H-atom parameters not refined
S = 1.07Δρmax = 0.93 e Å3
4991 reflectionsΔρmin = 0.76 e Å3
154 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.790640 (12)0.005133 (8)0.632551 (6)0.02023 (7)
Cl10.94405 (5)0.00764 (3)0.70691 (2)0.0297 (2)
Cl20.89762 (5)0.09526 (4)0.55809 (3)0.0375 (3)
Cl30.68319 (5)0.13302 (4)0.67869 (3)0.0352 (3)
Cl40.63603 (5)0.03514 (4)0.56285 (3)0.0339 (3)
N10.87677 (16)0.12964 (12)0.59671 (8)0.0297 (9)
C110.91905 (18)0.19389 (14)0.57247 (9)0.0255 (9)
C130.8900 (2)0.29709 (16)0.48239 (10)0.0327 (11)
C120.9668 (2)0.27586 (14)0.53833 (10)0.0268 (10)
N20.70016 (16)0.10200 (13)0.69522 (8)0.0293 (9)
C210.63823 (19)0.15638 (14)0.71688 (9)0.0251 (9)
C220.5512 (2)0.22618 (14)0.74003 (9)0.0262 (10)
C230.4501 (2)0.23526 (19)0.69435 (11)0.0417 (14)
N00.8239 (2)0.16084 (16)0.37406 (10)0.0404 (12)
C010.8092 (2)0.0821 (2)0.38517 (13)0.0383 (13)
C020.7893 (3)0.0202 (2)0.40058 (15)0.0487 (16)
C030.6947 (3)0.0656 (2)0.36288 (17)0.067 (2)
H13a0.920500.351550.460120.05000*
H13b0.810670.312730.495540.05000*
H13c0.886890.242920.455790.05000*
H12a1.045160.261660.524970.03400*
H12b0.968940.331460.564710.03400*
H22a0.588290.287890.745400.03300*
H22b0.521260.205170.779030.03300*
H23a0.392680.280000.707940.06300*
H23b0.413100.173330.688300.06300*
H23c0.480140.256060.654670.06300*
H02a0.862040.055750.394320.06200*
H02b0.768710.026030.443540.06200*
H03a0.683700.132010.373460.10100*
H03b0.621190.032280.368910.10100*
H03c0.714520.061990.319690.10100*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02000 (7)0.01776 (6)0.02294 (7)0.00097 (4)0.00009 (4)0.00039 (4)
Cl10.0307 (3)0.0270 (2)0.0316 (2)0.00329 (19)0.0094 (2)0.00090 (18)
Cl20.0317 (3)0.0441 (3)0.0367 (3)0.0109 (2)0.0004 (2)0.0151 (2)
Cl30.0374 (3)0.0293 (2)0.0387 (3)0.0119 (2)0.0033 (2)0.0067 (2)
Cl40.0283 (3)0.0361 (3)0.0375 (3)0.0065 (2)0.0080 (2)0.0021 (2)
N10.0280 (10)0.0270 (8)0.0341 (10)0.0008 (7)0.0003 (7)0.0045 (7)
C110.0239 (10)0.0260 (9)0.0266 (9)0.0006 (7)0.0000 (7)0.0007 (7)
C130.0352 (12)0.0319 (10)0.0310 (11)0.0005 (9)0.0021 (9)0.0068 (8)
C120.0261 (10)0.0230 (9)0.0311 (10)0.0023 (7)0.0032 (8)0.0030 (7)
N20.0296 (10)0.0275 (8)0.0309 (9)0.0002 (7)0.0043 (7)0.0033 (7)
C210.0265 (10)0.0222 (8)0.0266 (9)0.0019 (7)0.0008 (8)0.0004 (7)
C220.0305 (11)0.0231 (9)0.0251 (9)0.0029 (7)0.0033 (8)0.0031 (7)
C230.0407 (14)0.0482 (14)0.0363 (13)0.0147 (11)0.0065 (10)0.0066 (10)
N00.0323 (11)0.0429 (12)0.0462 (12)0.0014 (9)0.0055 (9)0.0029 (9)
C010.0266 (12)0.0436 (13)0.0446 (13)0.0000 (10)0.0016 (10)0.0010 (11)
C020.0469 (17)0.0510 (15)0.0483 (16)0.0025 (13)0.0022 (13)0.0081 (13)
C030.076 (2)0.0439 (16)0.080 (2)0.0101 (16)0.0306 (19)0.0024 (15)
Geometric parameters (Å, º) top
Sn—Cl12.3609 (6)C21—C221.464 (3)
Sn—Cl22.3653 (6)C22—C231.513 (3)
Sn—Cl32.3634 (6)C22—H22a0.957
Sn—Cl42.3699 (6)C22—H22b0.953
Sn—N12.2388 (18)C23—H23a0.942
Sn—N22.2508 (18)C23—H23b0.961
N1—C111.136 (3)C23—H23c0.966
C11—C121.455 (3)N0—C011.127 (4)
C13—C121.516 (3)C01—C021.470 (4)
C13—H13a0.957C02—C031.482 (5)
C13—H13b0.963C02—H02a0.965
C13—H13c0.944C02—H02b0.960
C12—H12a0.949C03—H03a0.954
C12—H12b0.957C03—H03b0.957
N2—C211.128 (3)C03—H03c0.961
Cl1—Sn—Cl294.68 (2)H12a—C12—H12b108.9
Cl1—Sn—Cl394.44 (2)Sn—N2—C21165.66 (17)
Cl1—Sn—Cl4167.095 (18)N2—C21—C22174.8 (2)
Cl1—Sn—N185.98 (5)C21—C22—C23109.69 (17)
Cl1—Sn—N286.12 (5)C21—C22—H22a109.6
Cl2—Sn—Cl398.88 (2)C21—C22—H22b109.78
Cl2—Sn—Cl493.82 (2)C23—C22—H22a109.54
Cl2—Sn—N188.96 (5)C23—C22—H22b109.6
Cl2—Sn—N2170.64 (5)H22a—C22—H22b108.60
Cl3—Sn—Cl493.82 (2)C22—C23—H23a111.6
Cl3—Sn—N1172.09 (4)C22—C23—H23b110.0
Cl3—Sn—N290.35 (5)C22—C23—H23c109.8
Cl4—Sn—N184.48 (5)H23a—C23—H23b109.2
Cl4—Sn—N283.94 (5)H23a—C23—H23c108.8
N1—Sn—N281.79 (7)H23b—C23—H23c107.2
Sn—N1—C11172.75 (17)N0—C01—C02179.1 (3)
N1—C11—C12176.1 (2)C01—C02—C03113.2 (3)
C12—C13—H13a110.3C01—C02—H02a109.1
C12—C13—H13b109.8C01—C02—H02b109.6
C12—C13—H13c110.7C03—C02—H02a108.6
H13a—C13—H13b107.8C03—C02—H02b108.8
H13a—C13—H13c109.3H02a—C02—H02b107.3
H13b—C13—H13c108.9C02—C03—H03a111.7
C11—C12—C13110.07 (18)C02—C03—H03b110.1
C11—C12—H12a109.72C02—C03—H03c110.1
C11—C12—H12b109.41H03a—C03—H03b108.6
C13—C12—H12a109.23H03a—C03—H03c108.3
C13—C12—H12b109.49H03b—C03—H03c108.0
(III) top
Crystal data top
[SnCl4(C4H7N)2]F(000) = 1552
Mr = 398.74Dx = 1.703 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 8192 reflections
a = 15.912 (3) Åθ = 3.4–26.6°
b = 12.316 (3) ŵ = 2.31 mm1
c = 16.638 (4) ÅT = 150 K
β = 107.478 (3)°Prism, colourless
V = 3110.1 (12) Å30.2 × 0.1 × 0.08 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
7872 independent reflections
Radiation source: sealed tube5976 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.041
ω scansθmax = 29°, θmin = 1.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 2120
Tmin = 0.67, Tmax = 0.83k = 1616
30610 measured reflectionsl = 2222
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.04H-atom parameters not refined
S = 1.14 w = [1/σ2(F) + 0.0004F2]
5976 reflections(Δ/σ)max = 0.003
271 parametersΔρmax = 1.74 e Å3
0 restraintsΔρmin = 0.97 e Å3
0 constraints
Crystal data top
[SnCl4(C4H7N)2]V = 3110.1 (12) Å3
Mr = 398.74Z = 8
Monoclinic, P21/nMo Kα radiation
a = 15.912 (3) ŵ = 2.31 mm1
b = 12.316 (3) ÅT = 150 K
c = 16.638 (4) Å0.2 × 0.1 × 0.08 mm
β = 107.478 (3)°
Data collection top
Bruker SMART CCD
diffractometer
7872 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
5976 reflections with I > 2.00 σ(I)
Tmin = 0.67, Tmax = 0.83Rint = 0.041
30610 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.04H-atom parameters not refined
S = 1.14Δρmax = 1.74 e Å3
5976 reflectionsΔρmin = 0.97 e Å3
271 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.367593 (18)0.68038 (2)0.548487 (16)0.02144 (12)
Cl110.44635 (7)0.52909 (9)0.62127 (7)0.0325 (5)
Cl120.29868 (7)0.81476 (9)0.44859 (6)0.0338 (5)
Cl130.42874 (8)0.80684 (9)0.65673 (6)0.0368 (5)
Cl140.23679 (7)0.63754 (11)0.58066 (7)0.0391 (6)
N110.3373 (2)0.5721 (3)0.4340 (2)0.0321 (18)
C1110.3258 (3)0.5331 (3)0.3698 (3)0.030 (2)
C1120.3084 (3)0.4860 (4)0.2851 (3)0.031 (2)
C1130.2169 (3)0.5233 (4)0.2308 (3)0.042 (2)
C1140.3199 (3)0.3634 (4)0.2891 (3)0.034 (2)
N120.4879 (2)0.7128 (3)0.5066 (2)0.0299 (17)
C1210.5487 (3)0.7518 (3)0.4965 (3)0.029 (2)
C1220.6266 (3)0.8060 (4)0.4862 (3)0.031 (2)
C1230.6048 (4)0.9252 (4)0.4687 (4)0.055 (3)
C1240.6564 (3)0.7531 (4)0.4174 (3)0.034 (2)
Sn20.056842 (18)0.26259 (2)0.351834 (17)0.02366 (13)
Cl210.13675 (8)0.10434 (9)0.41168 (7)0.0377 (5)
Cl220.05054 (8)0.39857 (9)0.30189 (7)0.0384 (5)
Cl230.08941 (7)0.24643 (9)0.22313 (7)0.0334 (5)
Cl240.16763 (7)0.38281 (9)0.42666 (7)0.0352 (5)
N210.0048 (3)0.2545 (3)0.4637 (2)0.037 (2)
C2110.0253 (3)0.2441 (4)0.5168 (3)0.032 (2)
C2120.0591 (3)0.2264 (4)0.5886 (3)0.034 (2)
C2130.0692 (3)0.3328 (4)0.6301 (3)0.041 (2)
C2140.0009 (4)0.1439 (4)0.6486 (3)0.048 (3)
N220.0599 (2)0.1483 (3)0.3037 (2)0.0307 (18)
C2210.1236 (3)0.1014 (3)0.2851 (3)0.029 (2)
C2220.2083 (3)0.0443 (4)0.2637 (3)0.035 (2)
C2230.2806 (3)0.1154 (5)0.2076 (3)0.050 (3)
C2240.2277 (4)0.0110 (5)0.3449 (3)0.056 (3)
H1120.351790.510740.259760.03800*
H113a0.207300.507410.172020.06100*
H113b0.208160.598750.236470.06100*
H113c0.172340.484340.246710.06100*
H114a0.306310.336510.232680.05000*
H114b0.277480.334520.313840.05000*
H114c0.377440.343710.322580.05000*
H1220.675110.799290.537130.03900*
H123a0.591270.960380.513830.08300*
H123b0.555220.933930.418450.08300*
H123c0.653560.963250.458920.08300*
H124a0.707190.791290.413480.05300*
H124b0.610130.761500.366370.05300*
H124c0.671430.678750.430720.05300*
H2120.116500.191630.568700.04200*
H213a0.104630.384220.591690.06100*
H213b0.014000.365210.658490.06100*
H213c0.096070.320400.673690.06100*
H214a0.058030.171510.668470.06900*
H214b0.000090.076730.620560.06900*
H214c0.021590.131420.695960.06900*
H2220.204230.021250.234360.04600*
H223a0.256180.163960.176600.07500*
H223b0.307180.157300.242610.07500*
H223c0.324910.072230.169900.07500*
H224a0.186760.041110.375190.08000*
H224b0.286040.017760.332740.08000*
H224c0.224250.074080.380360.08000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.02242 (14)0.02455 (14)0.01680 (13)0.00314 (11)0.00507 (10)0.00027 (11)
Cl110.0329 (6)0.0275 (5)0.0344 (5)0.0010 (4)0.0062 (4)0.0048 (4)
Cl120.0359 (6)0.0344 (6)0.0272 (5)0.0010 (5)0.0035 (4)0.0085 (4)
Cl130.0454 (7)0.0347 (6)0.0251 (5)0.0006 (5)0.0027 (5)0.0094 (4)
Cl140.0269 (6)0.0588 (8)0.0332 (6)0.0022 (5)0.0115 (5)0.0129 (5)
N110.038 (2)0.034 (2)0.0252 (19)0.0123 (17)0.0110 (16)0.0068 (16)
C1110.033 (2)0.027 (2)0.029 (2)0.0078 (18)0.0090 (19)0.0002 (18)
C1120.038 (3)0.032 (2)0.023 (2)0.007 (2)0.0094 (18)0.0066 (18)
C1130.050 (3)0.042 (3)0.028 (2)0.002 (2)0.002 (2)0.003 (2)
C1140.035 (3)0.035 (2)0.029 (2)0.002 (2)0.006 (2)0.008 (2)
N120.029 (2)0.034 (2)0.0285 (19)0.0064 (16)0.0109 (16)0.0009 (15)
C1210.030 (2)0.032 (2)0.025 (2)0.0020 (19)0.0085 (17)0.0004 (17)
C1220.027 (2)0.036 (2)0.031 (2)0.0083 (19)0.0106 (18)0.003 (2)
C1230.063 (4)0.033 (3)0.087 (4)0.008 (3)0.048 (3)0.012 (3)
C1240.031 (2)0.039 (3)0.035 (2)0.006 (2)0.013 (2)0.000 (2)
Sn20.02177 (14)0.02508 (15)0.02361 (14)0.00115 (11)0.00602 (11)0.00001 (11)
Cl210.0354 (6)0.0327 (6)0.0401 (6)0.0053 (5)0.0040 (5)0.0061 (5)
Cl220.0349 (6)0.0327 (6)0.0428 (6)0.0095 (5)0.0045 (5)0.0015 (5)
Cl230.0351 (6)0.0390 (6)0.0289 (5)0.0021 (5)0.0139 (4)0.0038 (4)
Cl240.0330 (6)0.0333 (6)0.0353 (6)0.0080 (5)0.0042 (5)0.0052 (5)
N210.037 (2)0.043 (2)0.032 (2)0.0002 (18)0.0140 (17)0.0024 (17)
C2110.029 (2)0.035 (3)0.032 (2)0.001 (2)0.0094 (19)0.004 (2)
C2120.036 (3)0.039 (3)0.028 (2)0.003 (2)0.013 (2)0.003 (2)
C2130.049 (3)0.041 (3)0.026 (2)0.016 (2)0.002 (2)0.003 (2)
C2140.074 (4)0.032 (3)0.040 (3)0.009 (3)0.021 (3)0.003 (2)
N220.028 (2)0.032 (2)0.032 (2)0.0048 (16)0.0085 (16)0.0018 (16)
C2210.030 (2)0.030 (2)0.026 (2)0.0002 (19)0.0101 (18)0.0004 (18)
C2220.031 (2)0.035 (3)0.038 (2)0.013 (2)0.011 (2)0.002 (2)
C2230.029 (3)0.065 (4)0.052 (3)0.012 (2)0.008 (2)0.014 (3)
C2240.044 (3)0.074 (4)0.051 (3)0.019 (3)0.014 (3)0.013 (3)
Geometric parameters (Å, º) top
Sn1—Cl112.3659 (11)Sn2—Cl212.3761 (12)
Sn1—Cl122.3684 (11)Sn2—Cl222.3584 (12)
Sn1—Cl132.3586 (11)Sn2—Cl232.3580 (13)
Sn1—Cl142.3593 (13)Sn2—Cl242.3520 (11)
Sn1—N112.255 (4)Sn2—N212.256 (4)
Sn1—N122.260 (4)Sn2—N222.276 (4)
N11—C1111.135 (6)N21—C2111.131 (7)
C111—C1121.473 (6)C211—C2121.466 (7)
C112—C1131.534 (6)C212—C2131.511 (7)
C112—C1141.520 (6)C212—C2141.526 (6)
C112—H1120.960C212—H2120.973
C113—H113a0.963C213—H213a0.954
C113—H113b0.949C213—H213b0.951
C113—H113c0.957C213—H213c0.959
C114—H114a0.956C214—H214a0.959
C114—H114b0.958C214—H214b0.952
C114—H114c0.950C214—H214c0.954
N12—C1211.137 (6)N22—C2211.126 (6)
C121—C1221.464 (7)C221—C2221.467 (6)
C122—C1231.516 (7)C222—C2231.521 (6)
C122—C1241.511 (7)C222—C2241.529 (8)
C122—H1220.963C222—H2220.955
C123—H123a0.947C223—H223a0.947
C123—H123b0.968C223—H223b0.965
C123—H123c0.960C223—H223c0.953
C124—H124a0.954C224—H224a0.945
C124—H124b0.948C224—H224b0.957
C124—H124c0.956C224—H224c0.968
Cl11—Sn1—Cl12166.41 (4)Cl21—Sn2—Cl22165.93 (5)
Cl11—Sn1—Cl1395.49 (4)Cl21—Sn2—Cl2394.33 (4)
Cl11—Sn1—Cl1494.33 (4)Cl21—Sn2—Cl2494.18 (4)
Cl11—Sn1—N1184.97 (9)Cl21—Sn2—N2184.31 (10)
Cl11—Sn1—N1285.97 (9)Cl21—Sn2—N2285.28 (9)
Cl12—Sn1—Cl1394.14 (4)Cl22—Sn2—Cl2394.21 (4)
Cl12—Sn1—Cl1493.52 (4)Cl22—Sn2—Cl2495.05 (4)
Cl12—Sn1—N1183.36 (9)Cl22—Sn2—N2185.14 (10)
Cl12—Sn1—N1285.20 (9)Cl22—Sn2—N2283.49 (10)
Cl13—Sn1—Cl1499.45 (5)Cl23—Sn2—Cl24101.51 (4)
Cl13—Sn1—N11165.89 (11)Cl23—Sn2—N21168.83 (10)
Cl13—Sn1—N1285.72 (9)Cl23—Sn2—N2290.40 (11)
Cl14—Sn1—N1194.57 (11)Cl24—Sn2—N2189.65 (10)
Cl14—Sn1—N12174.76 (9)Cl24—Sn2—N22168.08 (11)
N11—Sn1—N1280.23 (14)N21—Sn2—N2278.45 (14)
Sn1—N11—C111168.0 (4)Sn2—N21—C211174.8 (3)
N11—C111—C112177.7 (4)N21—C211—C212176.3 (4)
C111—C112—C113108.6 (4)C211—C212—C213111.0 (4)
C111—C112—C114111.3 (3)C211—C212—C214109.4 (4)
C111—C112—H112109.9C211—C212—H212108.9
C113—C112—C114113.8 (4)C213—C212—C214114.0 (4)
C113—C112—H112109.1C213—C212—H212108.6
C114—C112—H112104.0C214—C212—H212104.6
C112—C113—H113a111.7C212—C213—H213a113.1
C112—C113—H113b112.1C212—C213—H213b112.4
C112—C113—H113c109.7C212—C213—H213c109.9
H113a—C113—H113b108.5H213a—C213—H213b109.1
H113a—C113—H113c105.9H213a—C213—H213c107.7
H113b—C113—H113c108.7H213b—C213—H213c104.2
C112—C114—H114a108.2C212—C214—H214a109.1
C112—C114—H114b107.2C212—C214—H214b110.8
C112—C114—H114c111.2C212—C214—H214c110.9
H114a—C114—H114b108.3H214a—C214—H214b108.6
H114a—C114—H114c112.4H214a—C214—H214c108.4
H114b—C114—H114c109.4H214b—C214—H214c109.0
Sn1—N12—C121163.2 (4)Sn2—N22—C221170.4 (4)
N12—C121—C122177.3 (5)N22—C221—C222176.9 (5)
C121—C122—C123108.1 (4)C221—C222—C223110.0 (4)
C121—C122—C124111.2 (4)C221—C222—C224109.2 (4)
C121—C122—H122109.9C221—C222—H222109.3
C123—C122—C124112.2 (4)C223—C222—C224112.4 (4)
C123—C122—H122109.2C223—C222—H222109.2
C124—C122—H122106.2C224—C222—H222106.7
C122—C123—H123a112.6C222—C223—H223a109.9
C122—C123—H123b110.7C222—C223—H223b109.0
C122—C123—H123c110.8C222—C223—H223c110.9
H123a—C123—H123b108.2H223a—C223—H223b108.5
H123a—C123—H123c107.4H223a—C223—H223c109.7
H123b—C123—H123c106.9H223b—C223—H223c108.9
C122—C124—H124a107.7C222—C224—H224a111.4
C122—C124—H124b107.2C222—C224—H224b110.7
C122—C124—H124c110.6C222—C224—H224c109.5
H124a—C124—H124b109.3H224a—C224—H224b109.3
H124a—C124—H124c109.3H224a—C224—H224c108.4
H124b—C124—H124c112.6H224b—C224—H224c107.4
(IV) top
Crystal data top
[SnCl4(C7H11N)2]F(000) = 952
Mr = 478.87Dx = 1.65 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ybcCell parameters from 8030 reflections
a = 10.0990 (15) Åθ = 2.6–29.2°
b = 15.772 (2) ŵ = 1.88 mm1
c = 12.5100 (19) ÅT = 150 K
β = 104.719 (3)°Plate, colourless
V = 1927.2 (5) Å30.45 × 0.45 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
7502 independent reflections
Radiation source: sealed tube6663 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 33.5°, θmin = 2.1°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 1514
Tmin = 0.49, Tmax = 0.75k = 2424
28748 measured reflectionsl = 1919
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: difference Fourier map
wR(F2) = 0.03All H-atom parameters refined
S = 1.08 w = [1/σ2(F) + 0.00032F2]
6663 reflections(Δ/σ)max = 0.024
278 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.56 e Å3
0 constraints
Crystal data top
[SnCl4(C7H11N)2]V = 1927.2 (5) Å3
Mr = 478.87Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.0990 (15) ŵ = 1.88 mm1
b = 15.772 (2) ÅT = 150 K
c = 12.5100 (19) Å0.45 × 0.45 × 0.15 mm
β = 104.719 (3)°
Data collection top
Bruker SMART CCD
diffractometer
7502 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
6663 reflections with I > 2.00 σ(I)
Tmin = 0.49, Tmax = 0.75Rint = 0.031
28748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0210 restraints
wR(F2) = 0.03All H-atom parameters refined
S = 1.08Δρmax = 0.57 e Å3
6663 reflectionsΔρmin = 0.56 e Å3
278 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.809447 (8)0.127451 (5)0.315045 (7)0.01785 (4)
Cl10.94123 (4)0.19778 (3)0.20964 (3)0.03246 (16)
Cl20.59884 (4)0.16711 (3)0.19370 (3)0.03436 (17)
Cl30.83567 (4)0.00805 (2)0.24148 (3)0.02854 (14)
Cl40.71286 (4)0.07732 (2)0.45514 (3)0.02857 (14)
N10.81364 (14)0.25546 (8)0.39886 (10)0.0278 (5)
C10.80512 (15)0.32475 (9)0.42244 (11)0.0240 (5)
C110.79516 (15)0.41547 (8)0.44621 (11)0.0238 (5)
C120.86612 (15)0.46627 (10)0.37133 (12)0.0257 (6)
C130.78753 (16)0.45989 (10)0.24969 (12)0.0291 (6)
C140.63823 (17)0.48531 (11)0.23219 (14)0.0341 (7)
C150.56765 (16)0.43400 (11)0.30528 (15)0.0325 (7)
C160.64332 (17)0.44084 (10)0.42628 (14)0.0298 (6)
N21.01359 (13)0.11514 (8)0.43993 (11)0.0264 (5)
C21.12001 (15)0.13110 (9)0.49396 (12)0.0257 (6)
C211.25369 (15)0.16062 (12)0.56021 (12)0.0316 (7)
C221.36520 (15)0.14700 (11)0.49845 (14)0.0302 (6)
C231.34071 (16)0.19947 (10)0.39460 (13)0.0303 (6)
C241.32696 (18)0.29256 (11)0.41790 (15)0.0364 (7)
C251.2145 (2)0.30844 (11)0.4755 (2)0.0443 (9)
C261.2385 (2)0.25624 (15)0.58303 (17)0.0487 (10)
H110.842 (2)0.4234 (13)0.5232 (17)0.044 (6)*
H12a0.953 (2)0.4445 (13)0.3886 (17)0.042 (6)*
H12b0.871 (2)0.5249 (12)0.4013 (15)0.030 (5)*
H13a0.795 (2)0.3967 (13)0.2238 (16)0.034 (5)*
H13b0.839 (2)0.4950 (12)0.2068 (16)0.034 (5)*
H14a0.589 (2)0.4800 (12)0.1503 (16)0.034 (5)*
H14b0.627 (2)0.5511 (14)0.2464 (17)0.047 (6)*
H15a0.558 (2)0.3723 (12)0.2811 (19)0.042 (6)*
H15b0.478 (2)0.4539 (14)0.2955 (18)0.052 (6)*
H16a0.647 (2)0.4894 (14)0.4433 (17)0.041 (6)*
H16b0.601 (2)0.4055 (13)0.4738 (16)0.034 (5)*
H211.272 (3)0.1299 (13)0.627 (2)0.055 (7)*
H22a1.376 (2)0.0875 (15)0.4843 (18)0.051 (6)*
H22b1.452 (2)0.1678 (12)0.5486 (16)0.035 (5)*
H23a1.416 (2)0.1893 (12)0.3606 (16)0.037 (5)*
H23b1.253 (2)0.1801 (13)0.3438 (17)0.040 (5)*
H24a1.301 (2)0.3261 (16)0.343 (2)0.057 (7)*
H24b1.417 (2)0.3163 (12)0.4667 (17)0.037 (5)*
H25a1.122 (2)0.2905 (14)0.4195 (19)0.052 (6)*
H25b1.211 (3)0.3668 (14)0.491 (2)0.057 (7)*
H26a1.328 (3)0.2613 (15)0.637 (2)0.060 (7)*
H26b1.171 (3)0.2641 (16)0.617 (2)0.058 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.01574 (5)0.02002 (5)0.01710 (5)0.00196 (3)0.00288 (3)0.00004 (3)
Cl10.03352 (18)0.0398 (2)0.02533 (16)0.01317 (15)0.00981 (13)0.00340 (13)
Cl20.02349 (16)0.0472 (2)0.02752 (17)0.00681 (15)0.00247 (13)0.00234 (15)
Cl30.02863 (16)0.02527 (15)0.03454 (17)0.00329 (12)0.01325 (13)0.00775 (12)
Cl40.03027 (16)0.03212 (17)0.02668 (15)0.00319 (13)0.01340 (13)0.00294 (12)
N10.0333 (6)0.0245 (5)0.0241 (5)0.0001 (5)0.0048 (5)0.0002 (4)
C10.0271 (6)0.0245 (6)0.0186 (5)0.0006 (5)0.0028 (5)0.0019 (4)
C110.0311 (7)0.0205 (6)0.0194 (5)0.0037 (5)0.0060 (5)0.0031 (4)
C120.0224 (6)0.0274 (6)0.0276 (6)0.0042 (5)0.0071 (5)0.0009 (5)
C130.0294 (7)0.0354 (7)0.0237 (6)0.0006 (6)0.0092 (5)0.0055 (5)
C140.0283 (7)0.0358 (8)0.0351 (8)0.0014 (6)0.0024 (6)0.0116 (6)
C150.0212 (6)0.0308 (7)0.0446 (9)0.0007 (5)0.0069 (6)0.0050 (6)
C160.0327 (7)0.0251 (7)0.0369 (8)0.0011 (5)0.0185 (6)0.0016 (6)
N20.0223 (5)0.0280 (6)0.0268 (6)0.0047 (4)0.0025 (4)0.0037 (4)
C20.0228 (6)0.0301 (7)0.0230 (6)0.0042 (5)0.0032 (5)0.0067 (5)
C210.0207 (6)0.0515 (9)0.0196 (6)0.0106 (6)0.0005 (5)0.0080 (6)
C220.0200 (6)0.0311 (7)0.0384 (8)0.0015 (5)0.0053 (6)0.0060 (6)
C230.0284 (7)0.0368 (8)0.0280 (7)0.0028 (6)0.0114 (6)0.0009 (6)
C240.0339 (8)0.0310 (8)0.0428 (9)0.0077 (6)0.0067 (7)0.0072 (6)
C250.0338 (8)0.0247 (7)0.0731 (14)0.0020 (6)0.0109 (9)0.0181 (8)
C260.0299 (8)0.0788 (14)0.0421 (9)0.0223 (9)0.0177 (7)0.0392 (10)
Geometric parameters (Å, º) top
Sn—Cl12.3732 (5)C16—H16a0.79 (2)
Sn—Cl22.3620 (4)C16—H16b0.99 (2)
Sn—Cl32.3682 (5)N2—C21.1428 (18)
Sn—Cl42.3488 (5)C2—C211.469 (2)
N1—C11.1408 (19)C21—C221.534 (2)
C1—C111.470 (2)C21—C261.550 (3)
C11—C121.541 (2)C21—H210.94 (2)
C11—C161.543 (2)C22—C231.507 (2)
C11—H110.97 (2)C22—H22a0.97 (2)
C12—C131.530 (2)C22—H22b0.992 (18)
C12—H12a0.91 (2)C23—C241.510 (2)
C12—H12b0.99 (2)C23—H23a0.97 (2)
C13—C141.521 (2)C23—H23b1.00 (2)
C13—H13a1.06 (2)C24—C251.513 (3)
C13—H13b1.01 (2)C24—H24a1.05 (3)
C14—C151.527 (3)C24—H24b1.03 (2)
C14—H14a1.021 (18)C25—C261.542 (3)
C14—H14b1.06 (2)C25—H25a1.06 (2)
C15—C161.516 (2)C25—H25b0.94 (2)
C15—H15a1.02 (2)C26—H26a0.99 (2)
C15—H15b0.94 (2)C26—H26b0.90 (3)
Cl1—Sn—Cl293.420 (18)C15—C16—H16a108.4 (14)
Cl1—Sn—Cl394.129 (16)C15—C16—H16b112.0 (10)
Cl1—Sn—Cl4165.871 (12)H16a—C16—H16b113 (2)
Cl2—Sn—Cl399.240 (14)N2—C2—C21174.19 (16)
Cl2—Sn—Cl495.270 (17)C2—C21—C22111.00 (13)
Cl3—Sn—Cl495.443 (15)C2—C21—C26107.02 (13)
N1—C1—C11176.53 (16)C2—C21—H21106.6 (15)
C1—C11—C12108.47 (13)C22—C21—C26110.41 (15)
C1—C11—C16109.64 (12)C22—C21—H21111.3 (18)
C1—C11—H11106.5 (13)C26—C21—H21110.3 (14)
C12—C11—C16111.33 (11)C21—C22—C23112.13 (13)
C12—C11—H11110.5 (14)C21—C22—H22a111.3 (16)
C16—C11—H11110.3 (14)C21—C22—H22b105.9 (13)
C11—C12—C13111.50 (12)C23—C22—H22a112.1 (14)
C11—C12—H12a103.2 (14)C23—C22—H22b106.8 (12)
C11—C12—H12b104.0 (12)H22a—C22—H22b108.2 (17)
C13—C12—H12a115.7 (13)C22—C23—C24111.75 (14)
C13—C12—H12b113.5 (10)C22—C23—H23a108.1 (11)
H12a—C12—H12b107.8 (16)C22—C23—H23b107.9 (13)
C12—C13—C14111.75 (14)C24—C23—H23a111.4 (11)
C12—C13—H13a108.0 (10)C24—C23—H23b108.1 (12)
C12—C13—H13b106.6 (10)H23a—C23—H23b109.5 (18)
C14—C13—H13a110.4 (11)C23—C24—C25111.71 (15)
C14—C13—H13b114.1 (11)C23—C24—H24a109.4 (14)
H13a—C13—H13b105.7 (17)C23—C24—H24b111.1 (11)
C13—C14—C15111.76 (13)C25—C24—H24a107.1 (15)
C13—C14—H14a109.3 (12)C25—C24—H24b108.2 (13)
C13—C14—H14b112.0 (12)H24a—C24—H24b109.2 (17)
C15—C14—H14a112.2 (12)C24—C25—C26110.88 (15)
C15—C14—H14b109.5 (13)C24—C25—H25a106.7 (14)
H14a—C14—H14b101.7 (15)C24—C25—H25b109.3 (19)
C14—C15—C16111.51 (13)C26—C25—H25a110.6 (13)
C14—C15—H15a110.7 (15)C26—C25—H25b110.5 (16)
C14—C15—H15b109.1 (14)H25a—C25—H25b109 (2)
C16—C15—H15a110.6 (12)C21—C26—C25111.09 (16)
C16—C15—H15b109.4 (14)C21—C26—H26a95.1 (14)
H15a—C15—H15b105 (2)C21—C26—H26b110.1 (16)
C11—C16—C15111.78 (14)C25—C26—H26a117.9 (15)
C11—C16—H16a103.0 (16)C25—C26—H26b111.4 (15)
C11—C16—H16b108.7 (11)H26a—C26—H26b110 (2)
(V) top
Crystal data top
[SnCl4(C8H7N)2]F(000) = 968
Mr = 494.82Dx = 1.66 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 6760 reflections
a = 15.355 (1) Åθ = 2.3–30.2°
b = 7.3810 (6) ŵ = 1.83 mm1
c = 18.083 (2) ÅT = 150 K
β = 104.977 (2)°Prism, colourless
V = 1979.8 (3) Å30.3 × 0.3 × 0.3 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
7717 independent reflections
Radiation source: sealed tube6555 reflections with I > 2.00 σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 34.0°, θmin = 1.6°
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
h = 2322
Tmin = 0.72, Tmax = 0.77k = 1111
29755 measured reflectionsl = 2828
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: difference Fourier map
wR(F2) = 0.034H-atom parameters not refined
S = 0.98 w = [1/σ2(F) + 0.0004F2]
6555 reflections(Δ/σ)max = 0.007
208 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 1.10 e Å3
0 constraints
Crystal data top
[SnCl4(C8H7N)2]V = 1979.8 (3) Å3
Mr = 494.82Z = 4
Monoclinic, P21/nMo Kα radiation
a = 15.355 (1) ŵ = 1.83 mm1
b = 7.3810 (6) ÅT = 150 K
c = 18.083 (2) Å0.3 × 0.3 × 0.3 mm
β = 104.977 (2)°
Data collection top
Bruker SMART CCD
diffractometer
7717 independent reflections
Absorption correction: multi-scan
SADABS; Sheldrick, 1996
6555 reflections with I > 2.00 σ(I)
Tmin = 0.72, Tmax = 0.77Rint = 0.031
29755 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.034H-atom parameters not refined
S = 0.98Δρmax = 0.97 e Å3
6555 reflectionsΔρmin = 1.10 e Å3
208 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn0.737510 (10)0.52190 (2)0.499030 (10)0.02290 (5)
Cl10.79896 (4)0.48536 (7)0.39330 (3)0.0404 (2)
Cl20.83983 (4)0.74987 (7)0.55946 (3)0.0443 (2)
Cl30.61884 (5)0.71237 (8)0.43398 (3)0.0517 (3)
Cl40.67975 (4)0.46996 (7)0.60542 (3)0.0359 (2)
N10.83998 (11)0.3077 (2)0.55367 (9)0.0336 (7)
C10.90140 (12)0.2258 (2)0.58472 (10)0.0274 (7)
C110.98011 (11)0.1264 (2)0.62373 (9)0.0240 (6)
C120.98362 (11)0.0447 (2)0.69444 (9)0.0244 (6)
C1210.90548 (14)0.0514 (3)0.72979 (11)0.0331 (8)
C131.06341 (13)0.0452 (3)0.72990 (11)0.0324 (8)
C141.13453 (13)0.0555 (3)0.69586 (13)0.0383 (9)
C151.12919 (13)0.0255 (3)0.62591 (14)0.0388 (9)
C161.05199 (12)0.1181 (3)0.58949 (10)0.0313 (8)
N20.65258 (11)0.2789 (2)0.44864 (10)0.0347 (7)
C20.59243 (12)0.2003 (2)0.41259 (10)0.0286 (7)
C210.51564 (11)0.1059 (2)0.36759 (9)0.0246 (6)
C220.51891 (12)0.0313 (2)0.29683 (10)0.0255 (6)
C2210.60268 (15)0.0402 (3)0.26915 (12)0.0365 (9)
C230.44071 (14)0.0534 (3)0.25440 (11)0.0351 (8)
C240.36434 (14)0.0649 (3)0.28190 (14)0.0430 (10)
C250.36329 (14)0.0079 (3)0.35209 (15)0.0420 (10)
C260.43890 (13)0.0948 (3)0.39541 (11)0.0333 (8)
H121a0.925230.023480.782790.05000*
H121b0.860810.033460.705190.05000*
H121c0.879910.170040.723980.05000*
H131.069280.100600.778400.03100*
H141.187710.119490.721050.05000*
H151.178270.016950.603000.06500*
H161.047640.175380.541670.03800*
H221a0.624730.161770.272900.05500*
H221b0.648100.036070.299520.05500*
H221c0.590380.003290.217140.05500*
H230.439640.103790.205910.02800*
H240.311970.123760.252010.06700*
H250.310760.001430.370310.07800*
H260.438720.146760.443460.05000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.03056 (6)0.01963 (6)0.01840 (5)0.00109 (4)0.00613 (4)0.00001 (3)
Cl10.0520 (3)0.0454 (3)0.0294 (2)0.0030 (2)0.0208 (2)0.00690 (18)
Cl20.0680 (3)0.0365 (2)0.0302 (2)0.0256 (2)0.0161 (2)0.00808 (18)
Cl30.0768 (4)0.0493 (3)0.0258 (2)0.0393 (3)0.0076 (2)0.00444 (19)
Cl40.0410 (2)0.0424 (3)0.0281 (2)0.00065 (18)0.01584 (17)0.00459 (17)
N10.0297 (8)0.0346 (8)0.0348 (8)0.0043 (6)0.0055 (6)0.0017 (6)
C10.0284 (8)0.0268 (8)0.0265 (7)0.0014 (6)0.0064 (6)0.0009 (6)
C110.0224 (7)0.0235 (7)0.0260 (7)0.0007 (5)0.0060 (5)0.0005 (5)
C120.0279 (7)0.0216 (7)0.0240 (7)0.0039 (5)0.0068 (6)0.0021 (5)
C1210.0385 (10)0.0333 (9)0.0324 (9)0.0072 (7)0.0180 (7)0.0057 (7)
C130.0356 (9)0.0281 (8)0.0303 (8)0.0013 (7)0.0023 (7)0.0043 (6)
C140.0272 (9)0.0356 (10)0.0480 (11)0.0048 (7)0.0021 (8)0.0047 (8)
C150.0256 (8)0.0437 (11)0.0496 (12)0.0018 (7)0.0143 (8)0.0017 (9)
C160.0313 (9)0.0339 (9)0.0310 (8)0.0001 (7)0.0124 (7)0.0026 (7)
N20.0325 (8)0.0345 (8)0.0353 (8)0.0041 (6)0.0056 (6)0.0051 (6)
C20.0304 (8)0.0256 (8)0.0293 (8)0.0011 (6)0.0070 (6)0.0008 (6)
C210.0237 (7)0.0225 (7)0.0269 (7)0.0019 (5)0.0051 (6)0.0007 (5)
C220.0292 (8)0.0212 (7)0.0255 (7)0.0038 (6)0.0060 (6)0.0012 (5)
C2210.0429 (11)0.0353 (10)0.0367 (10)0.0061 (8)0.0202 (8)0.0035 (7)
C230.0402 (10)0.0268 (8)0.0318 (9)0.0031 (7)0.0025 (7)0.0037 (6)
C240.0298 (9)0.0309 (9)0.0596 (13)0.0028 (7)0.0042 (9)0.0012 (9)
C250.0249 (9)0.0400 (11)0.0623 (14)0.0011 (7)0.0136 (9)0.0054 (9)
C260.0312 (9)0.0335 (9)0.0380 (9)0.0043 (7)0.0138 (7)0.0014 (7)
Geometric parameters (Å, º) top
Sn—Cl12.3560 (7)C15—C161.379 (3)
Sn—Cl22.3678 (6)C15—H150.951
Sn—Cl32.3606 (7)C16—H160.9493
Sn—Cl42.3488 (7)N2—C21.142 (2)
Sn—N12.2687 (16)C2—C211.429 (2)
Sn—N22.2658 (16)C21—C221.406 (3)
N1—C11.139 (2)C21—C261.398 (3)
C1—C111.434 (2)C22—C2211.497 (3)
C11—C121.402 (2)C22—C231.395 (2)
C11—C161.399 (3)C221—H221a0.956
C12—C1211.499 (3)C221—H221b0.952
C12—C131.395 (2)C221—H221c0.950
C121—H121a0.9502C23—C241.390 (3)
C121—H121b0.9504C23—H230.949
C121—H121c0.954C24—C251.382 (4)
C13—C141.387 (3)C24—H240.950
C13—H130.951C25—C261.380 (3)
C14—C151.382 (3)C25—H250.949
C14—H140.951C26—H260.950
Cl1—Sn—Cl295.67 (2)C15—C14—H14119.6
Cl1—Sn—Cl394.78 (2)C14—C15—C16119.5 (2)
Cl1—Sn—Cl4163.987 (19)C14—C15—H15120.2
Cl1—Sn—N184.00 (5)C16—C15—H15120.3
Cl1—Sn—N283.84 (5)C11—C16—C15119.29 (18)
Cl2—Sn—Cl398.13 (2)C11—C16—H16120.37
Cl2—Sn—Cl494.82 (2)C15—C16—H16120.3
Cl2—Sn—N189.50 (4)Sn—N2—C2158.21 (15)
Cl2—Sn—N2172.95 (4)N2—C2—C21178.5 (2)
Cl3—Sn—Cl495.69 (2)C2—C21—C22119.40 (17)
Cl3—Sn—N1172.36 (4)C2—C21—C26118.14 (16)
Cl3—Sn—N288.92 (4)C22—C21—C26122.45 (15)
Cl4—Sn—N184.02 (5)C21—C22—C221121.54 (15)
Cl4—Sn—N284.28 (5)C21—C22—C23116.62 (18)
N1—Sn—N283.45 (6)C221—C22—C23121.84 (18)
Sn—N1—C1167.85 (15)C22—C221—H221a109.7
N1—C1—C11178.6 (2)C22—C221—H221b110.2
C1—C11—C12119.85 (17)C22—C221—H221c110.50
C1—C11—C16117.76 (16)H221a—C221—H221b108.7
C12—C11—C16122.39 (15)H221a—C221—H221c108.4
C11—C12—C121121.87 (14)H221b—C221—H221c109.3
C11—C12—C13116.48 (17)C22—C23—C24121.1 (2)
C121—C12—C13121.64 (16)C22—C23—H23119.4
C12—C121—H121a109.93C24—C23—H23119.5
C12—C121—H121b109.80C23—C24—C25121.05 (19)
C12—C121—H121c109.61C23—C24—H24119.5
H121a—C121—H121b109.4C25—C24—H24119.4
H121a—C121—H121c109.0C24—C25—C26119.6 (2)
H121b—C121—H121c109.07C24—C25—H25120.2
C12—C13—C14121.38 (18)C26—C25—H25120.2
C12—C13—H13119.4C21—C26—C25119.1 (2)
C14—C13—H13119.20C21—C26—H26120.49
C13—C14—C15120.99 (18)C25—C26—H26120.4
C13—C14—H14119.4

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formula[SnCl4(C2H3N)2]·C2H3N[SnCl4(C3H5N)2]·C3H5N[SnCl4(C4H7N)2][SnCl4(C7H11N)2]
Mr383.68425.76398.74478.87
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PbcaMonoclinic, P21/nMonoclinic, P21/c
Temperature (K)150150150150
a, b, c (Å)10.480 (2), 13.783 (2), 9.758 (2)11.274 (2), 13.822 (2), 21.606 (3)15.912 (3), 12.316 (3), 16.638 (4)10.0990 (15), 15.772 (2), 12.5100 (19)
α, β, γ (°)90, 90, 9090, 90, 9090, 107.478 (3), 9090, 104.719 (3), 90
V3)1409.5 (4)3366.8 (9)3110.1 (12)1927.2 (5)
Z4884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)2.542.142.311.88
Crystal size (mm)0.24 × 0.2 × 0.150.4 × 0.2 × 0.150.2 × 0.1 × 0.080.45 × 0.45 × 0.15
Data collection
DiffractometerBruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Bruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Multi-scan
SADABS; Sheldrick, 1996
Multi-scan
SADABS; Sheldrick, 1996
Multi-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.64, 0.800.43, 0.750.67, 0.830.49, 0.75
No. of measured, independent and
observed reflections
13399, 1841, 1726 [I > 2.00 σ(I)]50732, 6697, 4991 [I > 2.00 σ(I)]30610, 7872, 5976 [I > 2.00 σ(I)]28748, 7502, 6663 [I > 2.00 σ(I)]
Rint0.0250.0420.0410.031
(sin θ/λ)max1)0.6690.7890.6820.777
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.022, 1.18 0.027, 0.034, 1.07 0.033, 0.04, 1.14 0.021, 0.03, 1.08
No. of reflections1726499159766663
No. of parameters80154271278
H-atom treatmentH-atom parameters not refinedH-atom parameters not refinedH-atom parameters not refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.57, 0.540.93, 0.761.74, 0.970.57, 0.56


(V)
Crystal data
Chemical formula[SnCl4(C8H7N)2]
Mr494.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)15.355 (1), 7.3810 (6), 18.083 (2)
α, β, γ (°)90, 104.977 (2), 90
V3)1979.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.83
Crystal size (mm)0.3 × 0.3 × 0.3
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
SADABS; Sheldrick, 1996
Tmin, Tmax0.72, 0.77
No. of measured, independent and
observed reflections
29755, 7717, 6555 [I > 2.00 σ(I)]
Rint0.031
(sin θ/λ)max1)0.787
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.034, 0.98
No. of reflections6555
No. of parameters208
H-atom treatmentH-atom parameters not refined
Δρmax, Δρmin (e Å3)0.97, 1.10

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), Xtal3.5 (Hall et al., 1995), Xtal3.5 (Hall, King, and Stewart, 1995), SIMPEL in Xtal3.5, CRYLSQ n Xtal3.5, CRYLSQ in Xtal3.5, BONDLA and CIFIO in Xtal3.5.

Selected geometric parameters (Å, º) for (I) top
Sn—Cl12.3518 (10)N11—C111.132 (3)
Sn—Cl22.3641 (10)C11—C121.453 (4)
Sn—Cl32.3635 (7)N21—C211.137 (18)
Sn—N112.259 (2)C21—C221.605 (15)
Cl1—Sn—Cl2164.87 (3)Cl3—Sn—N11172.56 (5)
Cl1—Sn—Cl395.77 (2)Sn—N11—C11178.5 (2)
Cl1—Sn—N1185.03 (6)N11—C11—C12178.9 (3)
Cl2—Sn—Cl394.12 (2)N21—C21—C22178.5 (10)
Cl2—Sn—N1183.71 (6)
Selected geometric parameters (Å, º) for (II) top
Sn—Cl12.3609 (6)Sn—N22.2508 (18)
Sn—Cl22.3653 (6)N1—C111.136 (3)
Sn—Cl32.3634 (6)C11—C121.455 (3)
Sn—Cl42.3699 (6)N2—C211.128 (3)
Sn—N12.2388 (18)C21—C221.464 (3)
Cl1—Sn—Cl294.68 (2)Cl3—Sn—N1172.09 (4)
Cl1—Sn—Cl394.44 (2)Cl3—Sn—N290.35 (5)
Cl1—Sn—Cl4167.095 (18)Cl4—Sn—N184.48 (5)
Cl1—Sn—N185.98 (5)Cl4—Sn—N283.94 (5)
Cl1—Sn—N286.12 (5)N1—Sn—N281.79 (7)
Cl2—Sn—Cl398.88 (2)Sn—N1—C11172.75 (17)
Cl2—Sn—Cl493.82 (2)N1—C11—C12176.1 (2)
Cl2—Sn—N188.96 (5)Sn—N2—C21165.66 (17)
Cl2—Sn—N2170.64 (5)N2—C21—C22174.8 (2)
Cl3—Sn—Cl493.82 (2)
Selected geometric parameters (Å, º) for (III) top
Sn1—Cl112.3659 (11)Sn2—Cl212.3761 (12)
Sn1—Cl122.3684 (11)Sn2—Cl222.3584 (12)
Sn1—Cl132.3586 (11)Sn2—Cl232.3580 (13)
Sn1—Cl142.3593 (13)Sn2—Cl242.3520 (11)
Sn1—N112.255 (4)Sn2—N212.256 (4)
Sn1—N122.260 (4)Sn2—N222.276 (4)
N11—C1111.135 (6)N21—C2111.131 (7)
C111—C1121.473 (6)C211—C2121.466 (7)
N12—C1211.137 (6)N22—C2211.126 (6)
C121—C1221.464 (7)C221—C2221.467 (6)
Cl11—Sn1—Cl12166.41 (4)Cl21—Sn2—Cl22165.93 (5)
Cl11—Sn1—Cl1395.49 (4)Cl21—Sn2—Cl2394.33 (4)
Cl11—Sn1—Cl1494.33 (4)Cl21—Sn2—Cl2494.18 (4)
Cl11—Sn1—N1184.97 (9)Cl21—Sn2—N2184.31 (10)
Cl11—Sn1—N1285.97 (9)Cl21—Sn2—N2285.28 (9)
Cl12—Sn1—Cl1394.14 (4)Cl22—Sn2—Cl2394.21 (4)
Cl12—Sn1—Cl1493.52 (4)Cl22—Sn2—Cl2495.05 (4)
Cl12—Sn1—N1183.36 (9)Cl22—Sn2—N2185.14 (10)
Cl12—Sn1—N1285.20 (9)Cl22—Sn2—N2283.49 (10)
Cl13—Sn1—Cl1499.45 (5)Cl23—Sn2—Cl24101.51 (4)
Cl13—Sn1—N11165.89 (11)Cl23—Sn2—N21168.83 (10)
Cl13—Sn1—N1285.72 (9)Cl23—Sn2—N2290.40 (11)
Cl14—Sn1—N1194.57 (11)Cl24—Sn2—N2189.65 (10)
Cl14—Sn1—N12174.76 (9)Cl24—Sn2—N22168.08 (11)
N11—Sn1—N1280.23 (14)N21—Sn2—N2278.45 (14)
Sn1—N11—C111168.0 (4)Sn2—N21—C211174.8 (3)
N11—C111—C112177.7 (4)N21—C211—C212176.3 (4)
Sn1—N12—C121163.2 (4)Sn2—N22—C221170.4 (4)
N12—C121—C122177.3 (5)N22—C221—C222176.9 (5)
Selected geometric parameters (Å, º) for (IV) top
Sn—Cl12.3732 (5)C1—C111.470 (2)
Sn—Cl22.3620 (4)C11—C121.541 (2)
Sn—Cl32.3682 (5)N2—C21.1428 (18)
Sn—Cl42.3488 (5)C2—C211.469 (2)
N1—C11.1408 (19)
Cl1—Sn—Cl293.420 (18)Cl2—Sn—Cl495.270 (17)
Cl1—Sn—Cl394.129 (16)Cl3—Sn—Cl495.443 (15)
Cl1—Sn—Cl4165.871 (12)N1—C1—C11176.53 (16)
Cl2—Sn—Cl399.240 (14)N2—C2—C21174.19 (16)
Selected geometric parameters (Å, º) for (V) top
Sn—Cl12.3560 (7)Sn—N22.2658 (16)
Sn—Cl22.3678 (6)N1—C11.139 (2)
Sn—Cl32.3606 (7)C1—C111.434 (2)
Sn—Cl42.3488 (7)N2—C21.142 (2)
Sn—N12.2687 (16)C2—C211.429 (2)
Cl1—Sn—Cl295.67 (2)Cl3—Sn—N1172.36 (4)
Cl1—Sn—Cl394.78 (2)Cl3—Sn—N288.92 (4)
Cl1—Sn—Cl4163.987 (19)Cl4—Sn—N184.02 (5)
Cl1—Sn—N184.00 (5)Cl4—Sn—N284.28 (5)
Cl1—Sn—N283.84 (5)N1—Sn—N283.45 (6)
Cl2—Sn—Cl398.13 (2)Sn—N1—C1167.85 (15)
Cl2—Sn—Cl494.82 (2)N1—C1—C11178.6 (2)
Cl2—Sn—N189.50 (4)Sn—N2—C2158.21 (15)
Cl2—Sn—N2172.95 (4)N2—C2—C21178.5 (2)
Cl3—Sn—Cl495.69 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds