Download citation
Download citation
link to html
The title compound, [Ru(C13H11N4S)2(C15H8N2)2], has C2 symmetry, with bidentate 2,2′-bipyridyl ligands dictating a cis geometry around the RuII center. The monodentate S-bonded dithizone ligands are almost planar, except for one of the phenyl rings, which is twisted by 34.2 (4)° from the N/N/C(S)/N/N plane. The Ru—S bond length is 2.4140 (13) Å, and the Ru—N bond lengths are 2.048 (4) and 2.074 (4) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103009338/fg1686sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103009338/fg1686Isup2.hkl
Contains datablock I

CCDC reference: 217124

Comment top

Very few X-ray structural reports have described either dithizone (H2dtz; Harrowfield et al., 1983a, 1983b; Kong & Wong, 1999; Ortner & Abram, 1999; Mawby & Irving, 1972; Niven et al., 1982; Harding, 1958; Math & Freiser, 1970; Math & Freiser, 1971; Irving & Irving, 1986) or its oxidation product, 2,3-diphenyltetrazolium-5-thiolate (tet; Walsh et al., 1998; Liu & Zubieta, 1989; Kozarek & Fernando, 1972), as ligands in transition metal complexes. The structure of [Ru(tpy)(bpy)(tet)](ClO4)2 (tpy is 2,2':6',2'-terpyridyl) involves monodentate coordination of the tet ligand through the S atom (Walsh et al., 1998). Bond distances and angles are consistent with the tet ligand having delocalized mesoionic character (Liu & Zubieta, 1989; Kushi & Fernando, 1970). Because of the nature of the redox chemistry of the tet ligand while coordinated to the ruthenium center (Seamans & Walsh, 2003), the synthesis of ruthenium–dithizone complexes with monodentate ligands and the preparation of crystals suitable for structural characterization were attempted. A direct analog of the tet complex, [Ru(tpy)(bpy)(Hdtz)]ClO4, was prepared, but suitable crystals could not be obtained. Subsequently, [Ru(bpy)2(Hdtz)2], (I), was prepared and its structure, the first of a monomeric transition metal complex with a monodentate dithizonate ligand, is reported here (Fig. 1 and Table 1). Other examples of monodentate binding of dithizone involved a main group metal (Harrowfield et al., 1983b) and bridging ligands (Kong & Wong, 1999).

The ruthenium center exhibits the typical characteristics of cis-Ru(bpy)2 complexes with an N—Ru—N bite angle close to 80° (Table 1). The N6—Ru1—N6A angle is 173.7 (2)° and the N5—Ru1—N5A angle is 86.2 (2)°. The atoms of the planar bpy ligands show an RMS out-of-plane deviation of 0.0288 Å.

In the title complex, the uninegative dithizonate ligand shows monodentate coordination through the S atom, with an Ru1—S1—C1 bond angle of 106.74 (18)°. Unlike the trans–cis structure of S-methyldithizone (Preuss & Gieren, 1975), which contains a five-membered hydrogen-bonded ring, (I) has a trans–trans structure about the N atoms, with no hydrogen bonding to the H atom on the N atom. This structure is similar to monodentate Hdtz- in an indium complex (Harrowfield et al., 1983b), to a bridging monodentate Hdtz- in an osmium cluster (Kong & Wong, 1999) and to the iodine adduct of dithizone (Herbstein & Schwotzer, 1982; Herbstein & Schwotzer, 1984). Bidentate coordination of Hdtz- usually occurs in a similar trans–trans fashion. The dithizonate unit is nearly planar (Table 2), except for the twist of the C8–C13 phenyl ring out of the plane of the CNNC(S)NNC moiety by 34.2 (4)°. The C2–C7 phenyl ring is twisted only 3.9 (4)° out of the CNNC(S)NNC plane. The phenyl rings of coordinated dithizone ligands have been observed to be coplanar with the NNC(S)NN plane (Harding, 1958; Mawby & Laing, 1972; Math & Freiser, 1971; Laing, 1977) or twisted at some angle (Laing et al., 1971; Math & Freiser, 1970). The latter cases are often the result of steric effects, but steric effects do not appear to be a major factor leading to nonplanarity in the present case. Packing effects may be involved.

The bonding in dithizone (H2dtz) and the deprotonated dithizonate anion (Hdtz-) is illustrated in Fig. 2. Structure F is expected to be the dominant form of the dithizonate ion in (I). In [Ru(bpy)2(Hdtz)2], the C1—S1 bond length of 1.737 (5) Å (Table 2) is only slightly shorter than the C—S bond lengths in thiolato ruthenium complexes (1.78 Å) (Shiu et al., 2002) and slightly longer than C—S bond lengths in ruthenium thione complexes (1.67 Å) (Bellucci & Cini, 1999), indicating considerable single-bond character in the C—S bond. Delocalization within the NNC(S)NN framework, including some contribution from structure G, could contribute some double-bond character, decreasing the C—S bond length.

The bond distances (Table 1) in the NNCNN moiety are consistent with the dithizone bonding shown in structure F. The long N1—N2 [1.343 (6) Å], short N1—C1 [1.310 (7) Å], long C1—N3 [1.412 (7) Å] and short N3—N4 [1.256 (6) Å] distances are as predicted (Ortner & Abram, 1999; Lui & Zubieta, 1989). In typical bidentate dithizonate coordination, the complementary C—N and N—N bonds on opposite sides of the C=S unit differ in length by 0.01–0.06 Å. The title complex shows the greatest long– short distinction of any dithizonate metal complex, with characteristics similar to S-methyl-dithizone (Preuss et al.,1975) and the monodentate dithizonate in In(Hdtz)3 (Harrowfield et al., 1983b).

In spite of the sp3-hybridized N2 atom in structure F, the C2—C7 phenyl ring is nearly coplanar with the CNNC(S)NNC moiety, with an angle of 3.9 (4)° between the planes. This suggests that structure E may provide some contribution to the electronic nature and structure of the molecule.

Experimental top

Acetonitrile (16 ml) and ethanol (8 ml) were added to a 100 ml round-bottomed flask and the flask was purged with N2. To the solution were added [Ru(bpy)2(tet)2](ClO4)2 (215 mg, 0.192 mmol) and hydrazine monohydrate (20 ml, 0.41 mol), and the solution was stirred overnight. Ethanol (5 ml) was added and the solution was rotary evaporated until the desired compound precipitated. The product was collected by filtration and washed with ethanol and diethyl ether. The solid was chromatographed on an alumina column and reprecipitated to produce dark-red crystals. (Yield 160 mg, 0.173 mmol, 90%.) Analysis calculated for RuC46H38N12S2: C 59.79, H 4.15, N 18.19; found: C 59.53, H 4.13, N 18.01. Crystals suitable for X-ray analysis were grown by vapor diffusion of diethyl ether into a solution of (I) in acetone and ethanol.

Refinement top

H atoms were placed in idealized positions and were allowed to ride on their parent atoms, with C—H distances of 0.93 Å for aromatic H atoms and an H2—N2 distance of 0.86 Å. The Uiso(H) parameters were taken to be 1.2Ueq of the parent C or N atom. There are four small voids of about 104 Å3 per unit cell in the refined structure. These voids, which make up approximately 9.2% of the total volume of the unit cell, probably contain disordered solvent molecules. However, no atoms could be located in the voids from the difference Fourier map. Instead, a disordered solvent correction based on the SQUEEZE algorithm (van der Sluis & Spek, 1990) in PLATON (Spek, 2003) was applied to account for the extra electron density in the voids. SQUEEZE located two additional electrons per void. After applying the disordered solvent correction, the minimum residual electron density changed from −0.601 to −0.262 e Å−3, and the maximum was reduced from 0.077 to 0.063 e Å−3; wR2 improved from 0.1632 to 0.1387.

Computing details top

Data collection: CrystalClear (Rigaku Corporation, 1998–2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003).

Figures top
[Figure 1]
Figure 1. A view of the ruthenium complex, with displacement ellipsoids at the 30% probability level.

Figure 2. The expected bonding in dithizone and the dithizonate anion.
(I) top
Crystal data top
[Ru(C13H11N4S)2(C15H8N2)2]F(000) = 1896
Mr = 924.07Dx = 1.368 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 12728 reflections
a = 18.831 (5) Åθ = 2.4–26.4°
b = 16.423 (4) ŵ = 0.49 mm1
c = 14.650 (4) ÅT = 300 K
β = 98.107 (6)°Prism, black
V = 4485.3 (19) Å30.50 × 0.15 × 0.15 mm
Z = 4
Data collection top
Mercury CCD (2x2 bin mode)
diffractometer
4596 independent reflections
Radiation source: Sealed tube3497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
Detector resolution: 14.6199 pixels mm-1θmax = 26.4°, θmin = 2.5°
dtprofit.ref scansh = 2323
Absorption correction: multi-scan
(Jacobson, 1998)
k = 2020
Tmin = 0.766, Tmax = 0.929l = 1618
21449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0377P)2 + 13.5485P]
where P = (Fo2 + 2Fc2)/3
4596 reflections(Δ/σ)max < 0.001
276 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ru(C13H11N4S)2(C15H8N2)2]V = 4485.3 (19) Å3
Mr = 924.07Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.831 (5) ŵ = 0.49 mm1
b = 16.423 (4) ÅT = 300 K
c = 14.650 (4) Å0.50 × 0.15 × 0.15 mm
β = 98.107 (6)°
Data collection top
Mercury CCD (2x2 bin mode)
diffractometer
4596 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3497 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.929Rint = 0.083
21449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.139H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0377P)2 + 13.5485P]
where P = (Fo2 + 2Fc2)/3
4596 reflectionsΔρmax = 0.42 e Å3
276 parametersΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.50000.15328 (3)0.25000.05113 (18)
S10.57543 (7)0.04228 (8)0.21411 (9)0.0611 (4)
N10.7159 (3)0.0874 (3)0.2470 (3)0.0756 (13)
N20.7149 (3)0.0522 (3)0.3295 (3)0.0774 (13)
H20.67550.03120.34200.093*
N30.6650 (3)0.1237 (3)0.1073 (3)0.0752 (13)
N40.6128 (3)0.1157 (3)0.0444 (3)0.0764 (13)
N50.4289 (2)0.2455 (2)0.2712 (3)0.0540 (10)
N60.4385 (2)0.1601 (2)0.1233 (2)0.0543 (9)
C10.6553 (3)0.0852 (3)0.1909 (4)0.0640 (13)
C20.7755 (3)0.0488 (3)0.3950 (4)0.0741 (15)
C30.7708 (4)0.0102 (4)0.4781 (5)0.0908 (19)
H30.72720.01080.49000.109*
C40.8306 (5)0.0031 (5)0.5425 (5)0.113 (3)
H40.82750.02440.59730.136*
C50.8951 (5)0.0359 (6)0.5278 (6)0.122 (3)
H50.93500.03300.57310.146*
C60.8994 (4)0.0728 (5)0.4447 (7)0.113 (3)
H60.94330.09340.43320.136*
C70.8404 (3)0.0802 (4)0.3780 (5)0.0895 (19)
H70.84430.10600.32240.107*
C80.6215 (3)0.1576 (4)0.0393 (4)0.0775 (16)
C90.5853 (4)0.1291 (4)0.1183 (4)0.108 (2)
H90.55530.08420.11700.129*
C100.5922 (6)0.1661 (5)0.2016 (5)0.136 (3)
H100.56830.14490.25630.164*
C110.6343 (5)0.2337 (5)0.2032 (5)0.135 (3)
H110.63760.25990.25870.162*
C120.6703 (5)0.2621 (5)0.1251 (6)0.131 (3)
H120.69940.30780.12630.157*
C130.6649 (4)0.2240 (5)0.0415 (5)0.107 (2)
H130.69080.24370.01270.129*
C140.4279 (3)0.2859 (3)0.3493 (4)0.0788 (16)
H140.45880.27020.40150.095*
C150.3822 (4)0.3505 (4)0.3551 (5)0.099 (2)
H150.38310.37890.41010.118*
C160.3356 (4)0.3726 (4)0.2791 (6)0.114 (3)
H160.30360.41520.28230.137*
C170.3365 (4)0.3317 (4)0.1991 (5)0.092 (2)
H170.30500.34650.14700.111*
C180.3840 (3)0.2681 (3)0.1944 (4)0.0657 (13)
C190.3886 (3)0.2201 (3)0.1118 (3)0.0632 (13)
C200.3461 (3)0.2324 (4)0.0279 (4)0.0851 (18)
H200.31300.27480.02040.102*
C210.3535 (4)0.1811 (5)0.0441 (4)0.098 (2)
H210.32590.18900.10120.117*
C220.4008 (3)0.1197 (4)0.0318 (4)0.0819 (17)
H220.40480.08370.07980.098*
C230.4434 (3)0.1097 (3)0.0517 (3)0.0660 (13)
H230.47650.06730.05900.079*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.0663 (4)0.0446 (3)0.0451 (3)0.0000.0169 (2)0.000
S10.0707 (9)0.0513 (7)0.0655 (8)0.0008 (6)0.0247 (7)0.0019 (6)
N10.079 (3)0.076 (3)0.076 (3)0.001 (3)0.025 (3)0.001 (3)
N20.070 (3)0.085 (3)0.079 (3)0.000 (3)0.016 (3)0.001 (3)
N30.073 (3)0.088 (3)0.068 (3)0.006 (3)0.021 (3)0.002 (3)
N40.092 (4)0.077 (3)0.066 (3)0.008 (3)0.031 (3)0.001 (2)
N50.066 (2)0.044 (2)0.055 (2)0.0009 (18)0.017 (2)0.0002 (18)
N60.066 (2)0.051 (2)0.048 (2)0.003 (2)0.0130 (18)0.0032 (19)
C10.070 (3)0.062 (3)0.064 (3)0.005 (3)0.022 (3)0.003 (3)
C20.074 (4)0.068 (4)0.079 (4)0.006 (3)0.005 (3)0.017 (3)
C30.095 (5)0.088 (5)0.087 (5)0.008 (4)0.005 (4)0.003 (4)
C40.126 (7)0.118 (6)0.088 (5)0.022 (6)0.007 (5)0.014 (4)
C50.113 (7)0.128 (7)0.111 (7)0.026 (6)0.031 (6)0.039 (6)
C60.086 (5)0.110 (6)0.139 (7)0.013 (4)0.001 (5)0.034 (6)
C70.078 (4)0.078 (4)0.110 (5)0.006 (3)0.002 (4)0.017 (4)
C80.096 (4)0.078 (4)0.062 (3)0.023 (4)0.024 (3)0.002 (3)
C90.156 (7)0.100 (5)0.071 (4)0.046 (5)0.031 (4)0.011 (4)
C100.246 (10)0.107 (6)0.058 (4)0.055 (7)0.026 (5)0.004 (4)
C110.232 (10)0.110 (6)0.070 (5)0.062 (7)0.047 (6)0.004 (4)
C120.174 (8)0.124 (7)0.101 (6)0.061 (6)0.037 (6)0.017 (5)
C130.119 (6)0.113 (6)0.091 (5)0.038 (5)0.020 (4)0.015 (4)
C140.103 (5)0.062 (3)0.072 (4)0.013 (3)0.017 (3)0.006 (3)
C150.134 (6)0.066 (4)0.103 (5)0.028 (4)0.043 (5)0.019 (4)
C160.131 (6)0.077 (5)0.138 (7)0.043 (4)0.029 (6)0.015 (5)
C170.098 (5)0.067 (4)0.111 (5)0.031 (3)0.009 (4)0.001 (4)
C180.073 (3)0.051 (3)0.075 (4)0.011 (3)0.015 (3)0.008 (3)
C190.075 (3)0.057 (3)0.059 (3)0.001 (3)0.011 (3)0.010 (2)
C200.084 (4)0.089 (4)0.078 (4)0.016 (3)0.001 (3)0.017 (4)
C210.102 (5)0.132 (6)0.055 (4)0.003 (5)0.004 (3)0.006 (4)
C220.096 (5)0.103 (5)0.046 (3)0.007 (4)0.010 (3)0.005 (3)
C230.079 (4)0.064 (3)0.056 (3)0.004 (3)0.013 (3)0.001 (3)
Geometric parameters (Å, º) top
Ru1—N62.048 (4)C8—C91.342 (8)
Ru1—N6i2.048 (4)C8—C131.366 (8)
Ru1—N5i2.074 (4)C9—C101.386 (9)
Ru1—N52.074 (4)C9—H90.9300
Ru1—S1i2.4140 (13)C10—C111.367 (10)
Ru1—S12.4140 (13)C10—H100.9300
S1—C11.737 (5)C11—C121.330 (10)
N1—C11.310 (7)C11—H110.9300
N1—N21.343 (6)C12—C131.391 (9)
N2—C21.385 (7)C12—H120.9300
N2—H20.8600C13—H130.9300
N3—N41.256 (6)C14—C151.376 (8)
N3—C11.412 (7)C14—H140.9300
N4—C81.436 (7)C15—C161.365 (10)
N5—C141.326 (6)C15—H150.9300
N5—C181.360 (6)C16—C171.353 (9)
N6—C231.349 (6)C16—H160.9300
N6—C191.355 (6)C17—C181.384 (7)
C2—C71.381 (8)C17—H170.9300
C2—C31.386 (8)C18—C191.457 (7)
C3—C41.368 (9)C19—C201.385 (7)
C3—H30.9300C20—C211.372 (9)
C4—C51.373 (11)C20—H200.9300
C4—H40.9300C21—C221.342 (9)
C5—C61.373 (11)C21—H210.9300
C5—H50.9300C22—C231.375 (7)
C6—C71.377 (9)C22—H220.9300
C6—H60.9300C23—H230.9300
C7—H70.9300
N6—Ru1—N6i173.7 (2)C9—C8—C13119.4 (6)
N6—Ru1—N5i96.84 (15)C9—C8—N4117.6 (5)
N6i—Ru1—N5i78.51 (16)C13—C8—N4123.0 (6)
N6—Ru1—N578.51 (16)C8—C9—C10120.4 (7)
N6i—Ru1—N596.84 (15)C8—C9—H9119.8
N5i—Ru1—N586.2 (2)C10—C9—H9119.8
N6—Ru1—S1i87.93 (11)C11—C10—C9119.9 (7)
N6i—Ru1—S1i96.83 (11)C11—C10—H10120.1
N5i—Ru1—S1i175.04 (12)C9—C10—H10120.1
N5—Ru1—S1i96.10 (11)C12—C11—C10119.8 (7)
N6—Ru1—S196.83 (11)C12—C11—H11120.1
N6i—Ru1—S187.93 (11)C10—C11—H11120.1
N5i—Ru1—S196.10 (10)C11—C12—C13120.5 (7)
N5—Ru1—S1175.04 (12)C11—C12—H12119.7
S1i—Ru1—S181.93 (6)C13—C12—H12119.7
C1—S1—Ru1106.74 (18)C8—C13—C12119.9 (7)
C1—N1—N2115.5 (5)C8—C13—H13120.0
N1—N2—C2121.7 (5)C12—C13—H13120.0
N1—N2—H2119.2N5—C14—C15121.6 (6)
C2—N2—H2119.2N5—C14—H14119.2
N4—N3—C1113.9 (5)C15—C14—H14119.2
N3—N4—C8113.8 (5)C16—C15—C14119.4 (6)
C14—N5—C18119.7 (4)C16—C15—H15120.3
C14—N5—Ru1125.6 (4)C14—C15—H15120.3
C18—N5—Ru1114.5 (3)C17—C16—C15119.3 (6)
C23—N6—C19118.2 (4)C17—C16—H16120.3
C23—N6—Ru1125.4 (3)C15—C16—H16120.3
C19—N6—Ru1116.5 (3)C16—C17—C18120.3 (6)
N1—C1—N3108.9 (5)C16—C17—H17119.8
N1—C1—S1126.2 (4)C18—C17—H17119.8
N3—C1—S1125.0 (4)N5—C18—C17119.7 (5)
C7—C2—C3119.7 (6)N5—C18—C19115.9 (4)
C7—C2—N2121.7 (6)C17—C18—C19124.4 (5)
C3—C2—N2118.5 (6)N6—C19—C20121.4 (5)
C4—C3—C2119.8 (7)N6—C19—C18114.3 (4)
C4—C3—H3120.1C20—C19—C18124.3 (5)
C2—C3—H3120.1C21—C20—C19118.9 (6)
C3—C4—C5121.3 (8)C21—C20—H20120.5
C3—C4—H4119.4C19—C20—H20120.5
C5—C4—H4119.4C22—C21—C20119.7 (6)
C4—C5—C6118.4 (8)C22—C21—H21120.1
C4—C5—H5120.8C20—C21—H21120.1
C6—C5—H5120.8C21—C22—C23120.2 (6)
C5—C6—C7121.7 (8)C21—C22—H22119.9
C5—C6—H6119.2C23—C22—H22119.9
C7—C6—H6119.2N6—C23—C22121.5 (5)
C2—C7—C6119.1 (7)N6—C23—H23119.2
C2—C7—H7120.5C22—C23—H23119.2
C6—C7—H7120.5
N6—Ru1—S1—C199.7 (2)C5—C6—C7—C20.7 (11)
N6i—Ru1—S1—C176.2 (2)N3—N4—C8—C9154.5 (6)
N5i—Ru1—S1—C12.0 (2)N3—N4—C8—C1325.1 (9)
S1i—Ru1—S1—C1173.4 (2)C13—C8—C9—C100.6 (12)
C1—N1—N2—C2178.9 (5)N4—C8—C9—C10179.0 (7)
C1—N3—N4—C8177.6 (5)C8—C9—C10—C112.3 (14)
N6—Ru1—N5—C14180.0 (4)C9—C10—C11—C122.4 (16)
N6i—Ru1—N5—C144.3 (4)C10—C11—C12—C130.8 (15)
N5i—Ru1—N5—C1482.2 (4)C9—C8—C13—C121.0 (12)
S1i—Ru1—N5—C1493.4 (4)N4—C8—C13—C12179.4 (7)
N6—Ru1—N5—C185.0 (3)C11—C12—C13—C80.9 (14)
N6i—Ru1—N5—C18170.7 (3)C18—N5—C14—C150.2 (8)
N5i—Ru1—N5—C1892.8 (3)Ru1—N5—C14—C15174.9 (5)
S1i—Ru1—N5—C1891.7 (3)N5—C14—C15—C161.5 (10)
N5i—Ru1—N6—C23100.4 (4)C14—C15—C16—C171.6 (12)
N5—Ru1—N6—C23174.9 (4)C15—C16—C17—C180.2 (12)
S1i—Ru1—N6—C2378.3 (4)C14—N5—C18—C171.6 (8)
S1—Ru1—N6—C233.3 (4)Ru1—N5—C18—C17176.9 (4)
N5i—Ru1—N6—C1980.2 (3)C14—N5—C18—C19179.8 (5)
N5—Ru1—N6—C194.5 (3)Ru1—N5—C18—C194.9 (6)
S1i—Ru1—N6—C19101.1 (3)C16—C17—C18—N51.4 (10)
S1—Ru1—N6—C19177.2 (3)C16—C17—C18—C19179.5 (6)
N2—N1—C1—N3179.4 (4)C23—N6—C19—C203.2 (7)
N2—N1—C1—S10.5 (7)Ru1—N6—C19—C20177.3 (4)
N4—N3—C1—N1171.3 (5)C23—N6—C19—C18176.2 (4)
N4—N3—C1—S18.6 (7)Ru1—N6—C19—C183.2 (5)
Ru1—S1—C1—N1102.0 (5)N5—C18—C19—N61.2 (7)
Ru1—S1—C1—N378.1 (5)C17—C18—C19—N6179.3 (5)
N1—N2—C2—C71.2 (8)N5—C18—C19—C20178.2 (5)
N1—N2—C2—C3178.9 (5)C17—C18—C19—C200.1 (9)
C7—C2—C3—C40.3 (9)N6—C19—C20—C211.9 (9)
N2—C2—C3—C4177.4 (6)C18—C19—C20—C21177.5 (6)
C2—C3—C4—C52.1 (11)C19—C20—C21—C220.9 (10)
C3—C4—C5—C63.0 (12)C20—C21—C22—C232.2 (10)
C4—C5—C6—C72.3 (13)C19—N6—C23—C221.8 (7)
C3—C2—C7—C60.4 (9)Ru1—N6—C23—C22178.7 (4)
N2—C2—C7—C6178.0 (6)C21—C22—C23—N60.9 (9)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Ru(C13H11N4S)2(C15H8N2)2]
Mr924.07
Crystal system, space groupMonoclinic, C2/c
Temperature (K)300
a, b, c (Å)18.831 (5), 16.423 (4), 14.650 (4)
β (°) 98.107 (6)
V3)4485.3 (19)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.50 × 0.15 × 0.15
Data collection
DiffractometerMercury CCD (2x2 bin mode)
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.766, 0.929
No. of measured, independent and
observed [I > 2σ(I)] reflections
21449, 4596, 3497
Rint0.083
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.139, 1.08
No. of reflections4596
No. of parameters276
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0377P)2 + 13.5485P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.42, 0.26

Computer programs: CrystalClear (Rigaku Corporation, 1998–2001), CrystalClear, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXL97, PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Ru1—N62.048 (4)N1—N21.343 (6)
Ru1—N52.074 (4)N2—C21.385 (7)
Ru1—S12.4140 (13)N3—N41.256 (6)
S1—C11.737 (5)N3—C11.412 (7)
N1—C11.310 (7)N4—C81.436 (7)
N6—Ru1—N6i173.7 (2)N4—N3—C1113.9 (5)
N6—Ru1—N578.51 (16)N3—N4—C8113.8 (5)
N5i—Ru1—N586.2 (2)C14—N5—C18119.7 (4)
N6—Ru1—S196.83 (11)C14—N5—Ru1125.6 (4)
N6i—Ru1—S187.93 (11)C18—N5—Ru1114.5 (3)
N5i—Ru1—S196.10 (10)C23—N6—C19118.2 (4)
N5—Ru1—S1175.04 (12)C23—N6—Ru1125.4 (3)
S1i—Ru1—S181.93 (6)C19—N6—Ru1116.5 (3)
C1—S1—Ru1106.74 (18)N1—C1—N3108.9 (5)
C1—N1—N2115.5 (5)N1—C1—S1126.2 (4)
N1—N2—C2121.7 (5)N3—C1—S1125.0 (4)
C1—N1—N2—C2178.9 (5)Ru1—S1—C1—N1102.0 (5)
C1—N3—N4—C8177.6 (5)Ru1—S1—C1—N378.1 (5)
N2—N1—C1—N3179.4 (4)N1—N2—C2—C71.2 (8)
N2—N1—C1—S10.5 (7)N1—N2—C2—C3178.9 (5)
N4—N3—C1—N1171.3 (5)N3—N4—C8—C9154.5 (6)
N4—N3—C1—S18.6 (7)N3—N4—C8—C1325.1 (9)
Symmetry code: (i) x+1, y, z+1/2.
Angles Between Least Square Planes top
Plane 1Plane 2Angle [°]
S1-N1-N2-N3-N4-C1-C2-C8C2-C3-C4-C5-C6-C73.32
RMS Deviation = 0.0362 ÅRMS Deviation = 0.0071 Å
S1-N1-N2-N3-N4-C1-C2-C8C8-C9-C10-C11-C12-C1335.30
RMS Deviation = 0.0362 ÅRMS Deviation = 0.0119 Å
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds