Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound [systematic name: aqua(1,10-phenanthroline-κ2N,N′)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)manganese(II) monohydrate, [Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O, the manganese(II) centre is surrounded by one bidentate phenanthroline ligand [Mn—N = 2.248 (3) and 2.278 (3) Å], one tridentate dipicolinate ligand [Mn—N = 2.179 (3) Å, and Mn—O = 2.237 (2) and 2.266 (2) Å] and one water mol­ecule [Mn—O = 2.117 (3) Å], and it exhibits a strongly distorted octahedral geometry, with trans angles ranging from 144.12 (9) to 158.88 (11)°. Extensive intermolecular hydrogen-bonding interactions involving coordinated and uncoordinated water mol­ecules and the carboxyl O atoms of the dipicolinate ligand, as well as a stacking interaction involving the phenanthroline rings, are observed in the crystal structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827010201822X/fg1665sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827010201822X/fg1665Isup2.hkl
Contains datablock I

CCDC reference: 199413

Comment top

It is well established that Mn is one of the trace elements in biosystems and it plays an important role in the active sites of various redox-based enzymes (Weighardt, 1989). In addition to the best known oxygen-evolving complex, which is believed to contain a tetranuclear Mn cluster catalyzing the oxidation of water to yield O2 during photosynthesis (Debus, 1992), there are three enzymes containing a mononuclear Mn site, viz. superoxide dismutase, peroxidase and dioxygenase, which participate in the redox changes of biological systems (Law et al., 1999). Based on the knowledge that the sphere of Mn centres in these enzymes is dominated by N,O donors from available amino acid residues (Pecoraro & Butler, 1986), N,O-containing ligands are often employed to prepare model compounds for the better understanding of their exact nature and mechanism of action. As part of our systematic study on Mn chemistry, we have selected dipicolinic acid as the primary ligand to react with Mn2+ salts in participation with diimine ligands. Dipicolinic acid possesses versatile yet unpredictable coordination modes (Herring et al., 1979; Quaglieri et al., 1972; Starynowicz, 1992; Lawrence & Tuyetha, 2000) and diverse biological activities (Church & Halvorson, 1959; Chung et al., 1971; Scapin al., 1997), and we have obtained the title compound, (I), which represents a new example of mononuclear Mn with mixed ligands. \sch

Compound (I) (Fig. 1) consists of a neutral [Mn(dpc)(phen)(H2O)] unit and one solvate water molecule (dpc is dipicolinate and phen is phenanthroline). The octahedral sphere on the Mn centre is severely distorted because of the chelation of two rigid planar lidands (phen and dpc) (Table 1). The mean Mn—N(phen) bond length [2.263 (15) Å] is in agreement with that reported in other Mn-phen complexes, e.g. in [Mn(phen)(H2O)4]2+ [2.263 (9) Å; Ma et al., 2002], and the N1—Mn—N2 phen chelate angle of 73.50 (1)° is as expected for Mn complexes (Drew et al., 1989; McCann et al., 1997; Ramalakshmi et al., 1999; Wang et al., 2000; Deng et al., 2000).

The Mn—N3 distance of 2.179 (3) Å, significantly smaller than that for Mn—N1 (or N2), indicates that N3 is a stronger donor, since the two carboxylate groups in ortho positions enhance the electron density on N3. The average Mn—O(dpc) distance [2.252 (15) Å] and the dpc chelate angles are comparable with those found in other Mn complexes (Limburg et al., 1997; Chandra et al., 1992; Okabe & Oya, 2000). The phen ligand is reasonably planar, with a mean deviation of 0.044 (1) Å, and bond distances and angles are consistent with those in the free base (Nishigaki et al., 1978). All atoms in the dpc ligand are also nearly coplanar, with a maximum deviation of 0.075 (1) Å for O2. The dihedral angle between the phen and dpc planes is 81.5 (1)°.

As listed in Table 2, two normal hydrogen bonds link the coordinated water molecule O5 and two carboxyl O atoms (O2 and O4) of symmetry-related molecules to generate a two-dimensional network sheet (Fig. 2). Two weaker hydrogen bonds link the uncoordinated water molecule to carboxyl atom O4 and to a symmetry-related carboxyl atom O3 to generate centrosymmetric dimers (Fig. 3), and overall give rise to a three-dimensional hydrogen-bonded network. In addition, there are ππ stacking interactions between inversion-related phen ligands along the a direction (Fig. 4), with perpendicular ring separations of 3.455 (2) and 3.405 (6) Å, which are comparable with the sum of the van der Waals contact radii of two C atoms (3.4 Å; Bondi, 1964).

Experimental top

To an EtOH-H2O solution (30 ml, ca 1:1 v/v) containing MnCl2·4H2O (1 mmol) and disodium dipicolinate (2 mmol), 1,10-phenathroline (1 mmol) was added slowly with continuous stirring. The resulting solution was refluxed for 1 h and then filtered. The yellow filtrate was left for 21 d at room temperature, after which time yellow crystals of (I) suitable for X-ray diffraction analysis were obtained.

Refinement top

H atoms bonded to C atoms were placed in calculated positions with C—H distances of 0.93 Å, and treated as riding atoms. Water H-atom coordinates were located from difference maps and refined isotropically; the four O—H distances involving the water molecules were refined with a DFIX restraint of 0.85 (2) Å Please clarify - largest value in CIF tables is 0.88 (4).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: XPREP in SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL (Bruker? Different version?); software used to prepare material for publication: SHELXTL (Bruker? Different version?).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), with the atomic labelling scheme and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram for (I), showing part of the two-dimensional hydrogen-bonded network. Atoms labelled with a hash (#), dollar sign (add) or ampersand (add) are at the symmetry positions (x - 1,y,z), (1 + x,y,z) and (x,3/2 - y,1/2 + z), respectively.
[Figure 3] Fig. 3. A diagram showing the centrosymmetric dimers produced by the lattice water molecules of (I). Atoms labelled with an asterisk (*) are at the symmetry position (-x,1 - y,1 - z).
[Figure 4] Fig. 4. A diagram showing part of the π-π stacking interactions in (I).
aqua(1,10-phenanthroline-κ2N,N')(pyridine-2,6-dicarboxylato- κ3O2,N,O6)manganese(II) monohydrate top
Crystal data top
[Mn(C7H3NO4)(C12H8N2)(H2O)]·H2OF(000) = 892
Mr = 436.28Dx = 1.590 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2918 reflections
a = 7.6006 (6) Åθ = 1.9–25.1°
b = 21.1600 (16) ŵ = 0.77 mm1
c = 11.4733 (9) ÅT = 293 K
β = 98.916 (1)°Needle, yellow
V = 1822.9 (2) Å30.59 × 0.20 × 0.16 mm
Z = 4
Data collection top
Make Model CCD area-detector
diffractometer
3198 independent reflections
Radiation source: fine-focus sealed tube2264 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 25.1°, θmin = 1.9°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 89
Tmin = 0.630, Tmax = 0.880k = 2125
6177 measured reflectionsl = 139
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0658P)2]
where P = (Fo2 + 2Fc2)/3
3198 reflections(Δ/σ)max = 0.001
278 parametersΔρmax = 0.26 e Å3
3 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Mn(C7H3NO4)(C12H8N2)(H2O)]·H2OV = 1822.9 (2) Å3
Mr = 436.28Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.6006 (6) ŵ = 0.77 mm1
b = 21.1600 (16) ÅT = 293 K
c = 11.4733 (9) Å0.59 × 0.20 × 0.16 mm
β = 98.916 (1)°
Data collection top
Make Model CCD area-detector
diffractometer
3198 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2264 reflections with I > 2σ(I)
Tmin = 0.630, Tmax = 0.880Rint = 0.033
6177 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0443 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.26 e Å3
3198 reflectionsΔρmin = 0.37 e Å3
278 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.34349 (7)0.62456 (2)0.23754 (4)0.03415 (19)
O10.4295 (3)0.70244 (12)0.1272 (2)0.0477 (7)
O20.3427 (4)0.79208 (13)0.0320 (3)0.0669 (9)
O30.1305 (3)0.59408 (11)0.3438 (2)0.0381 (6)
O40.1305 (3)0.61805 (11)0.3984 (2)0.0457 (6)
O50.5263 (4)0.65387 (15)0.3860 (3)0.0550 (8)
H5B0.491 (6)0.6747 (18)0.439 (3)0.072 (15)*
H5C0.641 (6)0.6452 (19)0.400 (4)0.070 (15)*
O60.1307 (6)0.54305 (17)0.6042 (3)0.0757 (10)
H6B0.078 (7)0.551 (3)0.546 (4)0.11 (2)*
H6C0.130 (8)0.5040 (10)0.593 (6)0.13 (3)*
N10.4490 (4)0.52516 (13)0.2531 (2)0.0357 (7)
N20.2399 (4)0.57577 (13)0.0635 (2)0.0347 (7)
N30.1386 (4)0.69738 (12)0.2231 (2)0.0320 (7)
C10.5473 (5)0.49974 (18)0.3479 (3)0.0421 (9)
H1A0.58580.52580.41200.051*
C20.5955 (5)0.43620 (19)0.3559 (4)0.0513 (10)
H2A0.66340.42020.42390.062*
C30.5405 (5)0.39785 (19)0.2613 (4)0.0496 (10)
H3A0.57090.35520.26490.060*
C40.4387 (5)0.42228 (16)0.1593 (3)0.0402 (9)
C50.3824 (5)0.38556 (17)0.0544 (4)0.0490 (10)
H5A0.41300.34300.05340.059*
C60.2868 (5)0.41140 (18)0.0418 (4)0.0493 (10)
H6A0.25470.38670.10870.059*
C70.2330 (5)0.47657 (17)0.0437 (3)0.0383 (9)
C80.1303 (5)0.50542 (19)0.1404 (3)0.0460 (10)
H8A0.09280.48240.20890.055*
C90.0852 (5)0.56739 (19)0.1341 (3)0.0457 (9)
H9A0.01680.58720.19810.055*
C100.1425 (5)0.60083 (18)0.0308 (3)0.0432 (9)
H10A0.11070.64320.02790.052*
C110.2868 (4)0.51414 (16)0.0581 (3)0.0329 (8)
C120.3939 (4)0.48647 (15)0.1600 (3)0.0329 (8)
C130.1563 (5)0.74804 (15)0.1556 (3)0.0363 (8)
C140.0279 (6)0.79453 (18)0.1408 (4)0.0504 (10)
H14A0.04120.82980.09470.060*
C150.1202 (6)0.78803 (18)0.1951 (4)0.0570 (11)
H15A0.20880.81880.18530.068*
C160.1367 (5)0.73537 (17)0.2645 (4)0.0474 (10)
H16A0.23590.73040.30190.057*
C170.0033 (4)0.69048 (15)0.2770 (3)0.0325 (8)
C180.3244 (5)0.74770 (17)0.0998 (3)0.0426 (9)
C190.0011 (4)0.62951 (15)0.3462 (3)0.0323 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.0340 (3)0.0339 (3)0.0352 (3)0.0010 (2)0.0075 (2)0.0025 (2)
O10.0485 (17)0.0445 (16)0.0553 (17)0.0059 (13)0.0248 (14)0.0043 (13)
O20.093 (2)0.0531 (18)0.064 (2)0.0129 (16)0.0391 (18)0.0167 (15)
O30.0385 (14)0.0334 (13)0.0440 (15)0.0051 (11)0.0108 (11)0.0068 (11)
O40.0369 (14)0.0512 (15)0.0529 (16)0.0007 (12)0.0193 (12)0.0124 (13)
O50.0358 (17)0.082 (2)0.0475 (17)0.0012 (15)0.0077 (14)0.0298 (16)
O60.119 (3)0.058 (2)0.049 (2)0.009 (2)0.009 (2)0.0040 (18)
N10.0345 (17)0.0389 (17)0.0346 (17)0.0021 (13)0.0083 (13)0.0005 (13)
N20.0366 (16)0.0347 (16)0.0333 (17)0.0016 (13)0.0074 (13)0.0007 (13)
N30.0388 (17)0.0298 (15)0.0281 (15)0.0011 (12)0.0070 (13)0.0019 (12)
C10.040 (2)0.050 (2)0.036 (2)0.0007 (18)0.0056 (17)0.0021 (18)
C20.049 (2)0.052 (2)0.054 (3)0.014 (2)0.010 (2)0.015 (2)
C30.050 (2)0.041 (2)0.062 (3)0.0103 (18)0.018 (2)0.012 (2)
C40.039 (2)0.035 (2)0.050 (2)0.0028 (17)0.0171 (18)0.0014 (17)
C50.051 (2)0.036 (2)0.063 (3)0.0014 (18)0.019 (2)0.007 (2)
C60.052 (2)0.047 (2)0.051 (3)0.008 (2)0.014 (2)0.020 (2)
C70.031 (2)0.045 (2)0.040 (2)0.0091 (16)0.0091 (16)0.0062 (17)
C80.043 (2)0.065 (3)0.031 (2)0.013 (2)0.0075 (17)0.0091 (19)
C90.044 (2)0.058 (3)0.033 (2)0.0065 (19)0.0012 (17)0.0053 (18)
C100.042 (2)0.046 (2)0.041 (2)0.0027 (18)0.0021 (18)0.0034 (18)
C110.0310 (19)0.038 (2)0.0322 (19)0.0040 (15)0.0125 (15)0.0039 (16)
C120.0300 (19)0.0343 (19)0.037 (2)0.0039 (15)0.0120 (16)0.0019 (16)
C130.048 (2)0.0303 (18)0.0312 (19)0.0038 (16)0.0084 (16)0.0006 (15)
C140.062 (3)0.038 (2)0.051 (2)0.0035 (19)0.011 (2)0.0136 (19)
C150.054 (3)0.039 (2)0.079 (3)0.0169 (19)0.014 (2)0.012 (2)
C160.043 (2)0.042 (2)0.060 (3)0.0090 (18)0.016 (2)0.0093 (19)
C170.0347 (19)0.0316 (18)0.0320 (18)0.0025 (15)0.0076 (15)0.0015 (15)
C180.059 (3)0.035 (2)0.037 (2)0.0107 (19)0.0171 (18)0.0062 (18)
C190.0312 (19)0.0326 (18)0.0324 (18)0.0046 (16)0.0030 (15)0.0007 (15)
Geometric parameters (Å, º) top
Mn—N12.248 (3)C2—H2A0.9300
Mn—N22.278 (3)C3—C41.398 (5)
Mn—N32.179 (3)C3—H3A0.9300
Mn—O12.237 (2)C4—C121.401 (4)
Mn—O32.266 (2)C4—C51.441 (5)
Mn—O52.117 (3)C5—C61.340 (5)
O1—C181.255 (4)C5—H5A0.9300
O2—C181.241 (4)C6—C71.438 (5)
O3—C191.254 (4)C6—H6A0.9300
O4—C191.252 (4)C7—C81.395 (5)
O5—O2i2.605 (4)C7—C111.420 (5)
O5—O4ii2.699 (4)C8—C91.360 (5)
O5—H5B0.83 (4)C8—H8A0.9300
O5—H5C0.88 (4)C9—C101.391 (5)
O6—O3iii2.962 (4)C9—H9A0.9300
O6—H6B0.85 (5)C10—H10A0.9300
O6—H6C0.84 (2)C11—C121.441 (5)
N1—C11.334 (4)C13—C141.378 (5)
N1—C121.359 (4)C13—C181.515 (5)
N2—C101.323 (4)C14—C151.375 (5)
N2—C111.356 (4)C14—H14A0.9300
N3—C171.332 (4)C15—C161.386 (5)
N3—C131.341 (4)C15—H15A0.9300
C1—C21.393 (5)C16—C171.380 (5)
C1—H1A0.9300C16—H16A0.9300
C2—C31.367 (6)C17—C191.513 (5)
O5—Mn—N3103.07 (11)C6—C5—H5A119.3
O5—Mn—O191.54 (12)C4—C5—H5A119.3
N3—Mn—O172.79 (10)C5—C6—C7121.4 (4)
O5—Mn—N191.65 (12)C5—C6—H6A119.3
N3—Mn—N1155.45 (10)C7—C6—H6A119.3
O1—Mn—N1127.03 (10)C8—C7—C11117.6 (3)
O5—Mn—O394.88 (10)C8—C7—C6123.7 (3)
N3—Mn—O371.36 (9)C11—C7—C6118.7 (3)
O1—Mn—O3144.12 (9)C9—C8—C7119.6 (3)
N1—Mn—O388.09 (9)C9—C8—H8A120.2
O5—Mn—N2158.88 (11)C7—C8—H8A120.2
N3—Mn—N296.20 (10)C8—C9—C10119.2 (4)
O1—Mn—N285.93 (10)C8—C9—H9A120.4
N1—Mn—N273.50 (10)C10—C9—H9A120.4
O3—Mn—N299.43 (9)N2—C10—C9123.7 (4)
C18—O1—Mn118.2 (2)N2—C10—H10A118.2
C19—O3—Mn118.7 (2)C9—C10—H10A118.2
Mn—O5—H5B120 (3)N2—C11—C7122.1 (3)
Mn—O5—H5C126 (3)N2—C11—C12118.3 (3)
O2i—O5—H5C126 (3)C7—C11—C12119.6 (3)
H5B—O5—H5C114 (4)N1—C12—C4122.9 (3)
H6B—O6—H6C94 (5)N1—C12—C11117.3 (3)
C1—N1—C12117.6 (3)C4—C12—C11119.8 (3)
C1—N1—Mn126.1 (2)N3—C13—C14120.6 (3)
C12—N1—Mn116.0 (2)N3—C13—C18114.0 (3)
C10—N2—C11117.8 (3)C14—C13—C18125.4 (3)
C10—N2—Mn127.5 (2)C15—C14—C13119.1 (3)
C11—N2—Mn114.7 (2)C15—C14—H14A120.4
C17—N3—C13121.1 (3)C13—C14—H14A120.4
C17—N3—Mn120.5 (2)C14—C15—C16119.6 (4)
C13—N3—Mn118.3 (2)C14—C15—H15A120.2
N1—C1—C2123.5 (4)C16—C15—H15A120.2
N1—C1—H1A118.3C17—C16—C15118.9 (4)
C2—C1—H1A118.3C17—C16—H16A120.6
C3—C2—C1118.4 (4)C15—C16—H16A120.6
C3—C2—H2A120.8N3—C17—C16120.7 (3)
C1—C2—H2A120.8N3—C17—C19113.1 (3)
C2—C3—C4120.4 (4)C16—C17—C19126.1 (3)
C2—C3—H3A119.8O2—C18—O1127.3 (4)
C4—C3—H3A119.8O2—C18—C13116.4 (4)
C3—C4—C12117.2 (3)O1—C18—C13116.3 (3)
C3—C4—C5123.7 (4)O4—C19—O3125.7 (3)
C12—C4—C5119.1 (3)O4—C19—C17118.0 (3)
C6—C5—C4121.4 (3)O3—C19—C17116.2 (3)
O5—Mn—O1—C18108.4 (3)C12—C4—C5—C60.7 (5)
N3—Mn—O1—C185.2 (3)C4—C5—C6—C71.4 (6)
N1—Mn—O1—C18158.4 (2)C5—C6—C7—C8178.5 (4)
O3—Mn—O1—C187.9 (3)C5—C6—C7—C111.5 (5)
N2—Mn—O1—C1892.6 (3)C11—C7—C8—C90.2 (5)
O5—Mn—O3—C19102.7 (2)C6—C7—C8—C9179.8 (3)
N3—Mn—O3—C190.5 (2)C7—C8—C9—C100.1 (5)
O1—Mn—O3—C193.3 (3)C11—N2—C10—C90.5 (5)
N1—Mn—O3—C19165.8 (2)Mn—N2—C10—C9179.8 (3)
N2—Mn—O3—C1992.9 (2)C8—C9—C10—N20.1 (6)
N3—Mn—O5—O2i33.45 (16)C10—N2—C11—C70.8 (5)
O1—Mn—O5—O2i106.14 (14)Mn—N2—C11—C7179.8 (2)
N1—Mn—O5—O2i126.75 (14)C10—N2—C11—C12179.5 (3)
O3—Mn—O5—O2i38.52 (14)Mn—N2—C11—C120.1 (4)
N2—Mn—O5—O2i171.2 (3)C8—C7—C11—N20.7 (5)
N3—Mn—O5—O4ii153.52 (14)C6—C7—C11—N2179.4 (3)
O1—Mn—O5—O4ii80.83 (15)C8—C7—C11—C12179.6 (3)
N1—Mn—O5—O4ii46.29 (16)C6—C7—C11—C120.3 (5)
O3—Mn—O5—O4ii134.51 (15)C1—N1—C12—C41.2 (5)
N2—Mn—O5—O4ii1.9 (4)Mn—N1—C12—C4175.9 (2)
O5—Mn—N1—C117.5 (3)C1—N1—C12—C11179.6 (3)
N3—Mn—N1—C1109.9 (3)Mn—N1—C12—C114.9 (4)
O1—Mn—N1—C1110.7 (3)C3—C4—C12—N11.8 (5)
O3—Mn—N1—C177.3 (3)C5—C4—C12—N1176.7 (3)
N2—Mn—N1—C1177.7 (3)C3—C4—C12—C11179.0 (3)
O5—Mn—N1—C12168.3 (2)C5—C4—C12—C112.5 (5)
N3—Mn—N1—C1264.3 (4)N2—C11—C12—N13.4 (4)
O1—Mn—N1—C1275.2 (3)C7—C11—C12—N1176.9 (3)
O3—Mn—N1—C1296.8 (2)N2—C11—C12—C4177.4 (3)
N2—Mn—N1—C123.6 (2)C7—C11—C12—C42.3 (5)
O5—Mn—N2—C10130.7 (4)C17—N3—C13—C140.3 (5)
N3—Mn—N2—C1025.2 (3)Mn—N3—C13—C14178.1 (3)
O1—Mn—N2—C1047.0 (3)C17—N3—C13—C18179.2 (3)
N1—Mn—N2—C10177.6 (3)Mn—N3—C13—C181.4 (4)
O3—Mn—N2—C1097.3 (3)N3—C13—C14—C150.7 (6)
O5—Mn—N2—C1148.6 (4)C18—C13—C14—C15178.7 (4)
N3—Mn—N2—C11155.5 (2)C13—C14—C15—C160.7 (6)
O1—Mn—N2—C11132.4 (2)C14—C15—C16—C170.2 (6)
N1—Mn—N2—C111.8 (2)C13—N3—C17—C160.2 (5)
O3—Mn—N2—C1183.4 (2)Mn—N3—C17—C16177.5 (3)
O5—Mn—N3—C1791.5 (3)C13—N3—C17—C19178.5 (3)
O1—Mn—N3—C17179.0 (3)Mn—N3—C17—C190.7 (4)
N1—Mn—N3—C1734.0 (4)C15—C16—C17—N30.3 (6)
O3—Mn—N3—C170.7 (2)C15—C16—C17—C19178.3 (4)
N2—Mn—N3—C1797.2 (3)Mn—O1—C18—O2173.7 (3)
O5—Mn—N3—C1390.7 (3)Mn—O1—C18—C136.1 (4)
O1—Mn—N3—C133.2 (2)N3—C13—C18—O2176.6 (3)
N1—Mn—N3—C13143.9 (3)C14—C13—C18—O22.8 (6)
O3—Mn—N3—C13178.5 (3)N3—C13—C18—O13.2 (5)
N2—Mn—N3—C1380.6 (2)C14—C13—C18—O1177.4 (4)
C12—N1—C1—C20.1 (5)Mn—O3—C19—O4178.0 (3)
Mn—N1—C1—C2174.0 (3)Mn—O3—C19—C170.4 (4)
N1—C1—C2—C30.6 (6)N3—C17—C19—O4178.7 (3)
C1—C2—C3—C40.1 (6)C16—C17—C19—O40.6 (5)
C2—C3—C4—C121.3 (5)N3—C17—C19—O30.2 (4)
C2—C3—C4—C5177.2 (4)C16—C17—C19—O3177.9 (3)
C3—C4—C5—C6179.1 (4)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2i0.83 (4)1.81 (2)2.605 (4)160 (4)
O5—H5C···O4ii0.88 (4)1.83 (4)2.699 (4)168 (4)
O6—H6B···O40.85 (5)2.20 (4)2.845 (4)133 (5)
O6—H6C···O3iii0.84 (2)2.20 (4)2.962 (4)152 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Mn(C7H3NO4)(C12H8N2)(H2O)]·H2O
Mr436.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.6006 (6), 21.1600 (16), 11.4733 (9)
β (°) 98.916 (1)
V3)1822.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.77
Crystal size (mm)0.59 × 0.20 × 0.16
Data collection
DiffractometerMake Model CCD area-detector
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.630, 0.880
No. of measured, independent and
observed [I > 2σ(I)] reflections
6177, 3198, 2264
Rint0.033
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.125, 1.03
No. of reflections3198
No. of parameters278
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.37

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1994), XPREP in SHELXTL (Siemens, 1994), SHELXTL (Bruker? Different version?).

Selected geometric parameters (Å, º) top
Mn—N12.248 (3)Mn—O12.237 (2)
Mn—N22.278 (3)Mn—O32.266 (2)
Mn—N32.179 (3)Mn—O52.117 (3)
O5—Mn—N3103.07 (11)O1—Mn—O3144.12 (9)
O5—Mn—O191.54 (12)N1—Mn—O388.09 (9)
N3—Mn—O172.79 (10)O5—Mn—N2158.88 (11)
O5—Mn—N191.65 (12)N3—Mn—N296.20 (10)
N3—Mn—N1155.45 (10)O1—Mn—N285.93 (10)
O1—Mn—N1127.03 (10)N1—Mn—N273.50 (10)
O5—Mn—O394.88 (10)O3—Mn—N299.43 (9)
N3—Mn—O371.36 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5B···O2i0.83 (4)1.81 (2)2.605 (4)160 (4)
O5—H5C···O4ii0.88 (4)1.83 (4)2.699 (4)168 (4)
O6—H6B···O40.85 (5)2.20 (4)2.845 (4)133 (5)
O6—H6C···O3iii0.84 (2)2.20 (4)2.962 (4)152 (6)
Symmetry codes: (i) x, y+3/2, z+1/2; (ii) x+1, y, z; (iii) x, y+1, z+1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds