Download citation
Download citation
link to html
The dimeric title copper(II) complex, diaqua-1κO,2κO-bis[3,9-dimethyl-6-(2-pyridyl­methyl)-4,8-di­aza­undeca-3,8-di­ene-2,10-dione dioximato(1−)]-1k4N2,N4,N8,N10;1:2κ5O2:N2,N4,N8,N10-dicopper(II) diperchlorate, [Cu2(C17H24N5O2)2](ClO4)2, crys­tallizes with one Cu atom in a square-pyramidal environment and the other Cu atom displaying a distorted octahedral coordination. In each case, the four N atoms in the core of the ligand (two imine and two oxime N atoms) form the base of the pyramid, with a water mol­ecule at an apex. The two parts of the dimer are linked by an interaction [2.869 (2) Å] between one of the Cu atoms and one of the oxime O atoms coordinated to the second Cu atom, and also by a hydrogen bond between the apical water mol­ecule on the second Cu atom and the pyridyl N atom from the coordination sphere of the first Cu atom. The pyridyl N atoms of the lariat arms are not coordinated to either of the Cu atoms. Thus, this potentially pentadentate ligand is only tetradentate when coordinated to CuII.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102019911/fg1662sup1.cif
Contains datablocks global, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102019911/fg1662IIsup2.hkl
Contains datablock II

CCDC reference: 164146

Comment top

Copper-64-based radiopharmaceuticals may be of value in expanding the availability of PET (positron emission tomography) imaging to clinical facilities that do not have access to cyclotrons (McCarthy et al., 1997; Smith et al., 1996), but for this to occur, new 64Cu radiopharmaceuticals must be developed. To this end, we are investigating the chemical and biological properties of lipophilic monocationic copper complexes as potential radiopharmaceuticals for the evaluation of myocardial perfusion and/or multidrug resistance in cancer using PET (Packard et al., 1997, 1998). In the development of these complexes, the pyridyl-functionalized diimine dioxime ligand (I) is of interest because of the possibility that the pyridyl moiety will bind to copper, as it does to cobalt(III) (Gerli et al., 1992), and thus enhance the in vivo stability of the complex. To evaluate this possibility, we synthesized the copper(II) complex, (II), of this ligand and determined its crystal structure.

The complex crystallizes as a dimer (Fig. 1); the primary Cu coordination environments (henceforth complex-1 refers to the half of the dimer consisting of Cu1 and its coordination environment and complex-2 refers to that of Cu2) are both square pyramidal, but complex-1 (Table 1) has effective octahedral coordination completed by oxime atom O5 from complex-2 in the sixth position, with a Cu1—O5 distance of 2.869 (2) Å]. There is also an O—H···N hydrogen bond (Table 2) between water atom O6 of complex-2 and pyridyl atom N5 of complex-1. The effect of this interaction is that Cu1 is only 0.112 (2) Å above the basal plane compared with a distance of 0.222 (2) Å for Cu2, where there is no sixth interaction; this distance is 0.096 Å in [Cu(PreH)(H2O)]ClO4·H2O (PreH2 is 3,9-tetramethyl-6-(2-pyridylmethyl)-4,8-diazaundeca-3,8-dien-2,10-dione diomime; Anderson & Packard, 1979), where there is also a sixth (weak) coordination. The dimers are linked into infinite chains along the c axis through O—H···N hydrogen bonds involving apical water O3 of complex-1 and pyridyl atom N10 of a c-glide-related complex-2. [Please confirm that PreH2 is the same ligand used in (II)]

In contrast the CoIII complex of this ligand (Gerli et al., 1992), in neither molecule of (II) is the pyridyl N atom coordinated to the metal. This observation is, however, consistent with the results reported for CuII complexes of pyridyl lariat derivatives of other Schiff-base ligands (Adams et al., 1998).

The Cu1—Nimine bond lengths [Cu1—N2 = 1.941 (3) Å and Cu1—N3 = 1.953 (3) Å] are somewhat shorter than those in [Cu(PreH)H2O]+ [1.972 (7) and 1.960 (8) Å; Anderson & Packard, 1979]. The Cu1—Noxime bonds lengths [Cu1—N1 = 1.942 (3) Å and Cu1—N4 1.959 (3) Å] are, however, similar to those observed in [Cu(PreH)H2O]+ [1.950 (6) and 1.945 (7) Å; Anderson & Packard, 1979]. The Cu1—Owater bond [2.201 (4) Å] is significantly shorter than the value of 2.355 (7) Å observed for Cu–PreH (Anderson & Packard, 1979) and at the short end of the range of typical CuII—OH2 bond lengths. This difference may be a consequence of the hydrogen bonds (see Table 2) between the coordinated O3 water molecule and both pyridyl atom N10 of an adjacent molecule and atom O4A of a perchlorate counter-ion; these interactions are not present in Cu–PreH. Also, in contrast to Cu–PreH, the central methylene atom C4 of (I) is on the opposite side of the basal plane from the axial water molecule, presumably due to steric constraints imposed by the lariat moiety and the hydrogen bonding of atom N5.

The Cu2—Nimine bonds are somewhat longer than those for Cu1 [Cu2–N8 = 1.960 (3) Å and Cu2—N7 = 1.967 (3) Å] and are equivalent to those observed in [Cu(PreH)H2O]+ [1.972 (7) and 1.960 (8) Å; Anderson & Packard, 1979]. The Cu2—Noxime bond lengths are also equivalent to those observed in the PreH complex; Cu2—N6 = 1.948 (3) Å and Cu2—N9 = 1.951 (3) Å in (II) versus 1.950 (6) and 1.945 (7) Å for Cu–PreH. The Cu2—O6 bond length of 2.193 (4) Å is, however, significantly shorter than the value of 2.355 (7) Å observed in Cu–PreH (Anderson & Packard, 1979) and equivalent to the value of 2.201 (4) Å observed for Cu1—O3, despite the differences in the coordination geometry between the two molecules. As in complex-1, the difference between the Cu—O bond length in complex-2 and that in [Cu(PreH)H2O]+ may be a consequence of the hydrogen bond that exists between apical aqua atom O6 and pyridyl atom N5, that is not present in the non-lariat complex.

Except for the presence of the pyridyl moiety, there are no significant differences between the structures of the ligands in this study and that observed for Cu–PreH (Anderson & Packard, 1979). The orientation of the pyridyl moiety is, however, different in the two complexes, as can be seen in Fig. 1. In complex-1, the pyridyl ring is approximately perpendicular to the basal plane, while in complex-1, the pyridyl ring is roughly parallel to the basal plane.

Experimental top

All commercially obtained chemicals were used without further purification. FT–IR spectra were recorded on a Bruker Vector-22 spectrometer equipped with a Pike MIRacle ATR attachment. Electronic spectra were obtained with a Perkin–Elmer Lambda 40 spectrometer. Elemental analyses (CHN) were performed by Atlantic Microlabs (Norcross, Georgia, USA). 1H NMR spectra were obtained on Varian XL-500 and 270 spectrometers. Literature procedures were followed for the preparation of 2-(2-pyridylmethyl)-1,3-propanediamine (Gerli et al., 1992). The copper complex was prepared using a variation of the method used to prepare the cobalt(III) complex (Gerli et al., 1992). Under a nitrogen atmosphere, 2-(2-pyridylmethyl)-1,3-propanediamine (0.165 g, 1.0 mmol) was dissolved in ethanol (1 ml) and then slowly added to a stirred solution of 2,3-butadione monoxime (0.201 g, 2.0 mmol) in ethanol (2 ml) at room temperature. The reaction progress was followed by IR. After stirring for 8 d, Cu(ClO4)2·H2O (0.259 g, 0.70 mmol) was added (under nitrogen) to the reaction mixture. The resulting red–pink solution was stirred for another hour. Its volume was reduced to less than 1 ml, diethyl ether (20 ml) was added, and the red precipitate was collected by filtration. The crude product was dissolved in water (5 ml), filtered through a sintered-glass filter, and the filtrate was allowed to stand at ambient temperature for 3 d to afford crystals suitable for X-ray analysis. The red plate-shaped crystals thus obtained weighed 0.190 g (yield: 37%). Elemental analysis calculated for C34H52Cl2Cu2N10O14: C 39.93, H 5.12, N 13.69%; found: C 40.31, H 5.17, N 13.64%. IR: νCN 1624 cm-1. UV–Vis in H2O: λmax 489 nm; ε 145 cm-1 M-1.

Refinement top

The title complex crystallized in space group P21/c by analysis of systematic absences. The coordinates of the carbon-bound H atoms were calculated geometrically and refined as a riding model, with C—H distances in the range 0.94–0.99 Å. Oxygen-bound H atoms were located by difference Fourier methods and allowed for as riding atoms, except for atoms H1A and H4A, which were refined isotropically.

Computing details top

Data collection: ASTRO (Bruker, 1997); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1998); software used to prepare material for publication: XCIF in SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the dimer in the title compound. Displacement ellisoids are drawn at the 30% probability level and H atoms bonded to C atoms have been omitted for clarity
[Figure 2] Fig. 2. Packing diagram for (I), viewed down the b axis. Intermolecular interactions are shown with dashed lines and H atoms bonded to C atoms have been omitted for clarity.
(II) top
Crystal data top
[Cu2(C17H24N5O2)2](ClO4)2F(000) = 2120
Mr = 1022.82Dx = 1.529 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 87 reflections
a = 21.7323 (15) Åθ = 2.3–17.7°
b = 7.8564 (5) ŵ = 1.15 mm1
c = 26.0263 (18) ÅT = 213 K
β = 90.605 (1)°Needle, red
V = 4443.4 (5) Å30.20 × 0.10 × 0.10 mm
Z = 4
Data collection top
Bruker CCD
diffractometer
6206 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.039
Graphite monochromatorθmax = 27.9°, θmin = 0.9°
Detector resolution: 836.6 pixels mm-1h = 2527
0.3° ω scansk = 104
27348 measured reflectionsl = 3333
9509 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0719P)2 + 0.1179P]
where P = (Fo2 + 2Fc2)/3
9509 reflections(Δ/σ)max = 0.006
575 parametersΔρmax = 0.61 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Cu2(C17H24N5O2)2](ClO4)2V = 4443.4 (5) Å3
Mr = 1022.82Z = 4
Monoclinic, P21/cMo Kα radiation
a = 21.7323 (15) ŵ = 1.15 mm1
b = 7.8564 (5) ÅT = 213 K
c = 26.0263 (18) Å0.20 × 0.10 × 0.10 mm
β = 90.605 (1)°
Data collection top
Bruker CCD
diffractometer
6206 reflections with I > 2σ(I)
27348 measured reflectionsRint = 0.039
9509 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.61 e Å3
9509 reflectionsΔρmin = 0.48 e Å3
575 parameters
Special details top

Experimental. Data was collected using a Bruker SMART CCD (charge coupled device) based diffractometer equipped with an LT-2 low-temperature apparatus operating at 213 K. A suitable crystal was chosen and mounted on a glass fiber using grease. Data were measured using omega scans of 0.3° per frame for 30 s, such that a hemisphere was collected. A total of 1271 frames were collected with a final resolution of 0.75 Å. The first 50 frames were recollected at the end of data collection to monitor for decay. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software which corrects for Lp and decay. The structures are solved by the direct method using the SHELX90 program and refined by least squares method on F2 SHELXL93, incorporated in SHELXTL V5.1.

The carbon-bound H atoms and the H atoms attached to the apical water molecules were placed in idealized positions and refined as a riding model. The H atoms bound to the oxime O atoms were found by difference fourier and refined.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.252642 (17)0.43477 (5)0.255319 (16)0.03984 (13)
O10.28462 (16)0.0961 (3)0.21653 (13)0.0709 (9)
H1A0.245 (2)0.109 (6)0.2107 (17)0.074 (15)*
O20.17298 (14)0.1855 (4)0.20795 (12)0.0751 (9)
O30.27769 (13)0.5656 (5)0.18355 (12)0.1015 (13)
H3A0.25200.62640.16700.152*
H3B0.31210.61510.17960.152*
N10.30470 (14)0.2359 (3)0.24252 (11)0.0475 (7)
N20.32891 (11)0.5131 (3)0.28785 (10)0.0360 (6)
N30.19715 (12)0.6170 (3)0.27609 (10)0.0407 (6)
N40.17618 (14)0.3378 (4)0.22924 (12)0.0532 (8)
N50.31061 (14)0.8002 (4)0.45696 (13)0.0513 (8)
C10.36100 (17)0.2499 (4)0.25518 (15)0.0488 (9)
C20.37495 (15)0.4138 (4)0.28214 (13)0.0413 (8)
C30.33350 (15)0.6791 (4)0.31225 (14)0.0454 (8)
H3C0.34350.76460.28620.054*
H3D0.36720.67720.33760.054*
C40.27393 (15)0.7305 (4)0.33897 (14)0.0416 (8)
H4B0.26180.63780.36250.050*
C50.22002 (16)0.7685 (4)0.30266 (15)0.0499 (9)
H5A0.18640.81890.32240.060*
H5B0.23310.85230.27710.060*
C60.14219 (15)0.5992 (5)0.25903 (13)0.0484 (9)
C70.12854 (17)0.4357 (5)0.23384 (16)0.0589 (10)
C80.4092 (2)0.1185 (5)0.2434 (2)0.0775 (14)
H8A0.38950.01760.22940.116*
H8B0.43130.08910.27470.116*
H8C0.43770.16420.21860.116*
C90.43930 (15)0.4483 (5)0.29946 (16)0.0583 (10)
H9A0.44320.56710.30920.088*
H9B0.46730.42350.27170.088*
H9C0.44920.37690.32880.088*
C100.28556 (18)0.8927 (4)0.37080 (15)0.0542 (10)
H10A0.29990.98240.34770.065*
H10B0.24630.93050.38510.065*
C110.33107 (18)0.8749 (4)0.41389 (15)0.0487 (9)
C120.3907 (2)0.9339 (5)0.41106 (17)0.0608 (11)
H12A0.40440.98610.38070.073*
C130.4303 (2)0.9171 (5)0.45225 (19)0.0686 (12)
H13A0.47140.95380.45000.082*
C140.4093 (2)0.8466 (5)0.49619 (18)0.0650 (11)
H14A0.43480.83740.52550.078*
C150.34956 (19)0.7888 (5)0.49677 (15)0.0576 (10)
H15A0.33530.73800.52710.069*
C160.09268 (17)0.7310 (6)0.26347 (17)0.0708 (12)
H16A0.06550.70100.29140.106*
H16B0.06930.73610.23160.106*
H16C0.11120.84110.27030.106*
C170.0657 (2)0.3853 (8)0.2150 (2)0.110 (2)
H17A0.05850.43340.18110.164*
H17B0.03500.42770.23850.164*
H17C0.06310.26220.21310.164*
Cu20.237848 (19)0.30545 (5)0.465767 (17)0.04497 (14)
O40.33753 (13)0.3458 (3)0.39327 (11)0.0532 (6)
H4A0.302 (3)0.321 (7)0.376 (2)0.13 (2)*
O50.23528 (12)0.2817 (3)0.35420 (9)0.0501 (6)
O60.21302 (11)0.5765 (3)0.46900 (11)0.0598 (7)
H6A0.24210.64450.46170.090*
H6B0.18300.61600.45150.090*
N60.32214 (13)0.3343 (3)0.44252 (12)0.0460 (7)
N70.28015 (16)0.3022 (4)0.53282 (12)0.0536 (8)
N80.15699 (14)0.2196 (3)0.48640 (12)0.0486 (7)
N90.20327 (13)0.2590 (3)0.39775 (11)0.0439 (7)
N100.18859 (15)0.2191 (4)0.62670 (12)0.0532 (8)
C200.36353 (17)0.3495 (4)0.47859 (16)0.0513 (9)
C210.33752 (19)0.3344 (5)0.53111 (16)0.0558 (10)
C220.2444 (2)0.2848 (5)0.58055 (16)0.0688 (12)
H22A0.22740.39600.58980.083*
H22B0.27210.24870.60850.083*
C230.1924 (2)0.1572 (5)0.57515 (15)0.0596 (11)
H23A0.17500.14480.61000.072*
C240.1395 (2)0.2126 (5)0.54113 (16)0.0609 (11)
H24A0.10520.13280.54510.073*
H24B0.12540.32530.55200.073*
C250.12068 (17)0.1900 (4)0.44908 (17)0.0491 (9)
C260.14751 (17)0.2056 (4)0.39640 (15)0.0472 (9)
C270.42932 (17)0.3808 (6)0.46727 (19)0.0713 (12)
H27A0.43940.32970.43450.107*
H27B0.45480.33070.49410.107*
H27C0.43680.50240.46580.107*
C280.3784 (2)0.3629 (7)0.57683 (19)0.0861 (14)
H28A0.35520.41770.60380.129*
H28B0.41260.43500.56720.129*
H28C0.39390.25440.58910.129*
C290.21689 (19)0.0211 (5)0.56056 (15)0.0581 (10)
H29A0.22020.02880.52310.070*
H29B0.25820.03620.57540.070*
C300.17593 (18)0.1603 (5)0.57925 (15)0.0517 (9)
C310.1261 (2)0.2246 (5)0.55093 (17)0.0627 (11)
H31A0.11770.18340.51770.075*
C320.0893 (2)0.3487 (5)0.5720 (2)0.0694 (12)
H32A0.05520.39120.55360.083*
C330.1034 (2)0.4099 (5)0.62068 (19)0.0661 (12)
H33A0.07920.49440.63610.079*
C340.1538 (2)0.3430 (5)0.64550 (16)0.0588 (10)
H34A0.16440.38750.67790.071*
C350.05369 (17)0.1447 (5)0.45354 (19)0.0678 (12)
H35A0.04920.02190.45400.102*
H35B0.03110.19110.42440.102*
H35C0.03760.19200.48510.102*
C360.1129 (2)0.1634 (5)0.34833 (17)0.0635 (11)
H36A0.08240.25110.34150.095*
H36B0.09240.05460.35240.095*
H36C0.14120.15710.31990.095*
Cl10.43757 (5)0.60696 (19)0.14848 (4)0.0792 (4)
O1A0.4710 (3)0.4586 (8)0.1610 (2)0.185 (2)
O2A0.42286 (19)0.6884 (5)0.19493 (14)0.1135 (14)
O3A0.4761 (2)0.6994 (6)0.11801 (15)0.1417 (19)
O4A0.38656 (19)0.5497 (7)0.12044 (17)0.149 (2)
Cl20.05722 (4)0.65922 (11)0.40773 (4)0.0502 (2)
O1B0.00945 (17)0.7665 (5)0.4007 (2)0.155 (2)
O2B0.11242 (14)0.7567 (4)0.40626 (15)0.0933 (11)
O3B0.0540 (2)0.5344 (4)0.36984 (17)0.1304 (17)
O4B0.0541 (3)0.5763 (7)0.45351 (18)0.200 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0312 (2)0.0441 (2)0.0442 (3)0.00044 (17)0.00014 (17)0.00591 (18)
O10.080 (2)0.0500 (16)0.082 (2)0.0066 (16)0.0081 (18)0.0193 (15)
O20.0674 (19)0.0735 (19)0.084 (2)0.0246 (15)0.0016 (16)0.0301 (16)
O30.0468 (17)0.185 (4)0.073 (2)0.012 (2)0.0105 (15)0.070 (2)
N10.056 (2)0.0402 (15)0.0460 (18)0.0031 (14)0.0078 (14)0.0059 (13)
N20.0314 (14)0.0394 (13)0.0372 (15)0.0014 (11)0.0012 (11)0.0020 (12)
N30.0303 (15)0.0512 (15)0.0406 (16)0.0045 (12)0.0013 (12)0.0008 (13)
N40.0436 (18)0.0643 (19)0.052 (2)0.0150 (15)0.0042 (14)0.0087 (16)
N50.0521 (19)0.0474 (16)0.054 (2)0.0028 (14)0.0006 (15)0.0100 (15)
C10.050 (2)0.0459 (19)0.051 (2)0.0103 (16)0.0145 (17)0.0060 (16)
C20.0348 (18)0.0529 (19)0.0365 (19)0.0039 (15)0.0087 (14)0.0099 (15)
C30.0380 (19)0.0437 (18)0.054 (2)0.0027 (15)0.0041 (16)0.0049 (16)
C40.044 (2)0.0330 (15)0.048 (2)0.0021 (14)0.0068 (15)0.0011 (14)
C50.046 (2)0.0443 (18)0.059 (2)0.0109 (16)0.0093 (17)0.0057 (17)
C60.0327 (19)0.075 (2)0.038 (2)0.0036 (17)0.0051 (15)0.0000 (18)
C70.036 (2)0.086 (3)0.055 (2)0.016 (2)0.0015 (17)0.004 (2)
C80.071 (3)0.062 (2)0.101 (4)0.028 (2)0.024 (3)0.003 (2)
C90.0333 (19)0.078 (3)0.064 (3)0.0066 (18)0.0005 (17)0.010 (2)
C100.066 (3)0.0362 (17)0.060 (3)0.0064 (17)0.0122 (19)0.0065 (17)
C110.062 (2)0.0344 (16)0.050 (2)0.0007 (16)0.0048 (18)0.0099 (16)
C120.071 (3)0.050 (2)0.061 (3)0.016 (2)0.000 (2)0.0060 (19)
C130.058 (3)0.069 (3)0.079 (3)0.017 (2)0.008 (2)0.017 (2)
C140.060 (3)0.067 (3)0.067 (3)0.002 (2)0.012 (2)0.022 (2)
C150.067 (3)0.062 (2)0.044 (2)0.003 (2)0.002 (2)0.0060 (19)
C160.038 (2)0.115 (3)0.059 (3)0.025 (2)0.0035 (18)0.000 (2)
C170.048 (3)0.140 (5)0.141 (5)0.015 (3)0.018 (3)0.039 (4)
Cu20.0418 (3)0.0493 (2)0.0440 (3)0.00010 (19)0.00968 (19)0.00265 (19)
O40.0487 (16)0.0592 (15)0.0520 (17)0.0027 (13)0.0150 (13)0.0123 (13)
O50.0609 (16)0.0458 (13)0.0440 (15)0.0059 (11)0.0089 (12)0.0051 (11)
O60.0417 (14)0.0499 (14)0.088 (2)0.0039 (11)0.0005 (13)0.0063 (13)
N60.0404 (17)0.0466 (16)0.051 (2)0.0068 (13)0.0077 (14)0.0122 (14)
N70.061 (2)0.0554 (18)0.0446 (19)0.0048 (15)0.0051 (15)0.0028 (14)
N80.0477 (18)0.0427 (15)0.056 (2)0.0005 (13)0.0180 (15)0.0006 (14)
N90.0489 (18)0.0376 (14)0.0452 (18)0.0067 (13)0.0062 (14)0.0006 (13)
N100.062 (2)0.0536 (17)0.0438 (19)0.0019 (15)0.0031 (15)0.0031 (15)
C200.044 (2)0.0457 (19)0.065 (3)0.0068 (16)0.0001 (18)0.0048 (18)
C210.059 (3)0.050 (2)0.059 (3)0.0014 (18)0.0028 (19)0.0068 (18)
C220.092 (3)0.071 (3)0.044 (2)0.013 (2)0.017 (2)0.006 (2)
C230.084 (3)0.052 (2)0.043 (2)0.005 (2)0.027 (2)0.0004 (18)
C240.070 (3)0.049 (2)0.064 (3)0.0024 (19)0.031 (2)0.0022 (19)
C250.045 (2)0.0276 (16)0.075 (3)0.0035 (14)0.0087 (19)0.0051 (17)
C260.050 (2)0.0297 (16)0.062 (3)0.0055 (15)0.0009 (18)0.0051 (16)
C270.039 (2)0.076 (3)0.099 (4)0.004 (2)0.003 (2)0.007 (3)
C280.081 (3)0.106 (4)0.071 (3)0.005 (3)0.024 (3)0.010 (3)
C290.068 (3)0.063 (2)0.044 (2)0.002 (2)0.0118 (19)0.0015 (18)
C300.060 (2)0.052 (2)0.043 (2)0.0082 (18)0.0026 (18)0.0070 (17)
C310.072 (3)0.061 (2)0.054 (3)0.014 (2)0.007 (2)0.008 (2)
C320.059 (3)0.050 (2)0.099 (4)0.007 (2)0.011 (2)0.015 (2)
C330.073 (3)0.049 (2)0.077 (3)0.002 (2)0.013 (2)0.000 (2)
C340.076 (3)0.048 (2)0.052 (2)0.006 (2)0.002 (2)0.0022 (18)
C350.047 (2)0.051 (2)0.105 (4)0.0036 (18)0.018 (2)0.007 (2)
C360.071 (3)0.046 (2)0.073 (3)0.0040 (19)0.009 (2)0.006 (2)
Cl10.0543 (7)0.1250 (10)0.0584 (7)0.0306 (7)0.0090 (5)0.0034 (7)
O1A0.199 (6)0.209 (6)0.148 (5)0.054 (5)0.020 (4)0.005 (4)
O2A0.137 (4)0.131 (3)0.073 (3)0.005 (3)0.046 (2)0.010 (2)
O3A0.129 (4)0.216 (5)0.081 (3)0.107 (3)0.035 (2)0.020 (3)
O4A0.088 (3)0.252 (6)0.107 (3)0.077 (3)0.002 (2)0.029 (3)
Cl20.0524 (5)0.0460 (5)0.0521 (6)0.0001 (4)0.0036 (4)0.0064 (4)
O1B0.067 (2)0.084 (2)0.314 (7)0.024 (2)0.043 (3)0.072 (3)
O2B0.0558 (19)0.089 (2)0.136 (3)0.0139 (17)0.0154 (19)0.017 (2)
O3B0.179 (4)0.080 (2)0.134 (4)0.028 (2)0.061 (3)0.048 (2)
O4B0.300 (7)0.209 (5)0.091 (3)0.169 (5)0.075 (4)0.073 (3)
Geometric parameters (Å, º) top
Cu1—N11.960 (3)Cu2—O62.198 (2)
Cu1—N21.953 (3)O4—N61.331 (4)
Cu1—N31.952 (3)O4—H4A0.91 (6)
Cu1—N41.944 (3)O5—N91.348 (3)
Cu1—O32.205 (3)O6—H6A0.8500
Cu1—O52.869 (2)O6—H6B0.8500
O1—N11.360 (4)N6—C201.299 (5)
O1—H1A0.88 (4)N7—C211.274 (5)
O2—N41.320 (4)N7—C221.478 (5)
O3—H3A0.8499N8—C251.267 (5)
O3—H3B0.8500N8—C241.479 (5)
N1—C11.269 (5)N9—C261.283 (4)
N2—C21.279 (4)N10—C341.329 (5)
N2—C31.453 (4)N10—C301.344 (5)
N3—C61.278 (4)C20—C271.483 (5)
N3—C51.461 (4)C20—C211.490 (6)
N4—C71.296 (5)C21—C281.494 (6)
N5—C151.334 (5)C22—C231.517 (6)
N5—C111.345 (5)C22—H22A0.9800
C1—C21.495 (5)C22—H22B0.9800
C1—C81.504 (5)C23—C241.507 (6)
C2—C91.490 (5)C23—C291.548 (5)
C3—C41.530 (5)C23—H23A0.9900
C3—H3C0.9800C24—H24A0.9800
C3—H3D0.9800C24—H24B0.9800
C4—C51.527 (5)C25—C261.501 (5)
C4—C101.540 (4)C25—C351.504 (5)
C4—H4B0.9900C26—C361.490 (5)
C5—H5A0.9800C27—H27A0.9700
C5—H5B0.9800C27—H27B0.9700
C6—C71.471 (5)C27—H27C0.9700
C6—C161.498 (5)C28—H28A0.9700
C7—C171.499 (5)C28—H28B0.9700
C8—H8A0.9700C28—H28C0.9700
C8—H8B0.9700C29—C301.495 (5)
C8—H8C0.9700C29—H29A0.9800
C9—H9A0.9700C29—H29B0.9800
C9—H9B0.9700C30—C311.398 (5)
C9—H9C0.9700C31—C321.378 (6)
C10—C111.494 (5)C31—H31A0.9400
C10—H10A0.9800C32—C331.387 (6)
C10—H10B0.9800C32—H32A0.9400
C11—C121.379 (5)C33—C341.371 (6)
C12—C131.374 (6)C33—H33A0.9400
C12—H12A0.9400C34—H34A0.9400
C13—C141.355 (6)C35—H35A0.9700
C13—H13A0.9400C35—H35B0.9700
C14—C151.375 (6)C35—H35C0.9700
C14—H14A0.9400C36—H36A0.9700
C15—H15A0.9400C36—H36B0.9700
C16—H16A0.9700C36—H36C0.9700
C16—H16B0.9700Cl1—O3A1.368 (4)
C16—H16C0.9700Cl1—O4A1.395 (4)
C17—H17A0.9700Cl1—O2A1.407 (4)
C17—H17B0.9700Cl1—O1A1.410 (6)
C17—H17C0.9700Cl2—O1B1.348 (4)
Cu2—N61.948 (3)Cl2—O4B1.360 (4)
Cu2—N71.964 (3)Cl2—O3B1.392 (4)
Cu2—N81.962 (3)Cl2—O2B1.424 (3)
Cu2—N91.950 (3)
N4—Cu1—N381.71 (12)N6—Cu2—O697.53 (10)
N4—Cu1—N2173.44 (12)N9—Cu2—O697.09 (11)
N3—Cu1—N299.95 (11)N8—Cu2—O695.82 (10)
N4—Cu1—N196.95 (13)N7—Cu2—O695.25 (11)
N3—Cu1—N1172.47 (12)N6—O4—H4A103 (4)
N2—Cu1—N180.56 (12)Cu2—O6—H6A114.7
N4—Cu1—O396.01 (13)Cu2—O6—H6B121.4
N3—Cu1—O392.95 (12)H6A—O6—H6B102.7
N2—Cu1—O390.25 (12)C20—N6—O4120.7 (3)
N1—Cu1—O394.55 (13)C20—N6—Cu2115.6 (3)
N1—O1—H1A107 (3)O4—N6—Cu2123.6 (2)
Cu1—O3—H3A121.7C21—N7—C22124.8 (4)
Cu1—O3—H3B122.7C21—N7—Cu2114.6 (3)
H3A—O3—H3B104.9C22—N7—Cu2120.2 (3)
C1—N1—O1120.2 (3)C25—N8—C24124.6 (3)
C1—N1—Cu1116.3 (2)C25—N8—Cu2113.9 (3)
O1—N1—Cu1123.1 (3)C24—N8—Cu2121.1 (3)
C2—N2—C3123.2 (3)C26—N9—O5121.1 (3)
C2—N2—Cu1114.8 (2)C26—N9—Cu2116.2 (3)
C3—N2—Cu1121.7 (2)O5—N9—Cu2122.8 (2)
C6—N3—C5124.5 (3)C34—N10—C30118.6 (3)
C6—N3—Cu1113.7 (2)N6—C20—C27122.2 (4)
C5—N3—Cu1121.4 (2)N6—C20—C21112.9 (3)
C7—N4—O2122.6 (3)C27—C20—C21124.9 (4)
C7—N4—Cu1114.6 (3)N7—C21—C20115.4 (4)
O2—N4—Cu1122.9 (2)N7—C21—C28125.2 (4)
C15—N5—C11117.6 (3)C20—C21—C28119.4 (4)
N1—C1—C2112.8 (3)N7—C22—C23112.4 (3)
N1—C1—C8124.0 (4)N7—C22—H22A109.1
C2—C1—C8123.2 (4)C23—C22—H22A109.1
N2—C2—C9125.9 (3)N7—C22—H22B109.1
N2—C2—C1115.1 (3)C23—C22—H22B109.1
C9—C2—C1118.9 (3)H22A—C22—H22B107.9
N2—C3—C4112.4 (3)C24—C23—C22115.3 (3)
N2—C3—H3C109.1C24—C23—C29112.3 (3)
C4—C3—H3C109.1C22—C23—C29111.2 (4)
N2—C3—H3D109.1C24—C23—H23A105.7
C4—C3—H3D109.1C22—C23—H23A105.7
H3C—C3—H3D107.9C29—C23—H23A105.7
C5—C4—C3114.7 (3)N8—C24—C23112.0 (3)
C5—C4—C10107.0 (3)N8—C24—H24A109.2
C3—C4—C10109.2 (3)C23—C24—H24A109.2
C5—C4—H4B108.6N8—C24—H24B109.2
C3—C4—H4B108.6C23—C24—H24B109.2
C10—C4—H4B108.6H24A—C24—H24B107.9
N3—C5—C4112.9 (3)N8—C25—C26116.2 (3)
N3—C5—H5A109.0N8—C25—C35125.4 (4)
C4—C5—H5A109.0C26—C25—C35118.4 (4)
N3—C5—H5B109.0N9—C26—C36124.4 (4)
C4—C5—H5B109.0N9—C26—C25112.2 (3)
H5A—C5—H5B107.8C36—C26—C25123.4 (3)
N3—C6—C7115.7 (3)C20—C27—H27A109.5
N3—C6—C16124.6 (4)C20—C27—H27B109.5
C7—C6—C16119.7 (3)H27A—C27—H27B109.5
N4—C7—C6113.7 (3)C20—C27—H27C109.5
N4—C7—C17122.6 (4)H27A—C27—H27C109.5
C6—C7—C17123.7 (4)H27B—C27—H27C109.5
C1—C8—H8A109.5C21—C28—H28A109.5
C1—C8—H8B109.5C21—C28—H28B109.5
H8A—C8—H8B109.5H28A—C28—H28B109.5
C1—C8—H8C109.5C21—C28—H28C109.5
H8A—C8—H8C109.5H28A—C28—H28C109.5
H8B—C8—H8C109.5H28B—C28—H28C109.5
C2—C9—H9A109.5C30—C29—C23112.0 (3)
C2—C9—H9B109.5C30—C29—H29A109.2
H9A—C9—H9B109.5C23—C29—H29A109.2
C2—C9—H9C109.5C30—C29—H29B109.2
H9A—C9—H9C109.5C23—C29—H29B109.2
H9B—C9—H9C109.5H29A—C29—H29B107.9
C11—C10—C4115.5 (3)N10—C30—C31120.7 (4)
C11—C10—H10A108.4N10—C30—C29115.7 (3)
C4—C10—H10A108.4C31—C30—C29123.6 (4)
C11—C10—H10B108.4C32—C31—C30119.7 (4)
C4—C10—H10B108.4C32—C31—H31A120.2
H10A—C10—H10B107.5C30—C31—H31A120.2
N5—C11—C12120.7 (4)C31—C32—C33119.0 (4)
N5—C11—C10116.4 (3)C31—C32—H32A120.5
C12—C11—C10122.9 (4)C33—C32—H32A120.5
C13—C12—C11120.5 (4)C34—C33—C32117.7 (4)
C13—C12—H12A119.8C34—C33—H33A121.1
C11—C12—H12A119.8C32—C33—H33A121.1
C14—C13—C12118.9 (4)N10—C34—C33124.2 (4)
C14—C13—H13A120.5N10—C34—H34A117.9
C12—C13—H13A120.5C33—C34—H34A117.9
C13—C14—C15118.1 (4)C25—C35—H35A109.5
C13—C14—H14A120.9C25—C35—H35B109.5
C15—C14—H14A120.9H35A—C35—H35B109.5
N5—C15—C14124.1 (4)C25—C35—H35C109.5
N5—C15—H15A118.0H35A—C35—H35C109.5
C14—C15—H15A118.0H35B—C35—H35C109.5
C6—C16—H16A109.5C26—C36—H36A109.5
C6—C16—H16B109.5C26—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
C6—C16—H16C109.5C26—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C7—C17—H17A109.5O3A—Cl1—O4A110.8 (3)
C7—C17—H17B109.5O3A—Cl1—O2A113.7 (3)
H17A—C17—H17B109.5O4A—Cl1—O2A114.2 (3)
C7—C17—H17C109.5O3A—Cl1—O1A104.8 (4)
H17A—C17—H17C109.5O4A—Cl1—O1A105.0 (4)
H17B—C17—H17C109.5O2A—Cl1—O1A107.4 (3)
N6—Cu2—N995.42 (13)O1B—Cl2—O4B111.9 (4)
N6—Cu2—N8166.53 (11)O1B—Cl2—O3B108.1 (3)
N9—Cu2—N881.17 (13)O4B—Cl2—O3B106.3 (3)
N6—Cu2—N781.06 (13)O1B—Cl2—O2B107.9 (2)
N9—Cu2—N7167.51 (12)O4B—Cl2—O2B109.4 (3)
N8—Cu2—N799.46 (14)O3B—Cl2—O2B113.3 (2)
N4—Cu1—N1—C1179.9 (3)N9—Cu2—N6—O410.5 (3)
N2—Cu1—N1—C16.0 (3)N8—Cu2—N6—O485.1 (6)
O3—Cu1—N1—C183.5 (3)N7—Cu2—N6—O4178.4 (3)
N4—Cu1—N1—O17.1 (3)O6—Cu2—N6—O487.4 (2)
N2—Cu1—N1—O1179.0 (3)N6—Cu2—N7—C216.1 (3)
O3—Cu1—N1—O189.5 (3)N9—Cu2—N7—C2180.5 (6)
N3—Cu1—N2—C2178.0 (2)N8—Cu2—N7—C21172.4 (3)
N1—Cu1—N2—C25.6 (2)O6—Cu2—N7—C2190.7 (3)
O3—Cu1—N2—C289.0 (2)N6—Cu2—N7—C22178.8 (3)
N3—Cu1—N2—C37.6 (3)N9—Cu2—N7—C22106.7 (6)
N1—Cu1—N2—C3179.9 (3)N8—Cu2—N7—C2214.8 (3)
O3—Cu1—N2—C385.5 (3)O6—Cu2—N7—C2282.0 (3)
N4—Cu1—N3—C67.3 (2)N6—Cu2—N8—C2581.6 (6)
N2—Cu1—N3—C6179.2 (2)N9—Cu2—N8—C255.3 (2)
O3—Cu1—N3—C688.4 (3)N7—Cu2—N8—C25172.7 (2)
N4—Cu1—N3—C5179.5 (3)O6—Cu2—N8—C2591.0 (2)
N2—Cu1—N3—C56.9 (3)N6—Cu2—N8—C24105.5 (6)
O3—Cu1—N3—C583.9 (3)N9—Cu2—N8—C24178.3 (3)
N3—Cu1—N4—C74.5 (3)N7—Cu2—N8—C2414.3 (3)
N1—Cu1—N4—C7177.0 (3)O6—Cu2—N8—C2482.0 (3)
O3—Cu1—N4—C787.6 (3)N6—Cu2—N9—C26169.7 (2)
N3—Cu1—N4—O2176.3 (3)N8—Cu2—N9—C262.8 (2)
N1—Cu1—N4—O23.8 (3)N7—Cu2—N9—C2696.7 (6)
O3—Cu1—N4—O291.5 (3)O6—Cu2—N9—C2692.0 (2)
O1—N1—C1—C2178.4 (3)N6—Cu2—N9—O510.6 (2)
Cu1—N1—C1—C25.2 (4)N8—Cu2—N9—O5177.5 (2)
O1—N1—C1—C80.3 (6)N7—Cu2—N9—O583.6 (6)
Cu1—N1—C1—C8173.4 (3)O6—Cu2—N9—O587.7 (2)
C3—N2—C2—C90.8 (5)O4—N6—C20—C270.3 (5)
Cu1—N2—C2—C9175.1 (3)Cu2—N6—C20—C27176.9 (3)
C3—N2—C2—C1178.9 (3)O4—N6—C20—C21179.5 (3)
Cu1—N2—C2—C14.5 (4)Cu2—N6—C20—C212.3 (4)
N1—C1—C2—N20.5 (4)C22—N7—C21—C20178.9 (3)
C8—C1—C2—N2178.2 (3)Cu2—N7—C21—C206.5 (4)
N1—C1—C2—C9179.9 (3)C22—N7—C21—C281.0 (6)
C8—C1—C2—C91.4 (5)Cu2—N7—C21—C28171.3 (3)
C2—N2—C3—C4150.3 (3)N6—C20—C21—N72.9 (5)
Cu1—N2—C3—C435.7 (4)C27—C20—C21—N7177.9 (3)
N2—C3—C4—C568.9 (4)N6—C20—C21—C28175.1 (4)
N2—C3—C4—C10171.1 (3)C27—C20—C21—C284.1 (6)
C6—N3—C5—C4153.9 (3)C21—N7—C22—C23147.5 (4)
Cu1—N3—C5—C434.7 (4)Cu2—N7—C22—C2340.6 (5)
C3—C4—C5—N368.5 (4)N7—C22—C23—C2470.5 (5)
C10—C4—C5—N3170.3 (3)N7—C22—C23—C2958.8 (5)
C5—N3—C6—C7179.5 (3)C25—N8—C24—C23148.3 (3)
Cu1—N3—C6—C78.6 (4)Cu2—N8—C24—C2339.5 (4)
C5—N3—C6—C160.2 (6)C22—C23—C24—N869.5 (4)
Cu1—N3—C6—C16171.8 (3)C29—C23—C24—N859.3 (4)
O2—N4—C7—C6179.5 (3)C24—N8—C25—C26179.5 (3)
Cu1—N4—C7—C61.3 (4)Cu2—N8—C25—C266.8 (4)
O2—N4—C7—C170.6 (6)C24—N8—C25—C350.8 (5)
Cu1—N4—C7—C17178.6 (4)Cu2—N8—C25—C35171.9 (3)
N3—C6—C7—N44.9 (5)O5—N9—C26—C360.2 (5)
C16—C6—C7—N4175.4 (3)Cu2—N9—C26—C36179.9 (3)
N3—C6—C7—C17175.2 (4)O5—N9—C26—C25179.8 (2)
C16—C6—C7—C174.5 (6)Cu2—N9—C26—C250.1 (3)
C5—C4—C10—C11171.9 (3)N8—C25—C26—N94.5 (4)
C3—C4—C10—C1163.4 (4)C35—C25—C26—N9174.3 (3)
C15—N5—C11—C121.3 (5)N8—C25—C26—C36175.5 (3)
C15—N5—C11—C10177.4 (3)C35—C25—C26—C365.7 (5)
C4—C10—C11—N578.8 (4)C24—C23—C29—C3077.0 (4)
C4—C10—C11—C12102.6 (4)C22—C23—C29—C30152.1 (3)
N5—C11—C12—C130.1 (6)C34—N10—C30—C311.9 (5)
C10—C11—C12—C13178.7 (4)C34—N10—C30—C29180.0 (3)
C11—C12—C13—C142.1 (6)C23—C29—C30—N1089.4 (4)
C12—C13—C14—C152.6 (6)C23—C29—C30—C3188.7 (5)
C11—N5—C15—C140.8 (5)N10—C30—C31—C320.4 (6)
C13—C14—C15—N51.2 (6)C29—C30—C31—C32177.5 (4)
N9—Cu2—N6—C20172.4 (3)C30—C31—C32—C331.3 (6)
N8—Cu2—N6—C2097.8 (6)C31—C32—C33—C340.0 (6)
N7—Cu2—N6—C204.5 (3)C30—N10—C34—C333.5 (6)
O6—Cu2—N6—C2089.7 (3)C32—C33—C34—N102.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.88 (4)1.67 (4)2.533 (4)164 (4)
O3—H3A···N10i0.851.872.708 (4)169
O3—H3B···O4A0.852.302.897 (5)127
O4—H4A···O50.91 (6)1.58 (6)2.486 (4)173 (6)
O6—H6A···N50.851.932.775 (4)171
O6—H6B···O2B0.852.223.062 (4)171
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C17H24N5O2)2](ClO4)2
Mr1022.82
Crystal system, space groupMonoclinic, P21/c
Temperature (K)213
a, b, c (Å)21.7323 (15), 7.8564 (5), 26.0263 (18)
β (°) 90.605 (1)
V3)4443.4 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.20 × 0.10 × 0.10
Data collection
DiffractometerBruker CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
27348, 9509, 6206
Rint0.039
(sin θ/λ)max1)0.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.137, 1.05
No. of reflections9509
No. of parameters575
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.61, 0.48

Computer programs: ASTRO (Bruker, 1997), SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1998), XCIF in SHELXTL.

Selected geometric parameters (Å, º) top
Cu1—N11.960 (3)Cu2—N61.948 (3)
Cu1—N21.953 (3)Cu2—N71.964 (3)
Cu1—N31.952 (3)Cu2—N81.962 (3)
Cu1—N41.944 (3)Cu2—N91.950 (3)
Cu1—O32.205 (3)Cu2—O62.198 (2)
Cu1—O52.869 (2)
N4—Cu1—N381.71 (12)N6—Cu2—N995.42 (13)
N4—Cu1—N2173.44 (12)N6—Cu2—N8166.53 (11)
N3—Cu1—N299.95 (11)N9—Cu2—N881.17 (13)
N4—Cu1—N196.95 (13)N6—Cu2—N781.06 (13)
N3—Cu1—N1172.47 (12)N9—Cu2—N7167.51 (12)
N2—Cu1—N180.56 (12)N8—Cu2—N799.46 (14)
N4—Cu1—O396.01 (13)N6—Cu2—O697.53 (10)
N3—Cu1—O392.95 (12)N9—Cu2—O697.09 (11)
N2—Cu1—O390.25 (12)N8—Cu2—O695.82 (10)
N1—Cu1—O394.55 (13)N7—Cu2—O695.25 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O20.88 (4)1.67 (4)2.533 (4)164 (4)
O3—H3A···N10i0.851.872.708 (4)169
O3—H3B···O4A0.852.302.897 (5)127
O4—H4A···O50.91 (6)1.58 (6)2.486 (4)173 (6)
O6—H6A···N50.851.932.775 (4)171
O6—H6B···O2B0.852.223.062 (4)171
Symmetry code: (i) x, y+1/2, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds