Download citation
Download citation
link to html
Two [hydroxy­(aryl)­methyl­ene]­di­phospho­nic acids have been crystallized as dimers. The first compound, [hydroxy­(phenyl)­methyl­ene]­di­phospho­nic acid monohydrate, C7H10O7P2·H2O, crystallizes in the non-centrosymmetric space group P21, with the two enantiomers related by a non-crystallographic centre of inversion, while the second compound, [hydroxy(4-nitro­phenyl)­methyl­ene]­di­phospho­nic acid tetra­hydro­furan disolvate, C7H9NO9P2·2C4H8O, crystallizes in the centrosymmetric space group P21/c and uses the centre of symmetry to form the same dimer.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102012386/fg1653sup1.cif
Contains datablocks global, IIIb, IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012386/fg1653IIIasup2.hkl
Contains datablock IIIa

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102012386/fg1653IIIbsup3.hkl
Contains datablock IIIb

CCDC references: 193453; 193454

Comment top

Bisphosphonates belong to a relatively new class of drugs developed for the treatment of various pathologies in bone (Fleisch, 1999), but also for the treatment of cancer (Mundy, 1999; Brown & Coleman, 2002). We have previously described a one-pot method for the synthesis of aromatic 1-hydroxymethane-1,1-bisphosphonic acid compounds (Lecouvey et al., 2001). The aim of this paper is to analyze the structure of two new 1-hydroxymethane-1,1-bisphosphonic acids, hydroxy(phenyl)methylene]diphosphonic acid monohydrate, (IIIa), and [hydroxy(4-nitrophenyl)methylene]diphosphonic acid tetrahydrofuran disolvate, (IIIb), with an aromatic ring attached to the functional C atom. These crystallographic structures were also investigated to confirm the presence of the bisphosphonic acid group, because of a possible phosphono-phosphate rearrangement as a by-product of the synthesis, as previously mentioned by Fitch & Moedritzer (1962) and Kanaan & Burgada (1988). \sch

Hydroxy bisphosphonic acids are compounds with superacid properties, and they are able to complex with a large number of cations. As such, they have been widely investigated as detoxifying agents in heavy metal poisoning and also as carrier molecules for 99mTc delivery in scintillography. They are very difficult to crystallize as free dehydrated acids and only one example has been reported for the crystal structure of an anhydro hydroxybisphosphonic compound (Ohanessian et al., 1997). These acids are more easily crystallized as mono salts of sodium or potassium (Sylvestre et al., 2001), or better, dimethylammonium salts using the vapour-diffusion technique (Neuman et al., 2002). When crystals are obtained, they generally include solvent, to give well characterized solvates, as is the case for the two title compounds, (IIIa) and (IIIb).

Although (IIIa) is a racemic monohydrate, it crystallizes in the non-centrosymmetric space group P21 with the two (+) and (-) enantiomers facing each other, building a tight dimer around a local non-crystallographic centre of symmetry at (x,y,z) = (0.609, 0.255, 0.354). The content of the asymmetric unit corresponds to two molecules of (IIIa) and two molecules of water. The centrosymmetry is only broken by the hydration network.

Phosphonic acids are usually diprotonated in their free acid form. In (IIIa), the phosphonic H atoms are observed but not those of the two water molecules (Fig. 1); these are probably in a disordered exchange within the hydrogen-bond network. Nevertheless, O1W is 3.02 Å away from the symmetry-related O2W and is certainly hydrogen-bonded to it.

Details of the four hydrogen bonds responsible for the pairing are given in Table 2. In addition, infinite intermolecular hydrogen-bond networks are present along the a and c directions. Firstly, dimers are connected side by side to build infinite ribbons along the c direction (Fig. 2), and secondly, these ribbons are cross-linked perpendicularly (along a) through their O2—O1' and O2'-O1 atoms. The most significant distances are given in Table 2.

The crystals of (IIIb) are less stable than those of (IIIa), with a tendency to bleach and turn to powder upon standing in air at room temperature. The data were therefore recorded at 132 K. The structure is a tetrahydrofuran disolvate which crystallizes in the P21/c space group (Fig. 3). The bishydroxy phosphonate molecules also form strong dimers, linked by four hydrogen bonds as in (IIIa). However, the local centre of inversion in the dimer corresponds to a crystallographic centre of symmetry of the space group. All the phosphonic acid H atoms were located in difference maps. In (IIIb), the hydrogen-bond network also involves dimers, to build β-sheet-like ribbons (Fig. 4) similar to those observed in (IIIa) but running along the b axis. The two solvated tetrahydrofuran molecules form part of the network through their O ring atoms (Fig. 3). They connect locally the phosphonate O atoms that are not involved in the pairing (O2 and O6; Table 4). In a similar way, molecules of water connect the dimers in (IIIa). However, the tetrahydrofuran molecules are more bulky than the water molecules and fill more space between the ribbons, preventing them from coming close enough for cross-linking. This leads to weaker crystal cohesion in the direction perpendicular to the ribbons.

Experimental top

The synthesis of the title compounds was based on the addition of two equivalents of tris(trimethylsilyl)phosphite to the corresponding acid chlorides, (I), to yield the tetrakis(trimethylsilyl) ester of 1-aryl-1-trimethylsiloxymethane-1,1-bisphosphonic acid, (II) (not isolated). Direct methanolysis afforded the title substituted [hydroxy(aryl)methylene]diphosphonic acids, (IIIa) with R = H and (IIIb) with R = NO2, in nearly quantitative yields (Scheme). Compound (IIIa) was obtained as a white powder in 91% yield, and was crystallized by slow evaporation of a solution in a mixture of ethanol and water (90:10) at room temperature. Spectroscopic analysis: 31P NMR (D2O, δ, p.p.m.): 16.0 (s); 1H NMR (D2O, δ, p.p.m.): 7.08–7.13 (m, 4H, C6H5), 7.46 (t, 3J = 5 Hz, 1H, C6H5); 13C NMR (D2O, δ, p.p.m.): 78.76 (t, 1J = 145.75 Hz, COH), 128.9, 130.8, 131.2, 138.6 (C6H5). Compound (IIIb) was obtained as a yellowish powder in 85% yield, and was crystallized by slow evaporation of a solution in tetrahydrofuran at room temperature. Spectroscopic analysis: 31P NMR (D2O, δ, p.p.m.): 15.3 (s); 1H NMR (D2O, δ, p.p.m.): 7.89 (d, 2H, 3J = 8.5 Hz, C6H4), 8.15 (d, 2H, 3J = 8.5 Hz, C6H4); 13C NMR (D2O, δ, p.p.m.): 75.28 (t, 1J = 149 Hz, COH), 124.67, 128.15, 146.13, 148.35 (C6H4).

Refinement top

For compound (IIIa), all H atoms but four (on the O1W and O2W molecules) were located in difference Fourier maps. They were kept in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq(C). For compound (IIIb), all H atoms were located in successive difference Fourier maps and freely refined; the C—H distances were in the range 0.92 (3) to 1.06 (3) Å. Please clarify - in CIF, H22A, H22B, H32A and H32B were all fixed.

Computing details top

Data collection: PHIL (local program; author, 1980) for (IIIa); KappaCCD Server Software (Nonius, 1997) for (IIIb). Cell refinement: PARAM (local program; author, 1995) for (IIIa); DENZO-SMN (Otwinowsky & Minor, 1997) for (IIIb). Data reduction: PHIL for (IIIa); DENZO-SMN for (IIIb). For both compounds, program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97 and PLATON.

Figures top
[Figure 1] Fig. 1. A view of the dimer of (IIIa) (asymmetric unit) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The hydrogen bonding between dimers of (IIIa), viewed along the c axis. Only H atoms involved in the bonding are shown and the solvate water molecules have been omitted for clarity.
[Figure 3] Fig. 3. A view of the asymmetric unit of (IIIb) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 4] Fig. 4. The supramolecular arrangement of (IIIb) dimers along the b direction; tetrahydrofuran solvate molecules have been omitted for clarity.
(IIIa) [Hydroxy(phenyl)methylene]diphosphonic acid monohydrate top
Crystal data top
C7H10O7P2·H2OF(000) = 586
Mr = 286.10Dx = 1.668 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54180 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 8.42 (2) Åθ = 8–25°
b = 23.05 (1) ŵ = 3.81 mm1
c = 5.91 (2) ÅT = 293 K
β = 97.7 (2)°Rod-shaped prism, colourless
V = 1137 (6) Å30.5 × 0.2 × 0.2 mm
Z = 4
Data collection top
Philips PW 1100
diffractometer
Rint = 0.000
Radiation source: fine-focus sealed tubeθmax = 65.8°, θmin = 5.3°
Graphite monochromatorh = 99
θ/2θ scansk = 2324
3430 measured reflectionsl = 06
3430 independent reflections3 standard reflections every 130 reflections
2875 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0356P)2 + 1.8431P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.098
3430 reflectionsΔρmax = 0.27 e Å3
311 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), with 1421 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.18 (5)
Crystal data top
C7H10O7P2·H2OV = 1137 (6) Å3
Mr = 286.10Z = 4
Monoclinic, P21Cu Kα radiation
a = 8.42 (2) ŵ = 3.81 mm1
b = 23.05 (1) ÅT = 293 K
c = 5.91 (2) Å0.5 × 0.2 × 0.2 mm
β = 97.7 (2)°
Data collection top
Philips PW 1100
diffractometer
Rint = 0.000
3430 measured reflections3 standard reflections every 130 reflections
3430 independent reflections intensity decay: 3%
2875 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.096Δρmax = 0.27 e Å3
S = 1.12Δρmin = 0.29 e Å3
3430 reflectionsAbsolute structure: Flack (1983), with 1421 Friedel pairs
311 parametersAbsolute structure parameter: 0.18 (5)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.88450 (15)0.23466 (5)0.1837 (2)0.0269 (3)
P20.65186 (15)0.14613 (6)0.3620 (2)0.0272 (3)
O10.9098 (4)0.26948 (16)0.4003 (5)0.0320 (8)
O21.0351 (4)0.23296 (17)0.0580 (6)0.0334 (8)
H211.11030.21870.14210.040*
O30.7506 (5)0.25647 (18)0.0005 (6)0.0420 (10)
H310.69820.28150.05550.063*
O40.6528 (4)0.17542 (15)0.5883 (5)0.0288 (8)
O50.5164 (5)0.1659 (2)0.1736 (6)0.0465 (11)
H510.45660.18850.22850.070*
O60.6335 (5)0.07893 (17)0.3700 (6)0.0374 (9)
H610.67750.06670.49290.056*
O70.7989 (4)0.13214 (17)0.0088 (5)0.0327 (9)
H710.75910.15630.08360.049*
C10.8353 (6)0.1590 (2)0.2318 (8)0.0323 (12)
C20.9771 (6)0.1303 (2)0.3644 (9)0.0326 (13)
C31.0611 (7)0.0870 (3)0.2660 (9)0.0390 (13)
H31.02390.07500.11820.047*
C41.1970 (7)0.0614 (3)0.3787 (10)0.0418 (14)
H41.24860.03180.31060.050*
C51.2549 (7)0.0809 (3)0.5964 (10)0.0461 (15)
H51.35030.06640.67330.055*
C61.1681 (8)0.1220 (3)0.6957 (10)0.0458 (16)
H61.20220.13350.84510.055*
C71.0300 (6)0.1468 (2)0.5771 (7)0.0256 (10)
H70.97470.17510.64720.031*
P1'0.33318 (16)0.27646 (6)0.5223 (2)0.0270 (3)
P2'0.56673 (14)0.36521 (6)0.3454 (2)0.0255 (3)
O1'0.3137 (4)0.24395 (16)0.2966 (6)0.0296 (8)
O2'0.1883 (4)0.28018 (16)0.6471 (6)0.0339 (8)
H2P0.10780.27120.56020.051*
O3'0.4617 (5)0.25226 (14)0.7047 (6)0.0283 (9)
H3P0.51020.22610.64980.042*
O4'0.5634 (4)0.33683 (15)0.1205 (6)0.0297 (8)
O5'0.7042 (4)0.34501 (17)0.5285 (6)0.0389 (10)
H5P0.76520.32380.46930.058*
O6'0.5784 (5)0.43272 (16)0.3357 (7)0.0422 (10)
H6P0.54670.44390.20580.063*
O7'0.4147 (4)0.37970 (13)0.7040 (5)0.0245 (7)
H720.49080.36320.77830.037*
C1'0.3842 (6)0.3541 (2)0.4783 (8)0.0245 (11)
C2'0.2401 (7)0.3814 (3)0.3509 (9)0.0362 (13)
C3'0.1543 (6)0.4203 (2)0.4541 (8)0.0329 (12)
H3'0.18970.43230.60250.039*
C4'0.0091 (9)0.4430 (3)0.3348 (13)0.0579 (18)
H4'0.05380.46780.40950.070*
C5'0.0386 (7)0.4285 (3)0.1118 (10)0.0406 (14)
H5'0.13040.44510.03270.049*
C6'0.0455 (7)0.3914 (3)0.0102 (11)0.0564 (18)
H6'0.01180.38140.14110.068*
C7'0.1827 (7)0.3667 (3)0.1220 (11)0.0430 (15)
H7'0.23880.33990.04590.052*
O1W0.5302 (6)0.4803 (2)0.0653 (8)0.0599 (12)
O2W0.7012 (7)0.03416 (19)0.7769 (8)0.0656 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0261 (7)0.0222 (7)0.0322 (7)0.0020 (6)0.0029 (5)0.0084 (5)
P20.0226 (6)0.0315 (7)0.0258 (7)0.0025 (6)0.0033 (5)0.0021 (5)
O10.036 (2)0.040 (2)0.0181 (16)0.0022 (17)0.0008 (14)0.0149 (15)
O20.0239 (19)0.045 (2)0.0328 (18)0.0047 (17)0.0080 (15)0.0003 (17)
O30.022 (2)0.056 (3)0.043 (2)0.0100 (17)0.0133 (16)0.0125 (19)
O40.0230 (18)0.038 (2)0.0227 (18)0.0040 (15)0.0065 (13)0.0074 (15)
O50.026 (2)0.087 (3)0.0228 (19)0.008 (2)0.0087 (15)0.017 (2)
O60.033 (2)0.038 (2)0.044 (2)0.0056 (16)0.0133 (17)0.0075 (17)
O70.0269 (18)0.057 (3)0.0140 (16)0.0097 (17)0.0018 (13)0.0069 (15)
C10.030 (3)0.035 (3)0.032 (3)0.010 (2)0.004 (2)0.003 (2)
C20.027 (3)0.030 (3)0.038 (3)0.002 (2)0.005 (2)0.009 (2)
C30.047 (3)0.039 (3)0.030 (3)0.011 (3)0.001 (2)0.001 (2)
C40.024 (3)0.046 (4)0.057 (4)0.013 (3)0.008 (2)0.014 (3)
C50.031 (3)0.060 (4)0.045 (4)0.012 (3)0.007 (3)0.014 (3)
C60.055 (4)0.050 (4)0.030 (3)0.017 (3)0.001 (3)0.009 (3)
C70.031 (3)0.026 (3)0.019 (2)0.002 (2)0.0019 (19)0.008 (2)
P1'0.0285 (7)0.0323 (8)0.0185 (7)0.0031 (6)0.0027 (5)0.0043 (5)
P2'0.0193 (6)0.0321 (7)0.0263 (7)0.0013 (5)0.0077 (5)0.0051 (5)
O1'0.0196 (18)0.034 (2)0.0361 (18)0.0058 (15)0.0059 (14)0.0047 (15)
O2'0.033 (2)0.025 (2)0.044 (2)0.0098 (17)0.0088 (16)0.0025 (16)
O3'0.034 (2)0.0168 (17)0.0313 (19)0.0124 (14)0.0073 (16)0.0083 (14)
O4'0.0299 (19)0.031 (2)0.029 (2)0.0086 (16)0.0080 (14)0.0056 (15)
O5'0.024 (2)0.051 (3)0.043 (2)0.0096 (18)0.0058 (16)0.0036 (18)
O6'0.046 (2)0.021 (2)0.059 (3)0.0104 (17)0.0074 (19)0.0088 (17)
O7'0.0284 (19)0.0158 (19)0.0297 (18)0.0062 (13)0.0057 (14)0.0041 (13)
C1'0.022 (2)0.027 (3)0.023 (2)0.007 (2)0.0018 (18)0.0024 (19)
C2'0.041 (3)0.047 (4)0.022 (3)0.002 (3)0.011 (2)0.001 (2)
C3'0.026 (3)0.047 (3)0.025 (3)0.001 (2)0.003 (2)0.001 (2)
C4'0.068 (5)0.029 (3)0.080 (5)0.012 (3)0.022 (4)0.002 (3)
C5'0.028 (3)0.045 (4)0.050 (4)0.002 (2)0.007 (3)0.018 (3)
C6'0.035 (4)0.076 (5)0.054 (4)0.014 (3)0.010 (3)0.005 (3)
C7'0.022 (3)0.041 (3)0.067 (4)0.013 (3)0.011 (3)0.017 (3)
O1W0.065 (3)0.060 (3)0.055 (3)0.002 (3)0.007 (2)0.006 (2)
O2W0.092 (4)0.033 (3)0.072 (3)0.006 (3)0.012 (3)0.000 (2)
Geometric parameters (Å, º) top
P1—O11.502 (6)P1'—O1'1.520 (7)
P1—O21.554 (5)P1'—O2'1.511 (5)
P1—O31.539 (6)P1'—O3'1.527 (6)
P1—C11.824 (5)P1'—C1'1.866 (5)
P2—O41.497 (7)P2'—O4'1.478 (7)
P2—O51.552 (6)P2'—O5'1.547 (6)
P2—O61.558 (4)P2'—O6'1.561 (4)
P2—C11.840 (7)P2'—C1'1.836 (7)
O2—H210.8200O2'—H2P0.8200
O3—H310.8200O3'—H3P0.8200
O5—H510.8200O5'—H5P0.8200
O6—H610.8201O6'—H6P0.8200
O7—C11.451 (8)O7'—C1'1.450 (8)
O7—H710.8200O7'—H720.8200
C1—C21.492 (8)C1'—C2'1.480 (8)
C2—C71.333 (9)C2'—C3'1.347 (8)
C2—C31.393 (8)C2'—C7'1.415 (11)
C3—C41.378 (8)C3'—C4'1.427 (10)
C3—H30.9300C3'—H3'0.9300
C4—C51.388 (10)C4'—C5'1.366 (11)
C4—H40.9300C4'—H4'0.9300
C5—C61.376 (10)C5'—C6'1.309 (9)
C5—H50.9300C5'—H5'0.9300
C6—C71.397 (8)C6'—C7'1.374 (8)
C6—H60.9300C6'—H6'0.9300
C7—H70.9300C7'—H7'0.9300
O1—P1—O3115.6 (3)O2'—P1'—O1'117.2 (3)
O1—P1—O2112.9 (3)O2'—P1'—O3'102.6 (4)
O3—P1—O2103.9 (4)O1'—P1'—O3'115.0 (3)
O1—P1—C1112.8 (3)O2'—P1'—C1'103.3 (2)
O3—P1—C1105.2 (2)O1'—P1'—C1'110.5 (3)
O2—P1—C1105.5 (2)O3'—P1'—C1'107.1 (2)
O4—P2—O5115.1 (3)O4'—P2'—O5'114.7 (3)
O4—P2—O6114.2 (2)O4'—P2'—O6'113.7 (3)
O5—P2—O6104.4 (2)O5'—P2'—O6'106.3 (2)
O4—P2—C1113.4 (3)O4'—P2'—C1'114.0 (3)
O5—P2—C1103.3 (4)O5'—P2'—C1'104.4 (3)
O6—P2—C1105.4 (2)O6'—P2'—C1'102.5 (2)
P1—O2—H21109.5P1'—O2'—H2P109.5
P1—O3—H31109.5P1'—O3'—H3P109.5
P2—O5—H51109.5P2'—O5'—H5P109.5
P2—O6—H61109.5P2'—O6'—H6P109.5
C1—O7—H71109.4C1'—O7'—H72109.5
O7—C1—C2110.2 (5)O7'—C1'—C2'109.1 (4)
O7—C1—P1106.9 (4)O7'—C1'—P2'106.3 (4)
C2—C1—P1108.9 (4)C2'—C1'—P2'113.5 (4)
O7—C1—P2103.0 (4)O7'—C1'—P1'106.2 (3)
C2—C1—P2111.5 (4)C2'—C1'—P1'106.9 (4)
P1—C1—P2116.1 (3)P2'—C1'—P1'114.5 (3)
C7—C2—C3118.3 (5)C3'—C2'—C7'117.2 (5)
C7—C2—C1120.8 (5)C3'—C2'—C1'120.3 (5)
C3—C2—C1120.9 (5)C7'—C2'—C1'122.4 (5)
C4—C3—C2122.7 (6)C2'—C3'—C4'119.7 (6)
C4—C3—H3118.7C2'—C3'—H3'120.1
C2—C3—H3118.7C4'—C3'—H3'120.1
C3—C4—C5118.4 (6)C5'—C4'—C3'120.6 (6)
C3—C4—H4120.8C5'—C4'—H4'119.7
C5—C4—H4120.8C3'—C4'—H4'119.7
C6—C5—C4118.6 (5)C6'—C5'—C4'119.7 (6)
C6—C5—H5120.7C6'—C5'—H5'120.2
C4—C5—H5120.7C4'—C5'—H5'120.2
C5—C6—C7121.4 (6)C5'—C6'—C7'121.5 (7)
C5—C6—H6119.3C5'—C6'—H6'119.3
C7—C6—H6119.3C7'—C6'—H6'119.3
C2—C7—C6120.5 (5)C6'—C7'—C2'121.2 (6)
C2—C7—H7119.8C6'—C7'—H7'119.4
C6—C7—H7119.8C2'—C7'—H7'119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1i0.821.922.583 (9)137
O2—H2P···O1ii0.821.802.602 (9)164
O3—H31···O40.821.782.592 (9)169
O3—H3P···O40.821.752.549 (9)165
O5—H51···O10.821.842.647 (9)169
O5—H5P···O10.821.832.637 (9)167
O6—H61···O2W0.821.832.609 (9)160
O6—H6P···O1W0.821.802.594 (9)163
O7—H71···O4iii0.822.072.805 (9)149
O7—H71···O30.822.362.894 (10)123
O7—H72···O4iv0.822.122.789 (9)138
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z1; (iv) x, y, z+1.
(IIIb) [Hydroxy(4-nitrophenyl)methylene]diphosphonic acid tetrahydrofuran disolvate top
Crystal data top
C7H9NO9P2·2C4H8OF(000) = 960
Mr = 457.30Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 78 reflections
a = 14.0005 (9) Åθ = 8–40°
b = 6.0243 (2) ŵ = 0.27 mm1
c = 24.4427 (6) ÅT = 132 K
β = 91.903 (3)°Plate, pale yellow
V = 2060.44 (16) Å30.20 × 0.20 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD are-detector
diffractometer
2986 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 25.5°, θmin = 2.9°
ϕ and ω scansh = 016
3734 measured reflectionsk = 07
3734 independent reflectionsl = 2929
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.025P)2 + 2.62P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.046
3734 reflectionsΔρmax = 0.39 e Å3
329 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0017 (6)
Crystal data top
C7H9NO9P2·2C4H8OV = 2060.44 (16) Å3
Mr = 457.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.0005 (9) ŵ = 0.27 mm1
b = 6.0243 (2) ÅT = 132 K
c = 24.4427 (6) Å0.20 × 0.20 × 0.05 mm
β = 91.903 (3)°
Data collection top
Nonius KappaCCD are-detector
diffractometer
2986 reflections with I > 2σ(I)
3734 measured reflectionsRint = 0.000
3734 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.096All H-atom parameters refined
S = 1.02Δρmax = 0.39 e Å3
3734 reflectionsΔρmin = 0.37 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.55465 (4)0.66665 (10)0.58375 (2)0.01872 (17)
O10.49584 (12)0.4582 (3)0.58560 (7)0.0245 (4)
O20.56520 (13)0.7910 (3)0.63979 (7)0.0288 (4)
H210.513 (3)0.808 (6)0.6577 (14)0.065 (5)*
O30.51952 (13)0.8351 (3)0.53926 (7)0.0275 (4)
H310.469 (3)0.814 (6)0.5242 (14)0.065 (5)*
P20.70353 (4)0.45461 (10)0.50407 (2)0.01808 (17)
O40.65329 (11)0.2339 (3)0.50446 (6)0.0209 (4)
O50.67212 (13)0.6113 (3)0.45586 (6)0.0237 (4)
H510.608 (3)0.589 (6)0.4440 (14)0.065 (5)*
O60.81622 (12)0.4285 (3)0.50194 (7)0.0232 (4)
H610.848 (3)0.533 (6)0.4894 (15)0.065 (5)*
C10.68405 (17)0.6179 (4)0.56779 (9)0.0189 (5)
O70.73139 (12)0.8296 (3)0.56021 (7)0.0216 (4)
H710.696 (3)0.907 (6)0.5385 (14)0.065 (5)*
C20.73415 (16)0.5004 (4)0.61681 (9)0.0180 (5)
C40.74655 (17)0.1842 (4)0.67865 (9)0.0220 (5)
H40.7270 (19)0.043 (5)0.6880 (11)0.029 (4)*
C30.70156 (17)0.2900 (4)0.63368 (9)0.0193 (5)
H30.648 (2)0.222 (4)0.6148 (11)0.029 (4)*
C50.82277 (17)0.2920 (4)0.70627 (9)0.0219 (5)
C70.81133 (17)0.6035 (4)0.64551 (10)0.0218 (5)
H70.8325 (19)0.747 (5)0.6341 (10)0.029 (4)*
C60.85602 (19)0.4998 (4)0.69080 (10)0.0246 (6)
H60.907 (2)0.565 (4)0.7089 (11)0.029 (4)*
N40.87190 (15)0.1800 (4)0.75356 (8)0.0289 (5)
O410.84879 (16)0.0120 (4)0.76432 (8)0.0473 (6)
O420.93419 (14)0.2852 (3)0.78042 (8)0.0414 (5)
O110.92447 (13)0.7322 (3)0.46287 (8)0.0335 (5)
C210.8821 (2)0.9534 (4)0.45821 (12)0.0295 (6)
H21A0.881 (2)1.009 (6)0.4946 (14)0.056 (3)*
H21B0.814 (2)0.938 (5)0.4458 (13)0.056 (3)*
C310.9452 (2)1.0794 (5)0.41805 (12)0.0336 (6)
H31A0.992 (2)1.188 (6)0.4375 (13)0.056 (3)*
H31B0.905 (2)1.157 (6)0.3907 (14)0.056 (3)*
C411.0075 (3)0.9009 (5)0.39057 (15)0.0455 (8)
H41A1.002 (2)0.910 (6)0.3516 (14)0.056 (3)*
H41B1.082 (2)0.914 (6)0.4001 (13)0.056 (3)*
C510.9700 (2)0.6830 (5)0.41096 (12)0.0345 (7)
H51A1.018 (2)0.571 (6)0.4177 (13)0.056 (3)*
H51B0.915 (2)0.631 (6)0.3875 (14)0.056 (3)*
O120.40979 (14)0.8747 (3)0.69089 (7)0.0362 (5)
C220.4222 (2)1.0604 (5)0.72818 (13)0.0486 (8)
H22A0.48931.09780.73290.058*
H22B0.39731.02420.76370.058*
C320.3683 (2)1.2484 (5)0.70312 (14)0.0493 (8)
H32A0.40791.33080.67840.059*
H32B0.34601.34860.73100.059*
C420.2835 (2)1.1382 (5)0.67178 (12)0.0362 (7)
H42A0.260 (2)1.233 (6)0.6406 (14)0.056 (3)*
H42B0.227 (2)1.109 (5)0.6949 (14)0.056 (3)*
C520.3276 (2)0.9221 (6)0.65306 (14)0.0460 (8)
H52A0.282 (2)0.785 (6)0.6541 (13)0.056 (3)*
H52B0.356 (2)0.937 (6)0.6173 (14)0.056 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0185 (3)0.0185 (3)0.0191 (3)0.0003 (2)0.0001 (2)0.0009 (3)
O10.0222 (9)0.0229 (9)0.0283 (9)0.0022 (7)0.0002 (7)0.0058 (7)
O30.0245 (10)0.0228 (9)0.0346 (10)0.0024 (8)0.0085 (8)0.0095 (8)
O20.0235 (10)0.0374 (11)0.0255 (9)0.0031 (8)0.0009 (7)0.0086 (8)
P20.0192 (3)0.0171 (3)0.0179 (3)0.0015 (2)0.0009 (2)0.0008 (2)
O40.0239 (9)0.0176 (8)0.0210 (8)0.0026 (7)0.0001 (7)0.0002 (7)
O50.0275 (10)0.0221 (9)0.0211 (9)0.0038 (7)0.0024 (7)0.0044 (7)
O60.0215 (10)0.0205 (9)0.0278 (9)0.0004 (7)0.0035 (7)0.0009 (8)
C10.0207 (13)0.0154 (11)0.0204 (11)0.0027 (9)0.0011 (9)0.0017 (9)
O70.0248 (9)0.0143 (8)0.0255 (9)0.0045 (7)0.0013 (7)0.0036 (7)
C20.0173 (12)0.0188 (12)0.0180 (11)0.0014 (9)0.0012 (9)0.0018 (9)
C40.0253 (14)0.0203 (13)0.0206 (12)0.0018 (10)0.0017 (10)0.0009 (10)
C30.0188 (13)0.0191 (12)0.0198 (11)0.0002 (10)0.0016 (9)0.0009 (10)
C50.0214 (13)0.0259 (13)0.0183 (11)0.0056 (10)0.0021 (9)0.0017 (10)
C70.0200 (13)0.0195 (13)0.0257 (12)0.0001 (10)0.0002 (10)0.0000 (10)
C60.0228 (14)0.0262 (14)0.0245 (13)0.0001 (10)0.0044 (10)0.0037 (11)
N40.0280 (12)0.0348 (13)0.0238 (11)0.0073 (10)0.0017 (9)0.0018 (10)
O410.0548 (14)0.0385 (12)0.0476 (12)0.0057 (10)0.0157 (10)0.0221 (10)
O420.0449 (13)0.0408 (12)0.0369 (11)0.0041 (10)0.0224 (9)0.0017 (9)
O110.0331 (11)0.0223 (9)0.0460 (11)0.0013 (8)0.0138 (9)0.0055 (9)
C210.0285 (16)0.0218 (13)0.0386 (15)0.0022 (11)0.0073 (12)0.0028 (12)
C310.0418 (18)0.0229 (14)0.0366 (15)0.0010 (12)0.0074 (13)0.0051 (12)
C410.056 (2)0.0323 (16)0.0501 (19)0.0049 (15)0.0281 (17)0.0074 (15)
C510.0374 (17)0.0265 (15)0.0401 (16)0.0046 (13)0.0095 (13)0.0020 (13)
O120.0362 (11)0.0425 (12)0.0299 (10)0.0092 (9)0.0022 (8)0.0086 (9)
C220.051 (2)0.053 (2)0.0412 (17)0.0139 (16)0.0081 (15)0.0182 (16)
C320.052 (2)0.0384 (17)0.057 (2)0.0014 (15)0.0035 (16)0.0036 (16)
C420.0321 (17)0.0438 (18)0.0330 (15)0.0031 (13)0.0044 (12)0.0024 (13)
C520.0305 (18)0.059 (2)0.0477 (19)0.0105 (15)0.0053 (14)0.0160 (17)
Geometric parameters (Å, º) top
P1—O11.5034 (17)N4—O421.247 (3)
P1—O21.5637 (18)O11—C211.461 (3)
P1—O31.5553 (18)O11—C511.469 (3)
P1—C11.889 (2)C21—C311.542 (4)
O2—H210.87 (4)C21—H21A0.95 (3)
O3—H310.80 (4)C21—H21B0.99 (3)
P2—O41.5044 (16)C31—C411.551 (4)
P2—O51.5615 (17)C31—H31A1.03 (3)
P2—O61.5881 (18)C31—H31B0.98 (3)
P2—C11.870 (2)C41—C511.505 (4)
O5—H510.94 (4)C41—H41A0.95 (3)
O6—H610.84 (4)C41—H41B1.06 (3)
C1—O71.452 (3)C51—H51A0.96 (3)
C1—C21.540 (3)C51—H51B0.99 (3)
O7—H710.86 (4)O12—C221.450 (3)
C2—C71.412 (3)O12—C521.480 (3)
C2—C31.414 (3)C22—C321.481 (4)
C4—C31.402 (3)C22—H22A0.9700
C4—C51.403 (3)C22—H22B0.9700
C4—H40.93 (3)C32—C421.543 (4)
C3—H30.96 (3)C32—H32A0.9700
C5—C61.392 (4)C32—H32B0.9700
C5—N41.487 (3)C42—C521.518 (4)
C7—C61.401 (3)C42—H42A1.00 (3)
C7—H70.96 (3)C42—H42B1.00 (3)
C6—H60.92 (3)C52—H52A1.04 (3)
N4—O411.232 (3)C52—H52B0.98 (3)
O1—P1—O3113.91 (10)C31—C21—H21A117 (2)
O1—P1—O2114.19 (10)O11—C21—H21B108.5 (19)
O3—P1—O2108.57 (10)C31—C21—H21B114.6 (19)
O1—P1—C1113.97 (10)H21A—C21—H21B106 (3)
O3—P1—C1103.91 (10)C21—C31—C41106.1 (2)
O2—P1—C1101.07 (10)C21—C31—H31A112.8 (18)
P1—O3—H31118 (3)C41—C31—H31A106.1 (18)
P1—O2—H21116 (2)C21—C31—H31B110 (2)
O4—P2—O5114.76 (9)C41—C31—H31B110.9 (19)
O4—P2—O6112.19 (9)H31A—C31—H31B111 (3)
O5—P2—O6106.88 (10)C51—C41—C31104.7 (2)
O4—P2—C1112.24 (10)C51—C41—H41A111 (2)
O5—P2—C1105.40 (10)C31—C41—H41A111 (2)
O6—P2—C1104.60 (10)C51—C41—H41B109.9 (18)
P2—O5—H51113 (2)C31—C41—H41B114.6 (18)
P2—O6—H61119 (3)H41A—C41—H41B105 (3)
O7—C1—C2107.74 (18)O11—C51—C41106.0 (2)
O7—C1—P2106.02 (14)O11—C51—H51A108 (2)
C2—C1—P2109.34 (15)C41—C51—H51A115 (2)
O7—C1—P1109.55 (15)O11—C51—H51B102.3 (19)
C2—C1—P1109.03 (15)C41—C51—H51B111.0 (19)
P2—C1—P1114.92 (12)H51A—C51—H51B113 (3)
C1—O7—H71108 (2)C22—O12—C52108.6 (2)
C7—C2—C3119.9 (2)O12—C22—C32106.4 (2)
C7—C2—C1120.4 (2)O12—C22—H22A110.5
C3—C2—C1119.7 (2)C32—C22—H22A110.5
C3—C4—C5118.8 (2)O12—C22—H22B110.5
C3—C4—H4118.9 (17)C32—C22—H22B110.5
C5—C4—H4122.2 (17)H22A—C22—H22B108.6
C4—C3—C2119.7 (2)C22—C32—C42104.4 (3)
C4—C3—H3120.6 (16)C22—C32—H32A110.9
C2—C3—H3119.7 (16)C42—C32—H32A110.9
C6—C5—C4122.8 (2)C22—C32—H32B110.9
C6—C5—N4118.0 (2)C42—C32—H32B110.9
C4—C5—N4119.3 (2)H32A—C32—H32B108.9
C6—C7—C2120.7 (2)C52—C42—C32101.8 (2)
C6—C7—H7119.9 (16)C52—C42—H42A112.8 (19)
C2—C7—H7119.4 (16)C32—C42—H42A111.1 (19)
C5—C6—C7118.1 (2)C52—C42—H42B110.9 (19)
C5—C6—H6121.2 (17)C32—C42—H42B113.6 (19)
C7—C6—H6120.6 (17)H42A—C42—H42B107 (3)
O41—N4—O42123.3 (2)O12—C52—C42107.0 (2)
O41—N4—C5118.3 (2)O12—C52—H52A107.3 (18)
O42—N4—C5118.4 (2)C42—C52—H52A114.5 (19)
C21—O11—C51107.6 (2)O12—C52—H52B104 (2)
O11—C21—C31105.0 (2)C42—C52—H52B112 (2)
O11—C21—H21A106 (2)H52A—C52—H52B111 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O120.87 (4)1.73 (3)2.594 (3)173 (3)
O3—H31···O4i0.80 (4)1.85 (3)2.645 (3)175 (4)
O5—H51···O1i0.94 (4)1.63 (3)2.564 (3)171 (4)
O6—H61···O110.84 (4)1.74 (3)2.579 (3)174 (4)
O7—H71···O4ii0.86 (4)2.21 (3)2.981 (3)150 (3)
O7—H71···O30.86 (4)2.51 (3)2.993 (3)117 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.

Experimental details

(IIIa)(IIIb)
Crystal data
Chemical formulaC7H10O7P2·H2OC7H9NO9P2·2C4H8O
Mr286.10457.30
Crystal system, space groupMonoclinic, P21Monoclinic, P21/c
Temperature (K)293132
a, b, c (Å)8.42 (2), 23.05 (1), 5.91 (2)14.0005 (9), 6.0243 (2), 24.4427 (6)
β (°) 97.7 (2) 91.903 (3)
V3)1137 (6)2060.44 (16)
Z44
Radiation typeCu KαMo Kα
µ (mm1)3.810.27
Crystal size (mm)0.5 × 0.2 × 0.20.20 × 0.20 × 0.05
Data collection
DiffractometerPhilips PW 1100
diffractometer
Nonius KappaCCD are-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3430, 3430, 2875 3734, 3734, 2986
Rint0.0000.000
(sin θ/λ)max1)0.5910.605
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.096, 1.12 0.045, 0.096, 1.02
No. of reflections34303734
No. of parameters311329
No. of restraints10
H-atom treatmentH-atom parameters constrainedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.290.39, 0.37
Absolute structureFlack (1983), with 1421 Friedel pairs?
Absolute structure parameter0.18 (5)?

Computer programs: PHIL (local program; author, 1980), KappaCCD Server Software (Nonius, 1997), PARAM (local program; author, 1995), DENZO-SMN (Otwinowsky & Minor, 1997), PHIL, DENZO-SMN, SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2002), SHELXL97 and PLATON.

Selected bond lengths (Å) for (IIIa) top
P1—O11.502 (6)P1'—O1'1.520 (7)
P1—O21.554 (5)P1'—O2'1.511 (5)
P1—O31.539 (6)P1'—O3'1.527 (6)
P1—C11.824 (5)P1'—C1'1.866 (5)
P2—O41.497 (7)P2'—O4'1.478 (7)
P2—O51.552 (6)P2'—O5'1.547 (6)
P2—O61.558 (4)P2'—O6'1.561 (4)
P2—C11.840 (7)P2'—C1'1.836 (7)
Hydrogen-bond geometry (Å, º) for (IIIa) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O1'i0.821.922.583 (9)137
O2'—H2P···O1ii0.821.802.602 (9)164
O3—H31···O4'0.821.782.592 (9)169
O3'—H3P···O40.821.752.549 (9)165
O5—H51···O1'0.821.842.647 (9)169
O5'—H5P···O10.821.832.637 (9)167
O6—H61···O2W0.821.832.609 (9)160
O6'—H6P···O1W0.821.802.594 (9)163
O7—H71···O4iii0.822.072.805 (9)149
O7—H71···O30.822.362.894 (10)123
O7'—H72···O4'iv0.822.122.789 (9)138
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z; (iii) x, y, z1; (iv) x, y, z+1.
Selected bond lengths (Å) for (IIIb) top
P1—O11.5034 (17)P2—O41.5044 (16)
P1—O21.5637 (18)P2—O51.5615 (17)
P1—O31.5553 (18)P2—O61.5881 (18)
P1—C11.889 (2)P2—C11.870 (2)
Hydrogen-bond geometry (Å, º) for (IIIb) top
D—H···AD—HH···AD···AD—H···A
O2—H21···O120.87 (4)1.73 (3)2.594 (3)173 (3)
O3—H31···O4i0.80 (4)1.85 (3)2.645 (3)175 (4)
O5—H51···O1i0.94 (4)1.63 (3)2.564 (3)171 (4)
O6—H61···O110.84 (4)1.74 (3)2.579 (3)174 (4)
O7—H71···O4ii0.86 (4)2.21 (3)2.981 (3)150 (3)
O7—H71···O30.86 (4)2.51 (3)2.993 (3)117 (3)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds