Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure of catena-poly­[[tri-n-butyl­tin]-μ-3-(1-naph­thyl­amino­carbonyl)­acrylato-κ2O1:O3], [Sn(C4H9)3(C14H10NO3)]n, is composed of polymeric chains wherein the metal center exhibits a distorted trigonal-bipyramidal geometry, with three n-butyl groups defining the trigonal plane [mean Sn—C 2.133 (7) Å] and the axial positions being occupied by the carboxyl­ate O atoms of two different N-(1-naphthyl)­maleamate ligands with inequivalent Sn—O distances [2.167 (4) and 2.457 (4) Å]. The N-(1-naphthyl)­maleamate fragment forms an essentially planar seven-membered ring involving an intramolecular N—H...O hydrogen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102007539/fg1647sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102007539/fg1647Isup2.hkl
Contains datablock I

CCDC reference: 188596

Comment top

There have been several reports dealing with the impact of organotin chemistry in the biosphere (Gielen, 1994; Ng et al., 1991). The exploration of the structure–activity relationships of such systems has led to numerous reports in recent years (Gielen et al., 1994; Selvaratnam et al., 1994; McManus et al., 1994). Furthermore, the structural chemistry of organotin compounds with a coordination number higher than four is being extensively studied because of their biological activity, enhanced reactivity and stereochemical non-rigidity (Mehring et al., 1998). Our contributions in this field have been related to the synthesis and structural characterization of organotin derivatives of donor ligands containing chalcogens, with special reference to their biological applications (Badshah et al., 1994; Danish et al., 1995; Ali et al., 1993; Choudhary et al., 2001; Bhatti et al., 2000). In a continuation of our studies on the structural chemistry of organotin carboxylates (Parvez, Ali, Mazhar, Bhatti & Khokhar, 1999; Parvez, Ali, Mazhar, Bhatti & Choudhary. 1999; Parvez et al., 2000), we have prepared catena-poly[[tri-n-butyltin]-µ-N-(1-naphthyl)maleamato], (I), the crystal structure of which is reported in this paper.

The structure of (I) (Fig. 1) is composed of polymeric chains wherein O atoms of both ends of the N-(1-naphthyl)maleamate ligand coordinate the Sn atoms of the trigonal-planar tri-n-butyltin moiety. The Sn—C distances are identical within 3σ limits [mean Sn—C 2.133 (7) Å]. On the other hand, the Sn—O1 and Sn—O3 distances are significantly different from each other, with values of 2.167 (4) and 2.457 (4) Å, respectively, indicating that the former is a covalent bond and the latter is a coordinate bond. The Sn atom has a distorted trigonal-bipyramidal geometry, with the Sn atom 0.153 (2) Å out of the equatorial plane formed by the three C atoms bonded to it, towards the more strongly bonded O1 atom. The O1—Sn1—O3 angle is almost linear [177.97 (17)°], the C—Sn—C angles deviate somewhat from the ideal value of 120° [range 114.5 (3)–128.5 (3)°] and the O—Sn—C angles lie in the range 82.1 (2)–97.8 (2)°. These bond distances and angles are in agreement with the corresponding values found for similar Sn complexes contained in the Cambridge Structural Database (Allen & Kennard, 1993).

The molecular dimensions in the N-(1-naphthyl)maleamate ligand are normal. The ligand forms an essentially planar seven-membered ring involving an intramolecular N—H···O hydrogen bond [H1···O2 and N1···O1 1.82 and 2.669 (7) Å, respectively, and N—H···O 162°]. In terms of graph-set representation (Bernstein et al., 1994), this ring exhibits a S(7) hydrogen-bond pattern.

Experimental top

N-(1-Naphthyl)maleamic acid was prepared by adding 1-naphthylamine (8.59 g, 0.06 mole) to a solution containing an equimolar quantity of maleic anhydride (5.88 g, 0.06 mol) in glacial acetic acid (100 ml). The reaction mixture was stirred for 1 h, which afforded a yellow solid. The yellow product was washed with water, dried and recrystallized from ethanol–water (m.p. 421–422 K). The silver salt of N-(1-naphthyl)maleamic acid was prepared by dissolving the acid (4.82 g, 0.02 mol) in ethanol (200 ml) and adding to it a solution of an equimolar quantity of sodium bicarbonate (1.68 g, 0.02 mol). A solution of silver nitrate (3.397 g, 0.02 mol) was added dropwise to the above mixture. The precipitates thus formed were filtered off under suction, washed with water and dried over anhydrous calcium chloride in the dark. The silver salt (1.735 g, 0.005 mol) was suspended in dry chloroform (50 ml) in a 250 ml two-neck round-bottomed flask equipped with a magnetic stirrer bar and a condenser. Tributyltin chloride (1.22 ml, 0.005 mol) was added slowly with constant stirring. The reaction mixture was refluxed for 8 h under an inert atmosphere. Silver chloride which formed during the reaction was removed by filtration and the solvent was evaporated under reduced pressure. Purified (I) was obtained by crystallization of the product from chloroform–n-hexane (1:1) at room temperature by slow evaporation.

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: HKL DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SAPI91 (Fan, 1991); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with displacement ellipsoids plotted at the 50% probability level. [Symmetry codes: (i) x + 1, y, z; (ii) x - 1, y, z.]
(I) top
Crystal data top
C26H37NO3SnZ = 2
Mr = 530.26F(000) = 548
Triclinic, P1Dx = 1.377 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5705 (7) ÅCell parameters from 8025 reflections
b = 11.7377 (9) Åθ = 1.0–25.0°
c = 12.4726 (11) ŵ = 1.02 mm1
α = 97.011 (3)°T = 170 K
β = 107.571 (4)°Block, yellow
γ = 102.297 (6)°0.15 × 0.10 × 0.08 mm
V = 1278.71 (18) Å3
Data collection top
Nonius KappaCCD
diffractometer
4329 independent reflections
Radiation source: fine-focus sealed tube3640 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω and ϕ scansθmax = 25.0°, θmin = 3.3°
Absorption correction: multi-scan
(SORTAV: Blessing, 1997)
h = 1111
Tmin = 0.861, Tmax = 0.922k = 1313
8025 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0842P)2 + 3.9999P]
where P = (Fo2 + 2Fc2)/3
4329 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 1.80 e Å3
0 restraintsΔρmin = 1.43 e Å3
Crystal data top
C26H37NO3Snγ = 102.297 (6)°
Mr = 530.26V = 1278.71 (18) Å3
Triclinic, P1Z = 2
a = 9.5705 (7) ÅMo Kα radiation
b = 11.7377 (9) ŵ = 1.02 mm1
c = 12.4726 (11) ÅT = 170 K
α = 97.011 (3)°0.15 × 0.10 × 0.08 mm
β = 107.571 (4)°
Data collection top
Nonius KappaCCD
diffractometer
4329 independent reflections
Absorption correction: multi-scan
(SORTAV: Blessing, 1997)
3640 reflections with I > 2σ(I)
Tmin = 0.861, Tmax = 0.922Rint = 0.035
8025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.13Δρmax = 1.80 e Å3
4329 reflectionsΔρmin = 1.43 e Å3
280 parameters
Special details top

Refinement. The H atoms were located from difference Fourier syntheses and were included in the refinements at idealized positions with isotropic displacement parameters 1.5 (methyl) and 1.2 (non-methyl) times the equivalent displacement parameters of the atoms to which they were bonded. The final difference map was free of any chemically significant features with some electron density in the vicinity of the Sn atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.22096 (5)0.23271 (4)0.55844 (4)0.0376 (2)
O10.0238 (5)0.1951 (4)0.4825 (5)0.0463 (12)
O20.0329 (5)0.3347 (5)0.6164 (5)0.0498 (13)
O30.5023 (5)0.2679 (4)0.6421 (4)0.0420 (11)
N10.2518 (6)0.3604 (5)0.7011 (5)0.0387 (13)
H10.16860.36610.68330.046*
C10.2107 (8)0.0846 (6)0.4366 (6)0.0429 (17)
H1A0.30640.06040.46340.051*
H1B0.12640.01710.43320.051*
C20.1872 (8)0.1093 (7)0.3157 (7)0.0486 (18)
H2A0.09170.13370.28910.058*
H2B0.27160.17690.31930.058*
C30.1797 (9)0.0041 (8)0.2278 (8)0.062 (2)
H3A0.10440.06650.23110.075*
H3B0.14330.02200.15010.075*
C40.3301 (9)0.0257 (8)0.2456 (8)0.056 (2)
H4A0.31690.09440.18680.084*
H4B0.36640.04470.32180.084*
H4C0.40450.04280.23960.084*
C50.2702 (8)0.4026 (6)0.5116 (7)0.0443 (17)
H5A0.30510.39260.44490.053*
H5B0.17390.42610.48570.053*
C60.3875 (9)0.5052 (7)0.6027 (7)0.0498 (19)
H6A0.48010.47890.63620.060*
H6B0.41560.57170.56490.060*
C70.3374 (11)0.5513 (8)0.6985 (8)0.063 (2)
H7A0.31400.48640.73930.076*
H7B0.24280.57540.66560.076*
C80.4563 (12)0.6566 (8)0.7840 (8)0.074 (3)
H8A0.41670.68460.84320.111*
H8B0.48060.72100.74400.111*
H8C0.54840.63220.81990.111*
C90.2300 (8)0.1950 (7)0.7226 (7)0.0462 (18)
H9A0.30450.26160.78290.055*
H9B0.12920.18850.73110.055*
C100.2756 (9)0.0788 (7)0.7390 (7)0.0523 (19)
H10A0.20340.01420.67550.063*
H10B0.37740.08750.73190.063*
C110.2802 (12)0.0409 (9)0.8495 (9)0.075 (3)
H11A0.17730.02850.85530.091*
H11B0.30540.03670.84760.091*
C120.3876 (17)0.1233 (11)0.9519 (10)0.102 (4)
H12A0.38200.09131.01990.153*
H12B0.36260.20020.95600.153*
H12C0.49060.13420.94890.153*
C130.0952 (7)0.2523 (6)0.5332 (7)0.0416 (16)
C140.2644 (7)0.2095 (6)0.4770 (6)0.0417 (16)
H140.29760.16440.40110.050*
C150.3749 (7)0.2241 (6)0.5157 (6)0.0403 (16)
H150.47310.18640.46140.048*
C160.3797 (7)0.2864 (6)0.6255 (6)0.0362 (15)
C170.2369 (8)0.4304 (6)0.8064 (6)0.0397 (16)
C180.3221 (9)0.3905 (7)0.8721 (7)0.0490 (18)
H180.39430.31490.84590.059*
C190.3030 (10)0.4605 (8)0.9775 (7)0.058 (2)
H190.36520.43291.02070.069*
C200.1983 (11)0.5661 (8)1.0186 (7)0.059 (2)
H200.18470.61041.09170.070*
C210.1082 (9)0.6121 (7)0.9542 (7)0.0482 (18)
C220.0005 (10)0.7234 (8)0.9929 (8)0.061 (2)
H220.01310.76981.06500.073*
C230.0842 (11)0.7662 (8)0.9303 (8)0.063 (2)
H230.15620.84180.95860.076*
C240.0662 (10)0.6995 (7)0.8240 (7)0.053 (2)
H240.12540.73000.77990.064*
C250.0363 (8)0.5905 (7)0.7835 (7)0.0453 (17)
H250.04710.54590.71120.054*
C260.1263 (8)0.5430 (6)0.8461 (6)0.0407 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0266 (3)0.0457 (3)0.0427 (3)0.01165 (19)0.0152 (2)0.0041 (2)
O10.030 (2)0.055 (3)0.053 (3)0.013 (2)0.016 (2)0.001 (2)
O20.026 (2)0.058 (3)0.059 (3)0.009 (2)0.014 (2)0.010 (3)
O30.023 (2)0.057 (3)0.047 (3)0.013 (2)0.014 (2)0.006 (2)
N10.029 (3)0.047 (3)0.044 (3)0.013 (2)0.018 (3)0.007 (3)
C10.032 (4)0.046 (4)0.047 (4)0.009 (3)0.015 (3)0.002 (3)
C20.036 (4)0.066 (5)0.046 (4)0.027 (3)0.012 (3)0.001 (4)
C30.043 (4)0.077 (6)0.055 (5)0.021 (4)0.007 (4)0.012 (4)
C40.047 (4)0.065 (5)0.058 (5)0.022 (4)0.023 (4)0.005 (4)
C50.038 (4)0.049 (4)0.051 (5)0.016 (3)0.018 (3)0.015 (3)
C60.048 (4)0.042 (4)0.062 (5)0.012 (3)0.020 (4)0.016 (4)
C70.070 (6)0.053 (5)0.062 (6)0.003 (4)0.029 (5)0.007 (4)
C80.093 (7)0.055 (5)0.062 (6)0.003 (5)0.023 (5)0.005 (4)
C90.032 (4)0.064 (5)0.050 (5)0.015 (3)0.022 (3)0.010 (4)
C100.046 (4)0.057 (5)0.060 (5)0.021 (4)0.020 (4)0.017 (4)
C110.073 (6)0.076 (6)0.076 (7)0.024 (5)0.018 (5)0.023 (5)
C120.131 (11)0.094 (9)0.074 (8)0.025 (8)0.023 (8)0.030 (7)
C130.025 (3)0.050 (4)0.048 (4)0.011 (3)0.013 (3)0.003 (3)
C140.028 (3)0.052 (4)0.040 (4)0.009 (3)0.009 (3)0.001 (3)
C150.021 (3)0.050 (4)0.046 (4)0.011 (3)0.007 (3)0.002 (3)
C160.025 (3)0.043 (4)0.042 (4)0.014 (3)0.010 (3)0.009 (3)
C170.035 (4)0.051 (4)0.040 (4)0.021 (3)0.014 (3)0.011 (3)
C180.045 (4)0.060 (5)0.047 (5)0.015 (4)0.022 (4)0.012 (4)
C190.056 (5)0.078 (6)0.050 (5)0.024 (4)0.027 (4)0.017 (4)
C200.071 (6)0.075 (6)0.040 (5)0.034 (5)0.025 (4)0.009 (4)
C210.051 (4)0.051 (4)0.040 (4)0.020 (4)0.009 (4)0.002 (3)
C220.068 (6)0.057 (5)0.045 (5)0.018 (4)0.003 (4)0.001 (4)
C230.065 (6)0.053 (5)0.055 (5)0.005 (4)0.008 (4)0.004 (4)
C240.056 (5)0.053 (5)0.044 (5)0.011 (4)0.008 (4)0.011 (4)
C250.043 (4)0.048 (4)0.039 (4)0.011 (3)0.007 (3)0.005 (3)
C260.035 (4)0.047 (4)0.041 (4)0.019 (3)0.008 (3)0.009 (3)
Geometric parameters (Å, º) top
Sn1—C12.129 (7)C9—C101.537 (11)
Sn1—C92.127 (8)C9—H9A0.9900
Sn1—C52.142 (7)C9—H9B0.9900
Sn1—O12.167 (5)C10—C111.490 (13)
Sn1—O3i2.457 (4)C10—H10A0.9900
O1—C131.293 (8)C10—H10B0.9900
O2—C131.226 (9)C11—C121.451 (15)
O3—C161.231 (8)C11—H11A0.9900
O3—Sn1ii2.457 (4)C11—H11B0.9900
N1—C161.339 (9)C12—H12A0.9800
N1—C171.412 (9)C12—H12B0.9800
N1—H10.8800C12—H12C0.9800
C1—C21.529 (11)C13—C141.499 (9)
C1—H1A0.9900C14—C151.321 (10)
C1—H1B0.9900C14—H140.9500
C2—C31.521 (11)C15—C161.491 (10)
C2—H2A0.9900C15—H150.9500
C2—H2B0.9900C17—C181.375 (10)
C3—C41.511 (11)C17—C261.429 (10)
C3—H3A0.9900C18—C191.402 (12)
C3—H3B0.9900C18—H180.9500
C4—H4A0.9800C19—C201.345 (13)
C4—H4B0.9800C19—H190.9500
C4—H4C0.9800C20—C211.416 (12)
C5—C61.524 (11)C20—H200.9500
C5—H5A0.9900C21—C221.405 (12)
C5—H5B0.9900C21—C261.428 (10)
C6—C71.499 (12)C22—C231.350 (13)
C6—H6A0.9900C22—H220.9500
C6—H6B0.9900C23—C241.397 (12)
C7—C81.519 (12)C23—H230.9500
C7—H7A0.9900C24—C251.364 (11)
C7—H7B0.9900C24—H240.9500
C8—H8A0.9800C25—C261.403 (10)
C8—H8B0.9800C25—H250.9500
C8—H8C0.9800
C1—Sn1—C9114.5 (3)Sn1—C9—H9A109.3
C1—Sn1—C5115.5 (3)C10—C9—H9B109.3
C9—Sn1—C5128.5 (3)Sn1—C9—H9B109.3
C1—Sn1—O187.8 (2)H9A—C9—H9B108.0
C9—Sn1—O197.8 (2)C11—C10—C9116.4 (8)
C5—Sn1—O195.8 (2)C11—C10—H10A108.2
C1—Sn1—O3i90.3 (2)C9—C10—H10A108.2
C9—Sn1—O3i82.1 (2)C11—C10—H10B108.2
C5—Sn1—O3i85.8 (2)C9—C10—H10B108.2
O1—Sn1—O3i177.97 (17)H10A—C10—H10B107.3
C13—O1—Sn1118.6 (4)C12—C11—C10115.3 (9)
C16—O3—Sn1ii147.0 (5)C12—C11—H11A108.4
C16—N1—C17126.6 (6)C10—C11—H11A108.4
C16—N1—H1116.7C12—C11—H11B108.4
C17—N1—H1116.7C10—C11—H11B108.4
C2—C1—Sn1113.9 (5)H11A—C11—H11B107.5
C2—C1—H1A108.8C11—C12—H12A109.5
Sn1—C1—H1A108.8C11—C12—H12B109.5
C2—C1—H1B108.8H12A—C12—H12B109.5
Sn1—C1—H1B108.8C11—C12—H12C109.5
H1A—C1—H1B107.7H12A—C12—H12C109.5
C3—C2—C1114.4 (7)H12B—C12—H12C109.5
C3—C2—H2A108.7O2—C13—O1124.3 (6)
C1—C2—H2A108.7O2—C13—C14123.0 (6)
C3—C2—H2B108.7O1—C13—C14112.7 (6)
C1—C2—H2B108.7C15—C14—C13130.7 (7)
H2A—C2—H2B107.6C15—C14—H14114.6
C4—C3—C2113.7 (7)C13—C14—H14114.6
C4—C3—H3A108.8C14—C15—C16134.2 (6)
C2—C3—H3A108.8C14—C15—H15112.9
C4—C3—H3B108.8C16—C15—H15112.9
C2—C3—H3B108.8O3—C16—N1123.0 (6)
H3A—C3—H3B107.7O3—C16—C15118.1 (6)
C3—C4—H4A109.5N1—C16—C15119.0 (6)
C3—C4—H4B109.5C18—C17—N1121.5 (7)
H4A—C4—H4B109.5C18—C17—C26120.1 (7)
C3—C4—H4C109.5N1—C17—C26118.4 (6)
H4A—C4—H4C109.5C17—C18—C19120.4 (8)
H4B—C4—H4C109.5C17—C18—H18119.8
C6—C5—Sn1117.7 (5)C19—C18—H18119.8
C6—C5—H5A107.9C20—C19—C18121.2 (8)
Sn1—C5—H5A107.9C20—C19—H19119.4
C6—C5—H5B107.9C18—C19—H19119.4
Sn1—C5—H5B107.9C19—C20—C21120.8 (8)
H5A—C5—H5B107.2C19—C20—H20119.6
C7—C6—C5115.2 (7)C21—C20—H20119.6
C7—C6—H6A108.5C22—C21—C20122.5 (8)
C5—C6—H6A108.5C22—C21—C26118.4 (8)
C7—C6—H6B108.5C20—C21—C26119.1 (7)
C5—C6—H6B108.5C23—C22—C21121.8 (8)
H6A—C6—H6B107.5C23—C22—H22119.1
C6—C7—C8112.8 (8)C21—C22—H22119.1
C6—C7—H7A109.0C22—C23—C24120.1 (8)
C8—C7—H7A109.0C22—C23—H23120.0
C6—C7—H7B109.0C24—C23—H23120.0
C8—C7—H7B109.0C25—C24—C23120.1 (8)
H7A—C7—H7B107.8C25—C24—H24119.9
C7—C8—H8A109.5C23—C24—H24119.9
C7—C8—H8B109.5C24—C25—C26121.4 (7)
H8A—C8—H8B109.5C24—C25—H25119.3
C7—C8—H8C109.5C26—C25—H25119.3
H8A—C8—H8C109.5C25—C26—C21118.2 (7)
H8B—C8—H8C109.5C25—C26—C17123.5 (7)
C10—C9—Sn1111.6 (5)C21—C26—C17118.3 (7)
C10—C9—H9A109.3
C1—Sn1—O1—C13171.1 (6)C17—N1—C16—O32.4 (11)
C9—Sn1—O1—C1356.7 (6)C17—N1—C16—C15177.0 (6)
C5—Sn1—O1—C1373.5 (6)C14—C15—C16—O3168.7 (8)
C9—Sn1—C1—C2173.8 (5)C14—C15—C16—N111.9 (12)
C5—Sn1—C1—C219.2 (6)C16—N1—C17—C1834.8 (11)
O1—Sn1—C1—C276.2 (5)C16—N1—C17—C26147.5 (7)
O3i—Sn1—C1—C2104.7 (5)N1—C17—C18—C19178.7 (7)
Sn1—C1—C2—C3180.0 (5)C26—C17—C18—C191.0 (11)
C1—C2—C3—C470.2 (10)C17—C18—C19—C202.1 (13)
C1—Sn1—C5—C6134.8 (5)C18—C19—C20—C212.6 (13)
C9—Sn1—C5—C630.0 (7)C19—C20—C21—C22178.3 (8)
O1—Sn1—C5—C6134.8 (5)C19—C20—C21—C262.0 (12)
O3i—Sn1—C5—C646.5 (5)C20—C21—C22—C23179.8 (8)
Sn1—C5—C6—C771.0 (8)C26—C21—C22—C230.5 (13)
C5—C6—C7—C8177.7 (7)C21—C22—C23—C240.0 (14)
C1—Sn1—C9—C1017.1 (6)C22—C23—C24—C250.4 (14)
C5—Sn1—C9—C10147.8 (5)C23—C24—C25—C260.4 (12)
O1—Sn1—C9—C10108.3 (5)C24—C25—C26—C210.2 (11)
O3i—Sn1—C9—C1069.6 (5)C24—C25—C26—C17178.9 (7)
Sn1—C9—C10—C11177.8 (6)C22—C21—C26—C250.6 (10)
C9—C10—C11—C1261.2 (13)C20—C21—C26—C25179.7 (7)
Sn1—O1—C13—O26.8 (10)C22—C21—C26—C17179.4 (7)
Sn1—O1—C13—C14174.8 (5)C20—C21—C26—C170.9 (10)
O2—C13—C14—C1519.2 (13)C18—C17—C26—C25179.2 (7)
O1—C13—C14—C15162.4 (8)N1—C17—C26—C253.1 (10)
C13—C14—C15—C160.4 (15)C18—C17—C26—C210.4 (10)
Sn1ii—O3—C16—N1142.2 (7)N1—C17—C26—C21178.2 (6)
Sn1ii—O3—C16—C1537.2 (11)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.822.669 (7)162

Experimental details

Crystal data
Chemical formulaC26H37NO3Sn
Mr530.26
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)9.5705 (7), 11.7377 (9), 12.4726 (11)
α, β, γ (°)97.011 (3), 107.571 (4), 102.297 (6)
V3)1278.71 (18)
Z2
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.15 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV: Blessing, 1997)
Tmin, Tmax0.861, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
8025, 4329, 3640
Rint0.035
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.169, 1.13
No. of reflections4329
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.80, 1.43

Computer programs: COLLECT (Hooft, 1998), HKL DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SAPI91 (Fan, 1991), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976).

Selected geometric parameters (Å, º) top
Sn1—C12.129 (7)O1—C131.293 (8)
Sn1—C92.127 (8)O2—C131.226 (9)
Sn1—C52.142 (7)O3—C161.231 (8)
Sn1—O12.167 (5)N1—C161.339 (9)
Sn1—O3i2.457 (4)N1—C171.412 (9)
C1—Sn1—C9114.5 (3)C9—Sn1—O3i82.1 (2)
C1—Sn1—C5115.5 (3)C5—Sn1—O3i85.8 (2)
C9—Sn1—C5128.5 (3)O1—Sn1—O3i177.97 (17)
C1—Sn1—O187.8 (2)C13—O1—Sn1118.6 (4)
C9—Sn1—O197.8 (2)C16—O3—Sn1ii147.0 (5)
C5—Sn1—O195.8 (2)C16—N1—C17126.6 (6)
C1—Sn1—O3i90.3 (2)
Symmetry codes: (i) x+1, y, z; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O20.881.822.669 (7)162
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds