Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title binuclear complex, [CuFe(CN)5(C8H21N5O2)(NO)]·2H2O or [CuFe(nelin)(CN)5(NO)]·2H2O (nelin is 5-methyl-5-nitro-3,7-di­aza­nonane-1,9-di­amine) consists of discrete binuclear mixed-metal species, with a Cu centre linked to an Fe centre through a cyano bridge, and two water mol­ecules of crystallization. In the complex, the CuII ion is coordinated by five N atoms and has a distorted square-pyramidal geometry. The FeII centre is in a distorted octahedral environment.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102009149/fg1643sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102009149/fg1643Isup2.hkl
Contains datablock I

CCDC reference: 181930

Comment top

It is well known that the cyanide ion may coordinate through the C atom, acting as a monodentate ligand, or through both the C and N atoms, acting as a bridging ligand (Cramer et al., 1965). The preparation and study of polynuclear cyanide-bridged metal complexes, especially ferro- and ferricyanide complexes, have been of great interest in recent years due to the unusual electronic state, magnetic behaviour and photochemical properties of these compounds (Alcock et al., 1993; Entley & Giroloni, 1994; Clemente-Leon et al., 2001). Several studies have been made of the [Fe(CN)5(NO)]2- anion (Olabe et al., 1984; Zhan et al., 1999). Attempts have been made to clarify the structural correlation with the photochemical or magnetic properties of polynuclear complexes with the nitroprusside. We report here the preparation and structure of a new cyano-bridged Cu—Fe complex, namely [Cu(nelin)Fe(CN)5(NO)]·2H2O, (I). \sch

The dinuclear unit of (I) comprises one [Fe(CN)5(NO)]2- anion linked to one [Cu(nelin)]2+ cation through a CN- ligand. As shown in Fig. 1, the coordination environment of the Cu atom can be described as distorted square-based pyramidal. The basal plane is constructed by the coordination of the four N atoms of the tetradentate nelin ligand, and the N atom of the cyanide group occupies the axial position. The Cu—N distances reveal a small tetragonal distortion of the Cu—N4 plane, with the Cu—N bonds to the secondary amines being slightly longer than the Cu—N bonds to the primary amines, and this may be a consequence of steric differences for the N atoms. Within the Cu—N4 plane, the N2—Cu—N3 angle of 92.11 (7)° is about 3.6° smaller than the N1—Cu—N4 angle because of the steric difference. This is different from the similar structure (name or formula?) studied by Bernhardt et al. (1990), in which the trans angles are almost the same. The axial Cu—N6 bond is elongated, as in the case of [Cu2(oxpn)Fe(CN)5(NO)]n [oxpn is N,N'-bis(3-aminopropyl)oxamide; Chen et al., 1995] and [Cu(dmen)2Fe(CN)5(NO)] (dmen is 2-dimethylaminoethylamine; Mondal et al., 2000).

The FeII atom is in a deformed octahedral arrangement. The equatorial plane is defined by four C atoms of the cyanides, and the two axial sites are occupied by a cyanide C atom and the N atom of the nitrosyl group. The Fe—C, Fe—N, C—N and N—O bond lengths in the [Fe(CN)5(NO)] moiety are comparable with those reported for other multinuclear complexes of [Fe(CN)5(NO)]2- (Shyu et al., 1997; Zhan et al., 1999). The Fe—N distance [1.651 (2) Å] is much shorter than the other five Fe—C distances, which lie between 1.939 (3) and 1.948 (2) Å. Hence, the NO ligand is perfectly localized in the structure.

According to molecular orbital theory, M—NO+ will be nearly linear, which is proved in (I) by the Fe—N—O bond angle of 179.1 (2)°. The Fe—C—N bond angles [in the range 176.7 (2) to 179.2 (2)°] are also nearly linear. The Cu—N6—C9 bond angle is 157.1 (2)°, indicating a nonlinear linkage between the N atom of the cyanide ligand and the CuII atom.

Hydrogen-bonding interactions play an important role in the solid-state structure of (I), as shown in Fig. 2. In the unit cell, the complex is linked by hydrogen bonds to form sheets which lie in the domain 0 < z < 1/2, and these sheets are then linked by the two water molecules via O—H···N hydrogen bonds to give a three-dimensional network.

Experimental top

To an aqueous solution (15 ml) of [Cu(nelin)(ClO4)2] (0.48 g, 1 mmol), an aqueous solution (15 ml) containing Na2[Fe(CN)5(NO)]·2H2O (0.29 g, 1 mmol) was added dropwise. After stirring for 30 min at room temperature, the resulting precipitate was collected by suction filtration. Dark-purple single crystals of (I) were obtained by recrystallizing from water in the dark.

Refinement top

All H atoms were visible in difference maps. The water H atoms were refined with DFIX restraints (SHELXL97; Sheldrick 1997), with O—H = 0.82 (3) Å and H···H = 1.37 (3) Å. All other H atoms were allowed for as riding atoms, with C—H = 0.96 and 0.97 Å, and N—H = 0.90 and 0.91 Å. The nitro group (N5/O1/O2) showed some signs of disorder (one O atom markedly anisotropic), and this was allowed for by refining atom O2 over two closely adjacent sites with 0.5 occupancy and with N5—O2 and N5—O2' restrained to be 1.22 (1) Å.

Computing details top

Data collection: XSCANS (Siemens, 1991); cell refinement: XSCANS; data reduction: SHELXTL-Plus (Sheldrick, 1990a); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990b); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXTL-Plus.

Figures top
[Figure 1] Fig. 1. A view of the coordination environment in (I), shown with 35% probability displacement ellipsoids. Hydrogen bonds are illustrated as dotted lines.
[Figure 2] Fig. 2. The molecular packing diagram for (I). Atoms labelled with an asterisk (*), hash sign (#) or dollar sign () are at symmetry positions (x - 1, y, z), (x, y - 1, z) and (1 + x, y - 1, z), respectively.
µ-Cyano-1:2κ2C:N-tetracyano-1κ4C-(5-methyl-5-nitro-3,7-diazanonane- 1,9-diamine-2κ4N)-nitrosyl-1κN-copper(II)iron(II) dihydrate top
Crystal data top
[CuFe(C8H21N5O2)(CN)5(NO)]·2H2OZ = 2
Mr = 534.83F(000) = 550
Triclinic, P1Dx = 1.613 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.470 (2) ÅCell parameters from 31 reflections
b = 9.702 (2) Åθ = 2.6–15.9°
c = 14.648 (3) ŵ = 1.67 mm1
α = 85.55 (1)°T = 291 K
β = 80.11 (2)°Prism, dark purple
γ = 68.20 (1)°0.58 × 0.54 × 0.40 mm
V = 1100.9 (4) Å3
Data collection top
Siemens P4
diffractometer
3436 reflections with I > 2σ(I)
Radiation source: normal-focus sealed tubeRint = 0.008
Graphite monochromatorθmax = 25.0°, θmin = 2.3°
ω scansh = 010
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
k = 1011
Tmin = 0.380, Tmax = 0.512l = 1717
4302 measured reflections3 standard reflections every 97 reflections
3874 independent reflections intensity decay: 0.5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0379P)2 + 0.3921P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3874 reflectionsΔρmax = 0.33 e Å3
307 parametersΔρmin = 0.27 e Å3
7 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0042 (7)
Crystal data top
[CuFe(C8H21N5O2)(CN)5(NO)]·2H2Oγ = 68.20 (1)°
Mr = 534.83V = 1100.9 (4) Å3
Triclinic, P1Z = 2
a = 8.470 (2) ÅMo Kα radiation
b = 9.702 (2) ŵ = 1.67 mm1
c = 14.648 (3) ÅT = 291 K
α = 85.55 (1)°0.58 × 0.54 × 0.40 mm
β = 80.11 (2)°
Data collection top
Siemens P4
diffractometer
3436 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements)
(North et al., 1968)
Rint = 0.008
Tmin = 0.380, Tmax = 0.5123 standard reflections every 97 reflections
4302 measured reflections intensity decay: 0.5%
3874 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0257 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.33 e Å3
3874 reflectionsΔρmin = 0.27 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu0.19133 (3)0.20779 (3)0.191616 (17)0.02803 (9)
Fe0.18785 (4)0.73472 (3)0.32692 (2)0.02823 (10)
O10.7112 (2)0.3337 (2)0.09481 (14)0.0593 (5)
O20.7135 (14)0.1735 (11)0.1990 (12)0.054 (2)0.50
O40.2433 (3)0.6895 (2)0.59839 (14)0.0542 (5)
O50.6254 (3)0.8399 (3)0.04973 (14)0.0566 (5)
N10.0791 (3)0.1023 (2)0.28877 (14)0.0411 (5)
H1NA0.02750.16410.31130.049*
H1NB0.07020.02410.26390.049*
N20.3421 (2)0.20215 (18)0.28489 (11)0.0272 (4)
H2N0.44250.12370.27080.033*
N30.3198 (2)0.3044 (2)0.09380 (12)0.0301 (4)
H3N0.42360.23490.07180.036*
N40.0977 (2)0.1613 (2)0.08578 (13)0.0404 (5)
H4NA0.12490.06270.08320.049*
H4NB0.01770.20540.09440.049*
N50.6355 (2)0.2906 (2)0.16278 (14)0.0375 (4)
N60.0187 (2)0.4357 (2)0.22588 (14)0.0383 (5)
O30.4086 (3)0.6420 (2)0.45856 (14)0.0692 (6)
N80.0611 (3)0.8285 (2)0.17842 (15)0.0464 (5)
N90.1116 (3)0.6357 (3)0.43963 (18)0.0657 (7)
N100.4574 (3)0.8736 (2)0.19694 (14)0.0446 (5)
N110.3116 (3)1.0431 (2)0.41346 (15)0.0494 (5)
C10.1832 (3)0.0516 (3)0.36375 (18)0.0487 (6)
H1A0.27630.04220.34790.058*
H1B0.11280.03770.42060.058*
C20.2548 (3)0.1685 (3)0.37641 (16)0.0422 (6)
H2A0.16240.25780.40110.051*
H2B0.33630.13300.41990.051*
C30.3868 (3)0.3335 (2)0.29182 (15)0.0318 (5)
H3A0.47190.30830.33310.038*
H3B0.28470.41150.32110.038*
C40.4559 (3)0.3972 (2)0.20284 (15)0.0312 (5)
C50.3478 (3)0.4329 (2)0.12536 (15)0.0328 (5)
H5A0.23680.50850.14650.039*
H5B0.40370.47410.07300.039*
C60.2123 (3)0.3470 (3)0.01910 (16)0.0457 (6)
H6A0.27370.37690.03620.055*
H6B0.10670.43000.03840.055*
C70.1713 (3)0.2153 (3)0.00112 (17)0.0537 (7)
H7A0.08980.24380.04460.064*
H7B0.27530.13730.02860.064*
C80.4822 (3)0.5369 (3)0.2282 (2)0.0486 (6)
H8A0.37430.60720.25640.058*
H8B0.52550.58020.17320.058*
H8C0.56320.51060.27100.058*
C90.0858 (3)0.5470 (2)0.26230 (15)0.0309 (5)
N70.3177 (3)0.6788 (2)0.40502 (13)0.0380 (4)
C110.0329 (3)0.7968 (2)0.23372 (16)0.0337 (5)
C120.0015 (3)0.6711 (3)0.39785 (17)0.0408 (5)
C130.3552 (3)0.8191 (2)0.24329 (15)0.0325 (5)
C140.2636 (3)0.9302 (2)0.37982 (15)0.0342 (5)
O2'0.6747 (15)0.1657 (10)0.1960 (14)0.068 (4)0.50
H4OA0.221 (5)0.662 (4)0.5513 (15)0.105 (15)*
H4OB0.270 (4)0.764 (2)0.5843 (19)0.071 (11)*
H5OA0.586 (4)0.853 (4)0.0936 (15)0.065 (10)*
H5OB0.706 (3)0.815 (4)0.072 (2)0.068 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu0.03029 (15)0.03079 (15)0.02506 (15)0.01437 (11)0.00042 (10)0.00438 (10)
Fe0.02927 (17)0.02657 (17)0.02740 (17)0.00988 (13)0.00095 (13)0.00527 (12)
O10.0360 (10)0.0706 (13)0.0622 (12)0.0185 (9)0.0076 (9)0.0141 (10)
O20.018 (5)0.052 (3)0.078 (4)0.005 (2)0.002 (4)0.031 (3)
O40.0621 (12)0.0578 (12)0.0510 (12)0.0318 (10)0.0077 (10)0.0001 (9)
O50.0446 (11)0.0839 (15)0.0422 (11)0.0244 (11)0.0038 (9)0.0080 (10)
N10.0459 (12)0.0410 (11)0.0428 (11)0.0267 (10)0.0037 (9)0.0053 (9)
N20.0246 (8)0.0279 (9)0.0256 (9)0.0075 (7)0.0013 (7)0.0030 (7)
N30.0236 (9)0.0381 (10)0.0254 (9)0.0078 (8)0.0040 (7)0.0006 (7)
N40.0308 (10)0.0463 (12)0.0455 (11)0.0132 (9)0.0048 (9)0.0153 (9)
N50.0255 (10)0.0426 (12)0.0447 (12)0.0130 (9)0.0062 (9)0.0022 (9)
N60.0337 (10)0.0317 (10)0.0452 (11)0.0105 (8)0.0062 (9)0.0101 (9)
O30.0724 (14)0.0677 (13)0.0628 (13)0.0366 (12)0.0283 (11)0.0036 (11)
N80.0441 (12)0.0526 (13)0.0474 (12)0.0271 (11)0.0044 (10)0.0068 (10)
N90.0538 (15)0.0768 (18)0.0572 (15)0.0053 (13)0.0207 (13)0.0148 (13)
N100.0439 (12)0.0485 (12)0.0404 (12)0.0139 (10)0.0082 (10)0.0074 (10)
N110.0690 (15)0.0354 (12)0.0425 (12)0.0168 (11)0.0075 (11)0.0070 (10)
C10.0463 (14)0.0451 (14)0.0485 (15)0.0182 (12)0.0052 (12)0.0153 (12)
C20.0402 (13)0.0610 (16)0.0256 (11)0.0217 (12)0.0022 (10)0.0090 (11)
C30.0304 (11)0.0379 (12)0.0287 (11)0.0135 (9)0.0049 (9)0.0041 (9)
C40.0238 (10)0.0324 (11)0.0377 (12)0.0113 (9)0.0037 (9)0.0001 (9)
C50.0272 (11)0.0345 (12)0.0363 (12)0.0129 (9)0.0041 (9)0.0095 (9)
C60.0390 (13)0.0704 (18)0.0273 (12)0.0191 (12)0.0115 (10)0.0115 (11)
C70.0445 (15)0.087 (2)0.0307 (13)0.0222 (14)0.0082 (11)0.0149 (13)
C80.0453 (15)0.0409 (14)0.0672 (18)0.0242 (12)0.0081 (13)0.0042 (13)
C90.0272 (11)0.0317 (12)0.0329 (11)0.0118 (9)0.0005 (9)0.0018 (9)
N70.0421 (11)0.0309 (10)0.0363 (11)0.0113 (9)0.0043 (9)0.0067 (8)
C110.0347 (12)0.0307 (11)0.0380 (12)0.0134 (10)0.0046 (10)0.0087 (9)
C120.0415 (13)0.0391 (13)0.0365 (13)0.0084 (11)0.0028 (11)0.0097 (10)
C130.0347 (12)0.0300 (11)0.0329 (11)0.0141 (10)0.0032 (10)0.0089 (9)
C140.0400 (12)0.0338 (12)0.0287 (11)0.0137 (10)0.0043 (9)0.0015 (9)
O2'0.017 (5)0.047 (4)0.115 (6)0.003 (3)0.016 (4)0.017 (4)
Geometric parameters (Å, º) top
Cu—N12.0019 (19)N5—O2'1.217 (4)
Cu—N42.0076 (19)N5—C41.532 (3)
Cu—N22.0093 (17)N6—C91.141 (3)
Cu—N32.0322 (18)O3—N71.135 (3)
Cu—N62.2915 (19)N8—C111.143 (3)
Fe—N71.651 (2)N9—C121.135 (3)
Fe—C131.939 (3)N10—C131.139 (3)
Fe—C141.940 (2)N11—C141.136 (3)
Fe—C121.941 (3)C1—C21.507 (4)
Fe—C91.944 (2)C1—H1A0.97
Fe—C111.948 (2)C1—H1B0.97
O1—N51.222 (3)C2—H2A0.97
O2—N51.216 (4)C2—H2B0.97
O4—H4OA0.83 (3)C3—C41.518 (3)
O4—H4OB0.84 (3)C3—H3A0.97
O5—H5OA0.81 (3)C3—H3B0.97
O5—H5OB0.82 (3)C4—C51.519 (3)
N1—C11.467 (3)C4—C81.535 (3)
N1—H1NA0.90C5—H5A0.97
N1—H1NB0.90C5—H5B0.97
N2—C31.473 (3)C6—C71.505 (4)
N2—C21.490 (3)C6—H6A0.97
N2—H2N0.91C6—H6B0.97
N3—C51.473 (3)C7—H7A0.97
N3—C61.480 (3)C7—H7B0.97
N3—H3N0.91C8—H8A0.96
N4—C71.466 (3)C8—H8B0.96
N4—H4NA0.90C8—H8C0.96
N4—H4NB0.90
N1—Cu—N495.69 (8)O1—N5—C4117.11 (18)
N1—Cu—N285.80 (8)C9—N6—Cu157.02 (18)
N4—Cu—N2163.66 (7)N1—C1—C2107.74 (19)
N1—Cu—N3176.38 (8)N1—C1—H1A110.2
N4—Cu—N385.49 (8)C2—C1—H1A110.2
N2—Cu—N392.11 (7)N1—C1—H1B110.2
N1—Cu—N693.43 (8)C2—C1—H1B110.2
N4—Cu—N697.44 (8)H1A—C1—H1B108.5
N2—Cu—N698.71 (7)N2—C2—C1108.85 (19)
N3—Cu—N689.80 (7)N2—C2—H2A109.9
N7—Fe—C1394.64 (10)C1—C2—H2A109.9
N7—Fe—C1493.92 (9)N2—C2—H2B109.9
C13—Fe—C1487.93 (9)C1—C2—H2B109.9
N7—Fe—C1295.20 (10)H2A—C2—H2B108.3
C13—Fe—C12169.74 (10)N2—C3—C4117.77 (17)
C14—Fe—C1288.52 (10)N2—C3—H3A107.9
N7—Fe—C994.46 (9)C4—C3—H3A107.9
C13—Fe—C992.65 (9)N2—C3—H3B107.9
C14—Fe—C9171.53 (9)C4—C3—H3B107.9
C12—Fe—C989.46 (9)H3A—C3—H3B107.2
N7—Fe—C11178.87 (9)C3—C4—C5116.34 (17)
C13—Fe—C1185.45 (9)C3—C4—N5110.60 (17)
C14—Fe—C1187.21 (9)C5—C4—N5106.64 (17)
C12—Fe—C1184.76 (10)C3—C4—C8107.39 (18)
C9—Fe—C1184.41 (9)C5—C4—C8110.07 (19)
H4OA—O4—H4OB109 (3)N5—C4—C8105.25 (17)
H5OA—O5—H5OB106 (3)N3—C5—C4114.30 (17)
C1—N1—Cu109.09 (14)N3—C5—H5A108.7
C1—N1—H1NA109.9C4—C5—H5A108.7
Cu—N1—H1NA109.9N3—C5—H5B108.7
C1—N1—H1NB109.9C4—C5—H5B108.7
Cu—N1—H1NB109.9H5A—C5—H5B107.6
H1NA—N1—H1NB108.3N3—C6—C7108.4 (2)
C3—N2—C2110.02 (17)N3—C6—H6A110.0
C3—N2—Cu118.11 (13)C7—C6—H6A110.0
C2—N2—Cu106.39 (13)N3—C6—H6B110.0
C3—N2—H2N107.3C7—C6—H6B110.0
C2—N2—H2N107.3H6A—C6—H6B108.4
Cu—N2—H2N107.3N4—C7—C6108.85 (19)
C5—N3—C6111.53 (18)N4—C7—H7A109.9
C5—N3—Cu115.17 (13)C6—C7—H7A109.9
C6—N3—Cu103.63 (13)N4—C7—H7B109.9
C5—N3—H3N108.8C6—C7—H7B109.9
C6—N3—H3N108.8H7A—C7—H7B108.3
Cu—N3—H3N108.8C4—C8—H8A109.5
C7—N4—Cu109.33 (14)C4—C8—H8B109.5
C7—N4—H4NA109.8H8A—C8—H8B109.5
Cu—N4—H4NA109.8C4—C8—H8C109.5
C7—N4—H4NB109.8H8A—C8—H8C109.5
Cu—N4—H4NB109.8H8B—C8—H8C109.5
H4NA—N4—H4NB108.3N6—C9—Fe176.73 (19)
O2—N5—O2'17.7 (12)O3—N7—Fe179.1 (2)
O2—N5—O1118.0 (7)N8—C11—Fe177.8 (2)
O2'—N5—O1127.7 (8)N9—C12—Fe179.2 (2)
O2—N5—C4124.5 (8)N10—C13—Fe177.0 (2)
O2'—N5—C4114.4 (7)N11—C14—Fe177.4 (2)
N4—Cu—N1—C1152.24 (16)C3—N2—C2—C1170.19 (19)
N2—Cu—N1—C111.42 (16)Cu—N2—C2—C141.2 (2)
N6—Cu—N1—C1109.92 (16)N1—C1—C2—N252.2 (3)
N1—Cu—N2—C3140.67 (15)C2—N2—C3—C4172.28 (18)
N4—Cu—N2—C3123.4 (3)Cu—N2—C3—C449.9 (2)
N3—Cu—N2—C342.29 (15)N2—C3—C4—C553.0 (3)
N6—Cu—N2—C347.83 (15)N2—C3—C4—N568.8 (2)
N1—Cu—N2—C216.51 (14)N2—C3—C4—C8176.85 (18)
N4—Cu—N2—C2112.4 (3)O2—N5—C4—C32.1 (10)
N3—Cu—N2—C2166.46 (14)O2'—N5—C4—C314.6 (10)
N6—Cu—N2—C276.33 (15)O1—N5—C4—C3174.57 (19)
N4—Cu—N3—C5148.07 (15)O2—N5—C4—C5129.5 (10)
N2—Cu—N3—C548.12 (14)O2'—N5—C4—C5112.8 (10)
N6—Cu—N3—C550.59 (14)O1—N5—C4—C558.0 (2)
N4—Cu—N3—C625.98 (15)O2—N5—C4—C8113.6 (10)
N2—Cu—N3—C6170.21 (15)O2'—N5—C4—C8130.3 (10)
N6—Cu—N3—C671.50 (15)O1—N5—C4—C858.9 (3)
N1—Cu—N4—C7175.14 (17)C6—N3—C5—C4179.42 (18)
N2—Cu—N4—C780.7 (3)Cu—N3—C5—C461.7 (2)
N3—Cu—N4—C71.42 (16)C3—C4—C5—N359.4 (2)
N6—Cu—N4—C790.64 (17)N5—C4—C5—N364.5 (2)
N1—Cu—N6—C989.6 (5)C8—C4—C5—N3178.14 (18)
N4—Cu—N6—C9174.2 (4)C5—N3—C6—C7173.10 (19)
N2—Cu—N6—C93.3 (5)Cu—N3—C6—C748.6 (2)
N3—Cu—N6—C988.8 (5)Cu—N4—C7—C628.8 (2)
Cu—N1—C1—C236.7 (2)N3—C6—C7—N452.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4OA···N90.83 (3)2.09 (3)2.905 (4)167 (4)
O4—H4OB···N11i0.84 (3)2.03 (2)2.847 (3)165 (3)
O5—H5OA···N100.81 (3)2.07 (3)2.879 (3)173 (3)
O5—H5OB···N8ii0.82 (3)2.26 (3)3.014 (4)153 (3)
N1—H1NA···O4iii0.902.153.023 (3)162
N1—H1NB···N8iv0.902.383.278 (3)172
N2—H2N···N10v0.912.523.251 (3)138
N3—H3N···O5vi0.912.202.996 (3)145
N4—H4NA···O5v0.902.413.147 (3)140
N4—H4NB···O1ii0.902.173.058 (3)170
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y1, z; (vi) x, y+1, z.

Experimental details

Crystal data
Chemical formula[CuFe(C8H21N5O2)(CN)5(NO)]·2H2O
Mr534.83
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)8.470 (2), 9.702 (2), 14.648 (3)
α, β, γ (°)85.55 (1), 80.11 (2), 68.20 (1)
V3)1100.9 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.67
Crystal size (mm)0.58 × 0.54 × 0.40
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(North et al., 1968)
Tmin, Tmax0.380, 0.512
No. of measured, independent and
observed [I > 2σ(I)] reflections
4302, 3874, 3436
Rint0.008
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.067, 1.05
No. of reflections3874
No. of parameters307
No. of restraints7
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: XSCANS (Siemens, 1991), XSCANS, SHELXTL-Plus (Sheldrick, 1990a), SHELXS97 (Sheldrick, 1990b), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus.

Selected geometric parameters (Å, º) top
Cu—N12.0019 (19)Fe—C141.940 (2)
Cu—N42.0076 (19)Fe—C121.941 (3)
Cu—N22.0093 (17)Fe—C91.944 (2)
Cu—N32.0322 (18)Fe—C111.948 (2)
Cu—N62.2915 (19)N6—C91.141 (3)
Fe—N71.651 (2)O3—N71.135 (3)
Fe—C131.939 (3)
N1—Cu—N495.69 (8)C9—N6—Cu157.02 (18)
N4—Cu—N2163.66 (7)N6—C9—Fe176.73 (19)
N1—Cu—N3176.38 (8)O3—N7—Fe179.1 (2)
N2—Cu—N392.11 (7)N8—C11—Fe177.8 (2)
C13—Fe—C12169.74 (10)N9—C12—Fe179.2 (2)
C14—Fe—C9171.53 (9)N10—C13—Fe177.0 (2)
N7—Fe—C11178.87 (9)N11—C14—Fe177.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4OA···N90.83 (3)2.09 (3)2.905 (4)167 (4)
O4—H4OB···N11i0.84 (3)2.03 (2)2.847 (3)165 (3)
O5—H5OA···N100.81 (3)2.07 (3)2.879 (3)173 (3)
O5—H5OB···N8ii0.82 (3)2.26 (3)3.014 (4)153 (3)
N1—H1NA···O4iii0.902.153.023 (3)162
N1—H1NB···N8iv0.902.383.278 (3)172
N2—H2N···N10v0.912.523.251 (3)138
N3—H3N···O5vi0.912.202.996 (3)145
N4—H4NA···O5v0.902.413.147 (3)140
N4—H4NB···O1ii0.902.173.058 (3)170
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x+1, y1, z; (vi) x, y+1, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds