Download citation
Download citation
link to html
The cationic part of the homodifunctional amino­phospho­ranyl ligand, C41H41N2P2+·I-, shows interesting features associated with the N-P-C-P-N skeleton. The P-C(H) bond distances [1.696 (3) and 1.697 (3) Å] possess partial double-bond characteristics. The nature of the P-C(H) and P-N bonds suggests that the positive charge is only distributed around the P-C-P atoms. The structure has near twofold symmetry through the central methyl­ide-C atom.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004170/fg1596sup1.cif
Contains datablocks I, s358a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004170/fg1596Isup2.hkl
Contains datablock I

CCDC reference: 147648

Comment top

The amino-[(R2P-NXR')CR"] and iminophosphoranyl ligands [(R2P=NR')CXR"] are essentially tautomeric forms, their basicity and reactivity altered by changing the groups at either phosphorus (R = Me, Ph), nitrogen (X = H, Me; R' = H, Me, Ph, C6H4Y-4 where Y = Me, NO2) or methylide carbon (R" = H, Me, SiMe3). The iminophosphoranyl ligands and their mono-anions, are known to coordinate in various forms to electron rich metals such as RhI, IrI, PdII and PtII. They donate one, two or four electrons to the metal centre, ligating via nitrogen and methylide carbon atoms, producing chelating, ylid and terdentate species (Avis et al., 1995; Imhoff et al., 1991, 1995).

The title compound, (I), was unexpectedly synthesized in the reaction of [Rh(CH{PPh2=N-p-tolyl}2)(COD)] with MeI, involving formation of [Rh(COD)I]2 and the transfer of Me groups to nitrogen. The formation of the discrete cation-anion pair, shown in Figure 1, is distinct from a similar reaction of [Rh(CH{PPh2=N-p-tolyl}2)(COD)] with HCl (Imhoff et al., 1995) which resulted in protonation at one N and the methanide C. The cationic ligand (I) consists of two (N-methyl-N-p-tolylamino)diphenylphosphoranyl units attached via the phosphorus to a common methylide moiety. The P—N bond distances [1.656 (3) and 1.657 (3) Å] are typical of those found in aminophosphonium groups of metal complexes (Avis, et al., 1995, 1997; Imhoff, et al., 1989, 1993), but are significantly longer than those found in iminophosphoranyl ligands such as (Ph2P=NC6H4Me-4)2CH2 (Imhoff, et al., 1990) and (Ph2P=NC6H4Me-4)2CHMe (Avis et al., 1996). The P—N bond characteristics in these imino species were attributed to a p π (N) − d π (P) interaction. The nitrogen atoms in (I) are also sp2 hybridized but planar (nitrogen bond angles given in Table 1), producing little or no overlap between the nitrogen lone pair and the phosphorus d orbital. Both phosphorus atoms exhibit distorted tetrahedral geometries, with angles ranging from 103.96 (14)–114.01 (14)° around P1, and 103.84 (14)–114.40 (15)° for P2. \sch

The N—C and P—C(Ph) bond distances are in good agreement with values observed in related systems. The P—C(H) distances of 1.696 (3) and 1.697 (3) Å are comparable to those found in the [Ph3P=CH-PPh3]+ cation (Carroll & Titus, 1977), Na[PhCHPPh2CHPPh2] (Schmidbaur et al., 1980) and (MeSi)2CPh2-CHPPh2CH(MeSi)2 (Appel et al., 1984). These values lie between those expected for single and double P—C bonds, resulting in partial double-bond characteristics. The molecule possesses non-crystallographic C2-symmetry, considering the equivalence of bond lengths and bond angles around the N—P—C—P—N core. The puckering of the P—C—P component leads to a distorted trigonal geometry at C1, P1—C1—P2 = 133.0 (4)°, and reduces the overall symmetry to C1. The widening of this angle from the ideal 120° is possibly caused by steric repulsions between adjacent phenyl groups on the phosphorus atoms.

Only the P—C(H)—P distances have non-integral bond orders so presumably the charge is localized within the P—C—P component, as depicted by the mesomeric structure in the chemical scheme. Further delocalization, over the whole N—P—C—P—N skeleton, is precluded because of the non-planar arrangement of the atoms. The diffuse nature of the positive charge, and possibly steric hindrance, isolates the iodide anion from the cation. The shortest contacts between the iodide and adjacent aminophosphoranyl molecules involves interactions with methyl or phenyl H atoms: I1···H14Ci [3.15 Å], I1···H37ii [3.20 Å] and I1···H10 of 3.22 Å, [Symmetry codes: (i) 1 − x, −1/2 + y, 1/2 − z, (ii) 1 − x, 1/2 + y, 1/2 − z].

Experimental top

Compound (I) was obtained in the reaction of [Rh(CH{PPh2=N-p-tolyl}2)(COD)] with about 10 equivalents of MeI in benzene (Imhoff et al., 1995). Brown crystals suitable for X-ray diffraction were grown by slow diffusion of hexane into a room temperature solution of the compound in (1:1) benzene-dichloromethane.

Refinement top

X-ray data were collected with a sufficiently large collimator tube to ensure a homogeneous X-ray beam at the crystal by use of a Zr β-filter rather than the graphite monochromator (Alexander & Smith, 1962).

All hydrogen atoms, with the exception of H1 on C1, were constrained and allowed to ride on their carbon atoms with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl). Methyl-H atoms were refined as rigid groups which allow for rotation around the C—C bonds, whilst maintaining a tetrahedral geometry at the C atom. H1 was located from a difference Fourier map and its coordinates allowed to refine with the isotropic displacement parameter constrained to Uiso(H) = 1.2Ueq(C1); the C1—H1 bond length refined to 0.98 (3) Å.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF (Beurskens, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Plot of (I) with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.
(I) top
Crystal data top
C41H41N2P2+·IF(000) = 1536
Mr = 750.60Dx = 1.385 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.3126 (5) Åθ = 14.0–18.0°
b = 14.3251 (5) ŵ = 1.01 mm1
c = 18.9767 (7) ÅT = 295 K
β = 95.819 (3)°Block, brown
V = 3600.3 (2) Å30.40 × 0.30 × 0.13 mm
Z = 4
Data collection top
Enraf Nonius CAD-4F
diffractometer
5992 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.000
Graphite monochromatorθmax = 28.0°, θmin = 1.5°
ω/2θ scansh = 1717
Absorption correction: ψ scan
(North et al., 1968)
k = 180
Tmin = 0.788, Tmax = 0.877l = 024
8582 measured reflections3 standard reflections every 60 min
8582 independent reflections intensity decay: 1.0%
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0489P)2 + 3.4354P]
where P = (Fo2 + 2Fc2)/3
8582 reflections(Δ/σ)max = 0.003
423 parametersΔρmax = 1.35 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
C41H41N2P2+·IV = 3600.3 (2) Å3
Mr = 750.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.3126 (5) ŵ = 1.01 mm1
b = 14.3251 (5) ÅT = 295 K
c = 18.9767 (7) Å0.40 × 0.30 × 0.13 mm
β = 95.819 (3)°
Data collection top
Enraf Nonius CAD-4F
diffractometer
5992 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.788, Tmax = 0.8773 standard reflections every 60 min
8582 measured reflections intensity decay: 1.0%
8582 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.121H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 1.35 e Å3
8582 reflectionsΔρmin = 0.97 e Å3
423 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
P10.70774 (5)0.22908 (5)0.20870 (4)0.03127 (16)
P20.75940 (6)0.01665 (5)0.21083 (4)0.03257 (17)
N10.80742 (19)0.29886 (17)0.21373 (14)0.0379 (6)
N20.66219 (19)0.05518 (18)0.21320 (14)0.0409 (6)
C10.7284 (2)0.1223 (2)0.17440 (16)0.0338 (6)
H10.723 (2)0.125 (2)0.1224 (17)0.037 (9)*
C20.6057 (2)0.2817 (2)0.15102 (15)0.0357 (6)
C30.6031 (3)0.3760 (2)0.13516 (18)0.0472 (8)
H30.65480.41480.15440.057*
C40.5243 (3)0.4130 (3)0.0910 (2)0.0573 (10)
H40.52280.47670.08140.069*
C50.4478 (3)0.3565 (3)0.06124 (19)0.0547 (9)
H50.39520.38170.03120.066*
C60.4496 (2)0.2628 (3)0.07619 (19)0.0527 (9)
H60.39820.22440.05600.063*
C70.5276 (2)0.2251 (2)0.12108 (17)0.0438 (7)
H70.52780.16160.13130.053*
C80.6730 (2)0.2260 (2)0.29823 (16)0.0370 (6)
C90.5745 (2)0.2077 (2)0.31212 (19)0.0468 (8)
H90.52400.20040.27500.056*
C100.5518 (3)0.2004 (3)0.3817 (2)0.0610 (10)
H100.48620.18680.39110.073*
C110.6258 (3)0.2131 (3)0.4366 (2)0.0651 (11)
H110.60990.20890.48310.078*
C120.7230 (3)0.2319 (3)0.42324 (19)0.0572 (9)
H120.77280.24050.46070.069*
C130.7473 (3)0.2379 (3)0.35474 (18)0.0473 (8)
H130.81350.25000.34600.057*
C140.8098 (3)0.3909 (2)0.2490 (2)0.0502 (8)
H14A0.86800.39450.28320.075*
H14B0.74980.39880.27240.075*
H14C0.81340.43920.21430.075*
C150.8963 (2)0.2792 (2)0.17885 (16)0.0363 (6)
C160.9005 (3)0.2991 (2)0.10848 (18)0.0465 (8)
H160.84350.32180.08150.056*
C170.9891 (3)0.2855 (3)0.0775 (2)0.0547 (9)
H170.99050.29790.02950.066*
C181.0759 (3)0.2539 (3)0.1168 (2)0.0531 (9)
C191.0706 (2)0.2334 (3)0.1875 (2)0.0526 (9)
H191.12740.21030.21450.063*
C200.9822 (2)0.2467 (2)0.21863 (18)0.0462 (8)
H200.98040.23380.26650.055*
C211.1731 (3)0.2429 (4)0.0831 (3)0.0810 (14)
H21A1.22630.22530.11860.121*
H21B1.19000.30090.06190.121*
H21C1.16490.19530.04730.121*
C220.6704 (3)0.1469 (2)0.2488 (2)0.0503 (8)
H22A0.61960.15190.28110.076*
H22B0.73600.15300.27440.076*
H22C0.66090.19560.21390.076*
C230.5665 (2)0.0399 (2)0.17224 (18)0.0410 (7)
C240.5508 (3)0.0704 (3)0.1033 (2)0.0578 (10)
H240.60350.09770.08210.069*
C250.4572 (4)0.0607 (3)0.0655 (3)0.0753 (13)
H250.44770.08220.01910.090*
C260.3786 (3)0.0205 (3)0.0946 (3)0.0736 (13)
C270.3935 (3)0.0104 (3)0.1639 (3)0.0727 (14)
H270.34070.03860.18440.087*
C280.4882 (3)0.0005 (3)0.2035 (2)0.0540 (9)
H280.49750.01870.25050.065*
C290.2744 (4)0.0103 (4)0.0527 (4)0.121 (3)
H29A0.22380.00420.08500.182*
H29B0.26050.06450.02360.182*
H29C0.27380.04420.02320.182*
C300.8141 (2)0.0214 (2)0.30156 (16)0.0370 (6)
C310.7527 (2)0.0092 (2)0.35614 (17)0.0445 (8)
H310.68410.00220.34530.053*
C320.7924 (3)0.0138 (3)0.42560 (19)0.0535 (9)
H320.75120.00470.46180.064*
C330.8939 (3)0.0320 (3)0.4415 (2)0.0604 (10)
H330.92080.03540.48860.072*
C340.9558 (3)0.0453 (3)0.3885 (2)0.0619 (10)
H341.02390.05890.39970.074*
C350.9164 (3)0.0382 (3)0.31857 (19)0.0488 (8)
H350.95860.04460.28270.059*
C360.8512 (2)0.0341 (2)0.15745 (16)0.0370 (6)
C370.8521 (3)0.1285 (2)0.14133 (19)0.0479 (8)
H370.80400.16800.15750.057*
C380.9246 (3)0.1641 (3)0.1012 (2)0.0552 (9)
H380.92450.22740.09040.066*
C390.9959 (3)0.1072 (3)0.0773 (2)0.0552 (9)
H391.04480.13180.05100.066*
C400.9954 (3)0.0128 (3)0.0924 (2)0.0536 (9)
H401.04370.02610.07580.064*
C410.9233 (2)0.0238 (2)0.13203 (18)0.0456 (8)
H410.92300.08750.14180.055*
I10.25447 (2)0.118402 (18)0.374177 (18)0.06976 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0296 (3)0.0310 (4)0.0334 (4)0.0001 (3)0.0038 (3)0.0016 (3)
P20.0316 (4)0.0300 (4)0.0361 (4)0.0014 (3)0.0031 (3)0.0027 (3)
N10.0360 (13)0.0341 (13)0.0443 (15)0.0055 (10)0.0079 (11)0.0045 (11)
N20.0391 (14)0.0345 (13)0.0479 (16)0.0073 (11)0.0013 (12)0.0083 (12)
C10.0397 (15)0.0308 (14)0.0312 (15)0.0012 (12)0.0045 (12)0.0012 (12)
C20.0330 (15)0.0385 (16)0.0357 (16)0.0046 (12)0.0042 (12)0.0035 (13)
C30.053 (2)0.0397 (17)0.0476 (19)0.0025 (15)0.0005 (15)0.0005 (15)
C40.073 (3)0.0448 (19)0.054 (2)0.0216 (18)0.0020 (19)0.0064 (17)
C50.046 (2)0.073 (3)0.044 (2)0.0239 (18)0.0006 (15)0.0064 (18)
C60.0337 (17)0.076 (3)0.048 (2)0.0008 (17)0.0028 (14)0.0008 (19)
C70.0369 (16)0.0465 (18)0.0476 (19)0.0034 (14)0.0019 (14)0.0062 (15)
C80.0412 (16)0.0355 (15)0.0354 (16)0.0041 (13)0.0097 (12)0.0029 (13)
C90.0400 (17)0.0498 (19)0.052 (2)0.0025 (14)0.0130 (15)0.0007 (16)
C100.056 (2)0.063 (2)0.070 (3)0.0041 (18)0.034 (2)0.005 (2)
C110.085 (3)0.071 (3)0.043 (2)0.011 (2)0.025 (2)0.0062 (19)
C120.070 (2)0.061 (2)0.041 (2)0.010 (2)0.0061 (17)0.0005 (17)
C130.0478 (19)0.052 (2)0.0423 (19)0.0054 (15)0.0054 (15)0.0017 (15)
C140.054 (2)0.0400 (18)0.057 (2)0.0055 (15)0.0044 (16)0.0102 (16)
C150.0354 (15)0.0340 (15)0.0398 (17)0.0073 (12)0.0054 (12)0.0020 (13)
C160.0474 (19)0.0497 (19)0.0426 (19)0.0013 (15)0.0056 (15)0.0033 (15)
C170.063 (2)0.059 (2)0.045 (2)0.0047 (18)0.0218 (17)0.0001 (17)
C180.0428 (19)0.048 (2)0.071 (3)0.0139 (15)0.0190 (18)0.0149 (18)
C190.0336 (17)0.057 (2)0.066 (2)0.0023 (15)0.0033 (15)0.0047 (19)
C200.0419 (17)0.051 (2)0.0444 (19)0.0077 (15)0.0015 (14)0.0031 (15)
C210.054 (2)0.084 (3)0.110 (4)0.012 (2)0.037 (2)0.028 (3)
C220.054 (2)0.0398 (17)0.057 (2)0.0089 (15)0.0052 (17)0.0140 (16)
C230.0357 (16)0.0365 (16)0.0507 (19)0.0097 (13)0.0035 (14)0.0059 (14)
C240.049 (2)0.067 (2)0.057 (2)0.0077 (18)0.0013 (17)0.0022 (19)
C250.070 (3)0.079 (3)0.071 (3)0.018 (2)0.020 (2)0.008 (2)
C260.048 (2)0.060 (3)0.107 (4)0.016 (2)0.019 (2)0.024 (3)
C270.040 (2)0.050 (2)0.131 (4)0.0030 (17)0.023 (2)0.020 (3)
C280.0472 (19)0.047 (2)0.070 (2)0.0072 (16)0.0164 (17)0.0025 (18)
C290.064 (3)0.095 (4)0.191 (7)0.015 (3)0.053 (4)0.048 (4)
C300.0391 (16)0.0339 (15)0.0372 (16)0.0002 (12)0.0006 (12)0.0040 (13)
C310.0447 (18)0.0458 (18)0.0427 (19)0.0016 (14)0.0027 (14)0.0048 (14)
C320.065 (2)0.054 (2)0.0416 (19)0.0023 (18)0.0067 (17)0.0080 (16)
C330.074 (3)0.062 (2)0.042 (2)0.006 (2)0.0112 (18)0.0049 (18)
C340.045 (2)0.071 (3)0.065 (3)0.0003 (18)0.0173 (18)0.006 (2)
C350.0400 (17)0.054 (2)0.051 (2)0.0003 (15)0.0028 (15)0.0069 (16)
C360.0390 (16)0.0356 (15)0.0363 (16)0.0009 (12)0.0034 (12)0.0003 (13)
C370.058 (2)0.0364 (17)0.050 (2)0.0002 (15)0.0091 (16)0.0016 (15)
C380.074 (3)0.0399 (19)0.053 (2)0.0108 (18)0.0135 (19)0.0061 (16)
C390.055 (2)0.064 (2)0.049 (2)0.0109 (18)0.0169 (17)0.0051 (18)
C400.0468 (19)0.059 (2)0.058 (2)0.0022 (17)0.0166 (16)0.0003 (18)
C410.0446 (18)0.0398 (17)0.054 (2)0.0013 (14)0.0121 (15)0.0017 (15)
I10.06647 (18)0.04617 (15)0.0939 (2)0.00539 (12)0.00543 (15)0.00224 (14)
Geometric parameters (Å, º) top
P1—N11.656 (3)C21—H21A0.9600
P1—C11.696 (3)C21—H21B0.9600
P1—C81.806 (3)C21—H21C0.9600
P1—C21.820 (3)C22—H22A0.9600
P2—N21.658 (3)C22—H22B0.9600
P2—C11.697 (3)C22—H22C0.9600
P2—C301.801 (3)C23—C281.372 (5)
P2—C361.816 (3)C23—C241.375 (5)
N1—C151.441 (4)C24—C251.380 (6)
N1—C141.477 (4)C24—H240.9300
N2—C231.440 (4)C25—C261.360 (7)
N2—C221.477 (4)C25—H250.9300
C1—H10.98 (3)C26—C271.381 (7)
C2—C31.384 (4)C26—C291.534 (6)
C2—C71.393 (4)C27—C281.410 (6)
C3—C41.380 (5)C27—H270.9300
C3—H30.9300C28—H280.9300
C4—C51.377 (6)C29—H29A0.9600
C4—H40.9300C29—H29B0.9600
C5—C61.371 (5)C29—H29C0.9600
C5—H50.9300C30—C351.389 (4)
C6—C71.384 (5)C30—C311.394 (4)
C6—H60.9300C31—C321.371 (5)
C7—H70.9300C31—H310.9300
C8—C91.387 (4)C32—C331.379 (5)
C8—C131.394 (4)C32—H320.9300
C9—C101.388 (5)C33—C341.377 (6)
C9—H90.9300C33—H330.9300
C10—C111.371 (6)C34—C351.380 (5)
C10—H100.9300C34—H340.9300
C11—C121.370 (6)C35—H350.9300
C11—H110.9300C36—C371.387 (4)
C12—C131.374 (5)C36—C411.392 (4)
C12—H120.9300C37—C381.385 (5)
C13—H130.9300C37—H370.9300
C14—H14A0.9600C38—C391.363 (5)
C14—H14B0.9600C38—H380.9300
C14—H14C0.9600C39—C401.382 (5)
C15—C161.372 (4)C39—H390.9300
C15—C201.384 (4)C40—C411.382 (5)
C16—C171.384 (5)C40—H400.9300
C16—H160.9300C41—H410.9300
C17—C181.387 (5)P1—P23.1192 (11)
C17—H170.9300P1—N24.119 (3)
C18—C191.382 (5)P2—N14.092 (3)
C18—C211.509 (5)N1—C12.812 (4)
C19—C201.383 (5)N1—N25.427 (3)
C19—H190.9300N2—C12.813 (4)
C20—H200.9300
N1—P1—C1113.99 (14)C19—C20—C15120.3 (3)
N1—P1—C8103.94 (14)C19—C20—H20119.9
C1—P1—C8113.95 (14)C15—C20—H20119.9
N1—P1—C2109.26 (14)C18—C21—H21A109.5
C1—P1—C2106.43 (14)C18—C21—H21B109.5
C8—P1—C2109.20 (14)H21A—C21—H21B109.5
N2—P2—C1113.96 (14)C18—C21—H21C109.5
N2—P2—C30103.81 (14)H21A—C21—H21C109.5
C1—P2—C30114.43 (14)H21B—C21—H21C109.5
N2—P2—C36109.75 (14)N2—C22—H22A109.5
C1—P2—C36106.21 (15)N2—C22—H22B109.5
C30—P2—C36108.60 (14)H22A—C22—H22B109.5
C15—N1—C14113.7 (2)N2—C22—H22C109.5
C15—N1—P1123.1 (2)H22A—C22—H22C109.5
C14—N1—P1123.0 (2)H22B—C22—H22C109.5
C23—N2—C22113.7 (2)C28—C23—C24119.6 (3)
C23—N2—P2122.8 (2)C28—C23—N2119.9 (3)
C22—N2—P2122.9 (2)C24—C23—N2120.4 (3)
P1—C1—P2133.64 (19)C23—C24—C25120.3 (4)
C3—C2—C7118.6 (3)C23—C24—H24119.9
C3—C2—P1122.4 (2)C25—C24—H24119.9
C7—C2—P1119.0 (2)C26—C25—C24121.5 (5)
C4—C3—C2120.5 (3)C26—C25—H25119.2
C4—C3—H3119.7C24—C25—H25119.2
C2—C3—H3119.7C25—C26—C27118.7 (4)
C5—C4—C3120.6 (3)C25—C26—C29121.5 (6)
C5—C4—H4119.7C27—C26—C29119.9 (5)
C3—C4—H4119.7C26—C27—C28120.4 (4)
C6—C5—C4119.6 (3)C26—C27—H27119.8
C6—C5—H5120.2C28—C27—H27119.8
C4—C5—H5120.2C23—C28—C27119.5 (4)
C5—C6—C7120.4 (4)C23—C28—H28120.3
C5—C6—H6119.8C27—C28—H28120.3
C7—C6—H6119.8C26—C29—H29A109.5
C6—C7—C2120.4 (3)C26—C29—H29B109.5
C6—C7—H7119.8H29A—C29—H29B109.5
C2—C7—H7119.8C26—C29—H29C109.5
C9—C8—C13119.2 (3)H29A—C29—H29C109.5
C9—C8—P1121.4 (3)H29B—C29—H29C109.5
C13—C8—P1119.4 (2)C35—C30—C31119.0 (3)
C8—C9—C10119.7 (3)C35—C30—P2121.4 (3)
C8—C9—H9120.1C31—C30—P2119.6 (2)
C10—C9—H9120.1C32—C31—C30120.7 (3)
C11—C10—C9120.2 (4)C32—C31—H31119.7
C11—C10—H10119.9C30—C31—H31119.7
C9—C10—H10119.9C31—C32—C33119.5 (3)
C12—C11—C10120.4 (4)C31—C32—H32120.2
C12—C11—H11119.8C33—C32—H32120.2
C10—C11—H11119.8C34—C33—C32120.8 (3)
C11—C12—C13120.3 (4)C34—C33—H33119.6
C11—C12—H12119.9C32—C33—H33119.6
C13—C12—H12119.9C33—C34—C35119.6 (4)
C12—C13—C8120.2 (3)C33—C34—H34120.2
C12—C13—H13119.9C35—C34—H34120.2
C8—C13—H13119.9C34—C35—C30120.3 (3)
N1—C14—H14A109.5C34—C35—H35119.8
N1—C14—H14B109.5C30—C35—H35119.8
H14A—C14—H14B109.5C37—C36—C41118.9 (3)
N1—C14—H14C109.5C37—C36—P2122.4 (2)
H14A—C14—H14C109.5C41—C36—P2118.8 (2)
H14B—C14—H14C109.5C38—C37—C36120.2 (3)
C16—C15—C20119.2 (3)C38—C37—H37119.9
C16—C15—N1121.5 (3)C36—C37—H37119.9
C20—C15—N1119.1 (3)C39—C38—C37120.6 (3)
C15—C16—C17120.3 (3)C39—C38—H38119.7
C15—C16—H16119.8C37—C38—H38119.7
C17—C16—H16119.8C38—C39—C40119.9 (3)
C16—C17—C18121.1 (3)C38—C39—H39120.1
C16—C17—H17119.4C40—C39—H39120.1
C18—C17—H17119.4C39—C40—C41120.2 (3)
C19—C18—C17118.0 (3)C39—C40—H40119.9
C19—C18—C21121.3 (4)C41—C40—H40119.9
C17—C18—C21120.7 (4)C40—C41—C36120.2 (3)
C18—C19—C20121.0 (3)C40—C41—H41119.9
C18—C19—H19119.5C36—C41—H41119.9
C20—C19—H19119.5
C1—P1—N1—C1512.6 (3)N1—C15—C16—C17175.5 (3)
C8—P1—N1—C15137.2 (2)C15—C16—C17—C181.5 (6)
C2—P1—N1—C15106.3 (3)C16—C17—C18—C192.0 (6)
C1—P1—N1—C14173.1 (3)C16—C17—C18—C21177.7 (4)
C8—P1—N1—C1448.4 (3)C17—C18—C19—C201.9 (5)
C2—P1—N1—C1468.0 (3)C21—C18—C19—C20177.8 (4)
C1—P2—N2—C2315.4 (3)C18—C19—C20—C151.4 (5)
C30—P2—N2—C23140.6 (3)C16—C15—C20—C190.9 (5)
C36—P2—N2—C23103.5 (3)N1—C15—C20—C19175.5 (3)
C1—P2—N2—C22174.0 (3)C22—N2—C23—C2889.4 (4)
C30—P2—N2—C2248.8 (3)P2—N2—C23—C2899.2 (3)
C36—P2—N2—C2267.1 (3)C22—N2—C23—C2486.0 (4)
N1—P1—C1—P296.4 (3)P2—N2—C23—C2485.4 (4)
C8—P1—C1—P222.7 (3)C28—C23—C24—C250.7 (6)
C2—P1—C1—P2143.1 (2)N2—C23—C24—C25176.1 (3)
N2—P2—C1—P199.8 (3)C23—C24—C25—C260.5 (7)
C30—P2—C1—P119.5 (3)C24—C25—C26—C270.5 (7)
C36—P2—C1—P1139.3 (2)C24—C25—C26—C29179.6 (4)
N1—P1—C2—C319.6 (3)C25—C26—C27—C280.6 (6)
C1—P1—C2—C3143.1 (3)C29—C26—C27—C28178.5 (4)
C8—P1—C2—C393.5 (3)C24—C23—C28—C271.8 (5)
N1—P1—C2—C7159.9 (2)N2—C23—C28—C27177.3 (3)
C1—P1—C2—C736.4 (3)C26—C27—C28—C231.8 (6)
C8—P1—C2—C787.1 (3)N2—P2—C30—C35151.2 (3)
C7—C2—C3—C40.5 (5)C1—P2—C30—C3583.9 (3)
P1—C2—C3—C4179.9 (3)C36—P2—C30—C3534.5 (3)
C2—C3—C4—C51.0 (6)N2—P2—C30—C3129.5 (3)
C3—C4—C5—C60.6 (6)C1—P2—C30—C3195.3 (3)
C4—C5—C6—C70.2 (6)C36—P2—C30—C31146.2 (3)
C5—C6—C7—C20.7 (5)C35—C30—C31—C320.2 (5)
C3—C2—C7—C60.4 (5)P2—C30—C31—C32179.1 (3)
P1—C2—C7—C6179.1 (3)C30—C31—C32—C330.9 (5)
N1—P1—C8—C9153.9 (3)C31—C32—C33—C340.3 (6)
C1—P1—C8—C981.4 (3)C32—C33—C34—C351.4 (6)
C2—P1—C8—C937.4 (3)C33—C34—C35—C302.5 (6)
N1—P1—C8—C1329.1 (3)C31—C30—C35—C341.9 (5)
C1—P1—C8—C1395.5 (3)P2—C30—C35—C34177.4 (3)
C2—P1—C8—C13145.7 (3)N2—P2—C36—C3718.2 (3)
C13—C8—C9—C100.8 (5)C1—P2—C36—C37141.8 (3)
P1—C8—C9—C10176.2 (3)C30—P2—C36—C3794.7 (3)
C8—C9—C10—C111.4 (6)N2—P2—C36—C41162.1 (2)
C9—C10—C11—C120.9 (6)C1—P2—C36—C4138.4 (3)
C10—C11—C12—C130.1 (6)C30—P2—C36—C4185.1 (3)
C11—C12—C13—C80.7 (6)C41—C36—C37—C380.6 (5)
C9—C8—C13—C120.2 (5)P2—C36—C37—C38179.1 (3)
P1—C8—C13—C12177.2 (3)C36—C37—C38—C390.3 (6)
C14—N1—C15—C1693.3 (4)C37—C38—C39—C400.9 (6)
P1—N1—C15—C1681.6 (4)C38—C39—C40—C410.5 (6)
C14—N1—C15—C2081.3 (4)C39—C40—C41—C360.4 (6)
P1—N1—C15—C20103.9 (3)C37—C36—C41—C401.0 (5)
C20—C15—C16—C170.9 (5)P2—C36—C41—C40178.8 (3)

Experimental details

Crystal data
Chemical formulaC41H41N2P2+·I
Mr750.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.3126 (5), 14.3251 (5), 18.9767 (7)
β (°) 95.819 (3)
V3)3600.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.01
Crystal size (mm)0.40 × 0.30 × 0.13
Data collection
DiffractometerEnraf Nonius CAD-4F
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.788, 0.877
No. of measured, independent and
observed [I > 2σ(I)] reflections
8582, 8582, 5992
Rint0.000
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.121, 1.03
No. of reflections8582
No. of parameters423
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.35, 0.97

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), SET4 (de Boer & Duisenberg, 1984), HELENA (Spek, 1997), DIRDIF (Beurskens, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), PLATON.

Selected geometric parameters (Å, º) top
P1—N11.656 (3)P2—C301.801 (3)
P1—C11.696 (3)P2—C361.816 (3)
P1—C81.806 (3)N1—C151.441 (4)
P1—C21.820 (3)N1—C141.477 (4)
P2—N21.658 (3)N2—C231.440 (4)
P2—C11.697 (3)N2—C221.477 (4)
N1—P1—C1113.99 (14)C1—P2—C36106.21 (15)
N1—P1—C8103.94 (14)C30—P2—C36108.60 (14)
C1—P1—C8113.95 (14)C15—N1—C14113.7 (2)
N1—P1—C2109.26 (14)C15—N1—P1123.1 (2)
C1—P1—C2106.43 (14)C14—N1—P1123.0 (2)
C8—P1—C2109.20 (14)C23—N2—C22113.7 (2)
N2—P2—C1113.96 (14)C23—N2—P2122.8 (2)
N2—P2—C30103.81 (14)C22—N2—P2122.9 (2)
C1—P2—C30114.43 (14)P1—C1—P2133.64 (19)
N2—P2—C36109.75 (14)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds