Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title pendent-arm macrocyclic hexa­amine ligand binds stereospecifically in a hexadentate manner, and we report here its isomorphous NiII and ZnII complexes (both as perchlorate salts), namely (cis-6,13-di­methyl-1,4,8,11-tetra­aza­cyclo­tetra­decane-6,13-di­amine-κ6N)­nickel(II) di­per­chlorate, [Ni(C12H30N6)]­­(ClO4)2, and (cis-6,13-di­methyl-1,4,8,11-tetraaza-cyclo­tetra­decane-6,13-di­amine-κ6N)­zinc(II) di­per­chlorate, [Zn(C12H30N6)]­(ClO4)2. Distortion of the N—M—N valence angles from their ideal octahedral values becomes more pronounced with increasing metal-ion size and the present results are compared with other structures of this ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100003930/fg1588sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003930/fg1588Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100003930/fg1588IIsup3.hkl
Contains datablock II

CCDC references: 147604; 147605

Comment top

The coordination chemistry of the isomeric pendent arm macrocycles trans- and cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L1 and L2, respectively) has revealed a number of interesting variations in the structural and physical properties of their complexes. Complexes of the hexadentate coordinated trans isomer (Curtis et al., 1987; Bernhardt et al., 1989, 1990, 1991; Borzel et al., 1998) are more common than the corresponding cis complexes (Bernhardt et al., 1992, 1993, 1997; Lye et al., 1994). It is an interesting feature that L1 and L2 can only bind in one configuration when coordinated as hexadentates, so the structure of the organic ligand determines the isomerism of the resulting complexes.

The hexadentate trans isomers coordinate such that the metal is coplanar with the four secondary amines, and the pendent amines bind in trans coordination sites. By contrast, in the corresponding cis isomers, the macrocycle adopts a folded conformation and the pendent amines coordinate in cis sites. Molecular-mechanics calculations (Bernhardt & Comba, 1991) predicted that the cis isomer L2, bound as a hexadentate, would be able to complex both small and large metal ions, whereas the hexadentate-coordinated trans isomer could only accommodate metals up to a certain size; until one or both axial M—N bonds were broken as a consequence of strain in the complex. These computational results have been borne out by subsequent experimental data.

The two complexes [NiL2](ClO4)2, (I), and [ZnL2](ClO4)2, (II), are isomorphous, and the absolute configuration was determined in each case. The NiII and ZnII crystals studied here, both grown from racemic solutions, were found to be enantiomorphs. Views of the two complex cations are shown in Figures 1 and 2. The folded conformation of the macrocycle is evident, with the coordinated four secondary amines having the same absolute configuration i.e. RRRR (SSSS). Each complex cation has (non-crystallographic) C2 symmetry; the principal axis bisecting the N5—M—N6 angle, and the M—N bond lengths separate into three distinct pairs (Tables 1 and 3). Both macrocyclic five-membered chelate rings adopt the same conformation (δ δ or λ λ), where the C—C bond in each ring is oblique to the C2 axis. This conformation was predicted (Bernhardt & Comba, 1991) to be dominant for complexes containing both small and large metal ions, and indeed no other conformation of a hexadentate coordinated complex of L2 has been identified. Hydrogen bonding between perchlorate O atoms and most amine H atoms is found (Tables 2 and 4). These hydrogen bonds result in chains comprising cations linked by perchlorate anions extending along the b axis. \sch

The M—N bond lengths in both structures are typical of hexaamine complexes of NiII and ZnII, and significantly longer than those observed in the respective trans isomers: [NiL1](ClO4)2 2.07sec and 2.13prim Å (Curtis et al., 1987); [ZnL1](ClO4)2 2.10sec and 2.21prim Å (Bernhardt et al., 1991). This is a feature that has now been observed in the trans and cis isomers of a number of complexes in this series (CoIII, CrIII, NiII and ZnII), where the trans isomers invariably exhibit unusually short M—N bond lengths in contrast to the corresponding coordinate bond lengths in the cis isomers, which are normal. Molecular mechanics calculations predicted this disparity some time ago (Bernhardt & Comba, 1991).

The valence angles involving the metal centres (Tables 1 and 3) indicate that the larger ZnII ion exhibits a greater distortion from octahedral geometry than its NiII analogue. This again is a general trend across the series of known structures of L2 complexes ranging from the smallest (CoIII; Bernhardt et al., 1997) to the largest (PbII; Lye et al., 1994). There are a number of structural indicators of this distortion. It may be viewed as a pseudo-trigonal twist of the N1—N2—N5 and N4—N3—N6 octahedral faces, by analogy with tris-bidentate complexes. This definition is somewhat limited in this case as there is no threefold axis in complexes of L2. A more reliable indicator of the distortion present in these complexes is the N5—M—N6 valence angle, which increases with the M—N bond length, and this is illustrated in Figure 3. The CdII (Bernhardt et al., 1992) and PbII (Lye et al., 1994) structures exhibit somewhat exaggerated bite angles caused by (or resulting in) coordination of perchlorate anions, and their structures approximate distorted square antiprismatic geometries (N6O2). It is difficult to say whether the presence of these weakly bound ions (M—O > 3.0 Å) in the CdII PbII structures significantly perturb the valence angles involving the coordinated macrocycle, or, conversely, whether these distortions are driven by the macrocycles, which prize open the N5—M—N6 angles thus making room for incoming ligands.

The observed distortions from octahedral geometry with increasing M—N bond length were predicted by molecular-mechanics calculations. However, electronic contributions from transition metal ions will oppose distortions away from octahedral geometry (ligand-field stabilization energy), and neglecting this effect can lead to an overestimation of the observed distortion (Bernhardt & Comba, 1993). That is, the geometries of the d10 ZnII and CdII complexes represent true ligand-dictated distortions, whereas the CoIII, CrIII and NiII structures reflect a balance between ligand-directed steric and metal-based electronic effects.

Experimental top

The title complexes were both readily synthesized by mixing equimolar amounts of the metal ion and ligand hydrochloride salt (L2·6HCl) in water adjusted to pH 7 with NaOH solution. Both compounds were precipitated by addition of excess NaClO4. Crystals of each complex suitable for X-ray work were obtained by slow evaporation of their aqueous solutions.

Refinement top

In both structures, rotational disorder in one of the perchlorate anions (about the Cl2—O2A bond) was modelled by refining atoms O2B/O2B', O2C/O2C' and O2D/O2D' with complementary occupancies and applying tetrahedral restraints to the O atoms of each contributor. All H atoms were visible in difference maps and were allowed for as riding atoms using the SHELXL97 (Sheldrick, 1997) default bond lengths and angles.

Computing details top

For both compounds, data collection: CAD-4 Manual (Enraf-Nonius, 1988); cell refinement: SET4 in CAD-4 Manual; data reduction: Xtal3.2 (Hall, 1992); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of (I) showing 30% probability ellipsoids.
[Figure 2] Fig. 2. View of (II) showing 30% probability ellipsoids (H atoms omitted).
[Figure 3] Fig. 3. Plot of observed N5—M—N6 angle (°) as a function of average M—N bond length (Å) for heaxadentate coordinated complexes of L2.
(I) cis(6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-6,13-diamine)nickel(II) perchlorate top
Crystal data top
[Ni(C12H30N6)]·2ClO4F(000) = 540
Mr = 516.03Dx = 1.605 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.198 (4) ÅCell parameters from 25 reflections
b = 12.771 (1) Åθ = 10–14°
c = 9.880 (5) ŵ = 1.21 mm1
β = 113.09 (2)°T = 295 K
V = 1067.6 (7) Å3Prism, purple
Z = 20.50 × 0.50 × 0.50 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
1892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.026
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.404, Tmax = 0.546l = 1110
2097 measured reflections3 standard reflections every 120 min
1971 independent reflections intensity decay: less than 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117Calculated w = 1/[σ2(Fo2) + (0.0981P)2 + 0.2008P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1971 reflectionsΔρmax = 0.57 e Å3
278 parametersΔρmin = 0.83 e Å3
20 restraintsAbsolute structure: Flack (1983)
Primary atom site location: PattersonAbsolute structure parameter: 0.03 (3)
Crystal data top
[Ni(C12H30N6)]·2ClO4V = 1067.6 (7) Å3
Mr = 516.03Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.198 (4) ŵ = 1.21 mm1
b = 12.771 (1) ÅT = 295 K
c = 9.880 (5) Å0.50 × 0.50 × 0.50 mm
β = 113.09 (2)°
Data collection top
Enraf-Nonius CAD4
diffractometer
1892 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.026
Tmin = 0.404, Tmax = 0.5463 standard reflections every 120 min
2097 measured reflections intensity decay: less than 5%
1971 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.57 e Å3
S = 1.08Δρmin = 0.83 e Å3
1971 reflectionsAbsolute structure: Flack (1983)
278 parametersAbsolute structure parameter: 0.03 (3)
20 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.37769 (6)0.49801 (16)0.17169 (6)0.0330 (2)
N10.4011 (6)0.5834 (4)0.3578 (5)0.0429 (11)
H10.44080.64750.35120.051*
N20.3545 (6)0.3550 (5)0.2758 (6)0.0483 (12)
H20.27240.36080.30490.058*
N30.3244 (6)0.4015 (4)0.0107 (6)0.0441 (12)
H30.41690.37640.01100.053*
N40.1430 (5)0.5573 (4)0.0901 (5)0.0414 (10)
H40.07440.50390.08190.050*
N50.6165 (5)0.4739 (5)0.3056 (5)0.0453 (14)
H5A0.65940.42330.26960.054*
H5B0.67320.53310.31750.054*
N60.3879 (6)0.6076 (4)0.0139 (6)0.0419 (11)
H6A0.38820.67400.04420.050*
H6B0.47260.59690.00850.050*
C10.5172 (8)0.5284 (6)0.4881 (7)0.0554 (17)
H1A0.46250.49850.54530.067*
H1B0.59360.57860.54980.067*
C20.6040 (7)0.4413 (6)0.4434 (7)0.0526 (15)
C30.5055 (9)0.3413 (6)0.4084 (7)0.0597 (17)
H3A0.56620.28470.39080.072*
H3B0.48120.32230.49230.072*
C40.3207 (10)0.2696 (6)0.1647 (8)0.0628 (18)
H4A0.25750.21580.18500.075*
H4B0.41920.23800.17140.075*
C50.2341 (8)0.3115 (6)0.0130 (9)0.0579 (17)
H5C0.22310.25720.05890.069*
H5D0.12920.33420.00140.069*
C60.2482 (9)0.4629 (6)0.1436 (8)0.0583 (18)
H6C0.14210.43630.19690.070*
H6D0.30650.45490.20620.070*
C70.2389 (8)0.5812 (6)0.1102 (7)0.0491 (14)
C80.1077 (7)0.6035 (6)0.0582 (7)0.0539 (15)
H8A0.09440.67860.05400.065*
H8B0.00940.57460.12810.065*
C90.1364 (7)0.6345 (6)0.2016 (7)0.0532 (15)
H9A0.02840.64180.19350.064*
H9B0.17250.70250.18350.064*
C100.2400 (7)0.5974 (5)0.3541 (7)0.0499 (14)
H10A0.24090.64870.42680.060*
H10B0.20060.53170.37550.060*
C110.7637 (10)0.4185 (8)0.5673 (9)0.076 (2)
H11A0.81300.36060.53990.114*
H11B0.74830.40120.65530.114*
H11C0.83010.47920.58460.114*
C120.2123 (11)0.6445 (8)0.2511 (8)0.076 (2)
H12A0.20240.71740.23300.114*
H12B0.11750.62070.32930.114*
H12C0.30060.63460.27850.114*
Cl10.1946 (2)0.2566 (2)0.5614 (2)0.0610 (4)
O1A0.0702 (9)0.2374 (9)0.6035 (9)0.115 (3)
O1B0.1829 (11)0.2000 (9)0.4319 (10)0.138 (4)
O1C0.3418 (10)0.2377 (9)0.6753 (9)0.111 (3)
O1D0.1922 (12)0.3636 (6)0.5182 (9)0.107 (3)
Cl20.2585 (2)0.43254 (17)0.0120 (2)0.0623 (5)
O2A0.1447 (6)0.3968 (5)0.0602 (7)0.093 (2)
O2B0.3448 (8)0.3500 (4)0.0107 (11)0.104 (4)0.87 (2)
O2C0.3614 (10)0.5008 (7)0.1165 (11)0.163 (6)0.87 (2)
O2D0.1850 (10)0.4872 (10)0.1203 (9)0.262 (13)0.87 (2)
O2B'0.3999 (14)0.379 (2)0.085 (3)0.12 (3)*0.13 (2)
O2C'0.283 (3)0.5393 (6)0.039 (4)0.058 (14)*0.13 (2)
O2D'0.210 (3)0.414 (3)0.1384 (12)0.12 (3)*0.13 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0373 (3)0.0246 (3)0.0390 (3)0.0013 (3)0.0171 (2)0.0033 (3)
N10.053 (3)0.035 (3)0.045 (2)0.001 (2)0.024 (2)0.006 (2)
N20.056 (3)0.030 (2)0.067 (3)0.001 (2)0.034 (2)0.001 (2)
N30.044 (3)0.035 (3)0.054 (3)0.000 (2)0.020 (2)0.009 (2)
N40.040 (2)0.034 (3)0.051 (2)0.0005 (19)0.0192 (19)0.004 (2)
N50.041 (2)0.050 (4)0.045 (2)0.0019 (19)0.0164 (19)0.003 (2)
N60.046 (3)0.036 (2)0.045 (3)0.005 (2)0.020 (2)0.001 (2)
C10.069 (4)0.057 (4)0.038 (2)0.005 (3)0.019 (2)0.006 (3)
C20.053 (3)0.059 (4)0.045 (3)0.011 (3)0.018 (3)0.010 (3)
C30.080 (5)0.042 (4)0.056 (3)0.012 (3)0.026 (3)0.013 (3)
C40.077 (4)0.033 (3)0.080 (4)0.009 (3)0.033 (4)0.004 (3)
C50.057 (4)0.033 (3)0.090 (5)0.013 (3)0.035 (3)0.019 (3)
C60.068 (4)0.057 (4)0.045 (3)0.002 (3)0.018 (3)0.014 (3)
C70.055 (3)0.048 (4)0.039 (3)0.001 (3)0.013 (3)0.003 (3)
C80.045 (3)0.053 (4)0.054 (3)0.011 (3)0.010 (2)0.005 (3)
C90.058 (3)0.045 (4)0.066 (4)0.013 (3)0.034 (3)0.003 (3)
C100.062 (3)0.040 (3)0.060 (3)0.005 (3)0.038 (3)0.008 (3)
C110.072 (5)0.080 (6)0.061 (4)0.014 (4)0.011 (4)0.007 (4)
C120.084 (5)0.085 (6)0.053 (4)0.002 (5)0.022 (3)0.021 (4)
Cl10.0698 (9)0.0488 (9)0.0772 (10)0.0010 (8)0.0427 (8)0.0083 (8)
O1A0.109 (5)0.130 (7)0.133 (6)0.015 (6)0.077 (5)0.006 (6)
O1B0.128 (6)0.161 (10)0.147 (7)0.048 (7)0.079 (6)0.096 (8)
O1C0.092 (4)0.124 (7)0.116 (6)0.035 (5)0.039 (4)0.017 (5)
O1D0.164 (8)0.062 (4)0.105 (5)0.005 (5)0.063 (5)0.019 (4)
Cl20.0631 (9)0.0561 (10)0.0847 (12)0.0070 (8)0.0472 (9)0.0050 (9)
O2A0.078 (4)0.091 (5)0.133 (6)0.000 (4)0.067 (4)0.024 (4)
O2B0.076 (5)0.054 (4)0.204 (11)0.006 (4)0.080 (6)0.003 (5)
O2C0.145 (10)0.111 (9)0.269 (16)0.049 (9)0.121 (11)0.078 (13)
O2D0.300 (17)0.38 (3)0.205 (12)0.27 (2)0.204 (13)0.206 (17)
Geometric parameters (Å, º) top
Ni—N12.075 (5)C4—H4B0.9700
Ni—N32.077 (5)C5—H5C0.9700
Ni—N52.096 (5)C5—H5D0.9700
Ni—N62.124 (5)C6—C71.556 (11)
Ni—N42.126 (5)C6—H6C0.9700
Ni—N22.147 (5)C6—H6D0.9700
N1—C101.479 (7)C7—C81.512 (9)
N1—C11.487 (8)C7—C121.544 (9)
N1—H10.9100C8—H8A0.9700
N2—C41.491 (9)C8—H8B0.9700
N2—C31.499 (8)C9—C101.509 (9)
N2—H20.9100C9—H9A0.9700
N3—C61.452 (9)C9—H9B0.9700
N3—C51.489 (8)C10—H10A0.9700
N3—H30.9100C10—H10B0.9700
N4—C81.492 (8)C11—H11A0.9600
N4—C91.498 (8)C11—H11B0.9600
N4—H40.9100C11—H11C0.9600
N5—C21.470 (8)C12—H12A0.9600
N5—H5A0.9000C12—H12B0.9600
N5—H5B0.9000C12—H12C0.9600
N6—C71.476 (7)Cl1—O1A1.385 (7)
N6—H6A0.9000Cl1—O1C1.401 (8)
N6—H6B0.9000Cl1—O1D1.430 (8)
C1—C21.533 (10)Cl1—O1B1.436 (8)
C1—H1A0.9700Cl2—O2A1.386 (4)
C1—H1B0.9700Cl2—O2B1.389 (5)
C2—C31.525 (11)Cl2—O2C'1.391 (5)
C2—C111.526 (9)Cl2—O2D'1.394 (5)
C3—H3A0.9700Cl2—O2B'1.394 (5)
C3—H3B0.9700Cl2—O2C1.399 (5)
C4—C51.493 (11)Cl2—O2D1.400 (5)
C4—H4A0.9700
N1—Ni—N3171.0 (2)C5—C4—H4A109.5
N1—Ni—N578.39 (19)N2—C4—H4B109.5
N3—Ni—N5107.0 (2)C5—C4—H4B109.5
N1—Ni—N6106.6 (2)H4A—C4—H4B108.1
N3—Ni—N679.5 (2)N3—C5—C4108.9 (6)
N5—Ni—N6102.9 (2)N3—C5—H5C109.9
N1—Ni—N483.47 (19)C4—C5—H5C109.9
N3—Ni—N491.33 (19)N3—C5—H5D109.9
N5—Ni—N4161.63 (18)C4—C5—H5D109.9
N6—Ni—N479.5 (2)H5C—C5—H5D108.3
N1—Ni—N291.0 (2)N3—C6—C7112.3 (6)
N3—Ni—N282.9 (2)N3—C6—H6C109.1
N5—Ni—N281.3 (2)C7—C6—H6C109.1
N6—Ni—N2162.4 (2)N3—C6—H6D109.1
N4—Ni—N2101.98 (19)C7—C6—H6D109.1
C10—N1—C1116.8 (5)H6C—C6—H6D107.9
C10—N1—Ni106.7 (3)N6—C7—C8106.2 (5)
C1—N1—Ni108.0 (4)N6—C7—C12113.4 (6)
C10—N1—H1108.4C8—C7—C12110.0 (6)
C1—N1—H1108.4N6—C7—C6106.7 (6)
Ni—N1—H1108.4C8—C7—C6111.9 (6)
C4—N2—C3114.3 (6)C12—C7—C6108.6 (6)
C4—N2—Ni107.5 (4)N4—C8—C7111.3 (5)
C3—N2—Ni106.6 (4)N4—C8—H8A109.4
C4—N2—H2109.4C7—C8—H8A109.4
C3—N2—H2109.4N4—C8—H8B109.4
Ni—N2—H2109.4C7—C8—H8B109.4
C6—N3—C5117.3 (6)H8A—C8—H8B108.0
C6—N3—Ni109.3 (4)N4—C9—C10109.6 (5)
C5—N3—Ni106.1 (4)N4—C9—H9A109.7
C6—N3—H3108.0C10—C9—H9A109.7
C5—N3—H3108.0N4—C9—H9B109.7
Ni—N3—H3108.0C10—C9—H9B109.7
C8—N4—C9113.9 (5)H9A—C9—H9B108.2
C8—N4—Ni108.1 (3)N1—C10—C9107.3 (5)
C9—N4—Ni106.5 (3)N1—C10—H10A110.3
C8—N4—H4109.4C9—C10—H10A110.3
C9—N4—H4109.4N1—C10—H10B110.3
Ni—N4—H4109.4C9—C10—H10B110.3
C2—N5—Ni100.6 (3)H10A—C10—H10B108.5
C2—N5—H5A111.7C2—C11—H11A109.5
Ni—N5—H5A111.7C2—C11—H11B109.5
C2—N5—H5B111.7H11A—C11—H11B109.5
Ni—N5—H5B111.7C2—C11—H11C109.5
H5A—N5—H5B109.4H11A—C11—H11C109.5
C7—N6—Ni99.5 (4)H11B—C11—H11C109.5
C7—N6—H6A111.9C7—C12—H12A109.5
Ni—N6—H6A111.9C7—C12—H12B109.5
C7—N6—H6B111.9H12A—C12—H12B109.5
Ni—N6—H6B111.9C7—C12—H12C109.5
H6A—N6—H6B109.6H12A—C12—H12C109.5
N1—C1—C2111.8 (5)H12B—C12—H12C109.5
N1—C1—H1A109.3O1A—Cl1—O1C112.4 (5)
C2—C1—H1A109.3O1A—Cl1—O1D109.9 (6)
N1—C1—H1B109.3O1C—Cl1—O1D107.5 (6)
C2—C1—H1B109.3O1A—Cl1—O1B113.4 (6)
H1A—C1—H1B107.9O1C—Cl1—O1B109.9 (6)
N5—C2—C3106.4 (5)O1D—Cl1—O1B103.2 (6)
N5—C2—C11113.4 (6)O2A—Cl2—O2B111.2 (2)
C3—C2—C11108.7 (6)O2A—Cl2—O2C'110.1 (3)
N5—C2—C1107.5 (5)O2A—Cl2—O2D'109.8 (3)
C3—C2—C1110.0 (6)O2C'—Cl2—O2D'109.5 (3)
C11—C2—C1110.7 (6)O2A—Cl2—O2B'109.8 (3)
N2—C3—C2111.4 (5)O2C'—Cl2—O2B'109.5 (3)
N2—C3—H3A109.4O2D'—Cl2—O2B'108.0 (10)
C2—C3—H3A109.4O2A—Cl2—O2C109.6 (3)
N2—C3—H3B109.4O2B—Cl2—O2C109.2 (3)
C2—C3—H3B109.4O2A—Cl2—O2D109.4 (3)
H3A—C3—H3B108.0O2B—Cl2—O2D108.9 (3)
N2—C4—C5110.6 (6)O2C—Cl2—O2D108.5 (3)
N2—C4—H4A109.5
N3—Ni—N1—C1032.1 (16)N4—Ni—N5—C259.2 (8)
N5—Ni—N1—C10160.3 (4)N2—Ni—N5—C242.6 (4)
N6—Ni—N1—C1099.6 (4)N1—Ni—N6—C7125.5 (4)
N4—Ni—N1—C1022.6 (4)N3—Ni—N6—C747.7 (4)
N2—Ni—N1—C1079.4 (4)N5—Ni—N6—C7153.0 (4)
N3—Ni—N1—C194.2 (14)N4—Ni—N6—C745.6 (4)
N5—Ni—N1—C134.0 (4)N2—Ni—N6—C750.9 (8)
N6—Ni—N1—C1134.1 (4)C10—N1—C1—C2131.0 (6)
N4—Ni—N1—C1148.9 (4)Ni—N1—C1—C210.9 (7)
N2—Ni—N1—C147.0 (4)Ni—N5—C2—C361.2 (5)
N1—Ni—N2—C4175.5 (5)Ni—N5—C2—C11179.3 (6)
N3—Ni—N2—C42.1 (4)Ni—N5—C2—C156.7 (5)
N5—Ni—N2—C4106.4 (5)N1—C1—C2—N531.4 (7)
N6—Ni—N2—C41.1 (9)N1—C1—C2—C384.1 (7)
N4—Ni—N2—C491.9 (5)N1—C1—C2—C11155.7 (6)
N1—Ni—N2—C361.5 (4)C4—N2—C3—C2131.5 (6)
N3—Ni—N2—C3125.1 (4)Ni—N2—C3—C212.9 (7)
N5—Ni—N2—C316.6 (4)N5—C2—C3—N250.9 (7)
N6—Ni—N2—C3121.9 (7)C11—C2—C3—N2173.4 (6)
N4—Ni—N2—C3145.1 (4)C1—C2—C3—N265.2 (7)
N1—Ni—N3—C6104.6 (14)C3—N2—C4—C5147.6 (6)
N5—Ni—N3—C6129.1 (4)Ni—N2—C4—C529.5 (7)
N6—Ni—N3—C628.6 (4)C6—N3—C5—C4171.1 (6)
N4—Ni—N3—C650.4 (5)Ni—N3—C5—C448.7 (6)
N2—Ni—N3—C6152.3 (5)N2—C4—C5—N353.2 (7)
N1—Ni—N3—C522.7 (16)C5—N3—C6—C7124.1 (7)
N5—Ni—N3—C5103.6 (4)Ni—N3—C6—C73.4 (7)
N6—Ni—N3—C5156.0 (4)Ni—N6—C7—C862.1 (5)
N4—Ni—N3—C576.9 (4)Ni—N6—C7—C12176.9 (6)
N2—Ni—N3—C525.0 (4)Ni—N6—C7—C657.4 (5)
N1—Ni—N4—C8129.8 (4)N3—C6—C7—N637.9 (8)
N3—Ni—N4—C857.5 (4)N3—C6—C7—C877.9 (8)
N5—Ni—N4—C8120.9 (7)N3—C6—C7—C12160.5 (6)
N6—Ni—N4—C821.6 (4)C9—N4—C8—C7125.5 (6)
N2—Ni—N4—C8140.5 (4)Ni—N4—C8—C77.4 (6)
N1—Ni—N4—C97.0 (4)N6—C7—C8—N447.8 (7)
N3—Ni—N4—C9179.7 (4)C12—C7—C8—N4170.9 (6)
N5—Ni—N4—C91.9 (8)C6—C7—C8—N468.3 (7)
N6—Ni—N4—C9101.2 (4)C8—N4—C9—C10154.5 (5)
N2—Ni—N4—C996.7 (4)Ni—N4—C9—C1035.5 (6)
N1—Ni—N5—C250.2 (4)C1—N1—C10—C9169.0 (5)
N3—Ni—N5—C2122.4 (4)Ni—N1—C10—C948.1 (6)
N6—Ni—N5—C2154.8 (4)N4—C9—C10—N157.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ci0.912.413.192 (10)144
N2—H2···O1D0.912.493.283 (10)146
N3—H3···O2Bii0.912.143.039 (8)167
N3—H3···O2Bii0.912.082.917 (11)152
N4—H4···O2A0.912.383.213 (7)151
N4—H4···O2D0.912.573.271 (9)135
N5—H5A···O2Dii0.902.563.056 (8)116
N5—H5A···O2Dii0.902.092.819 (10)137
N5—H5B···O1Ci0.902.623.389 (13)144
N6—H6A···O2Biii0.902.313.120 (8)150
N6—H6A···O2Biii0.902.643.53 (3)168
N6—H6B···O2Cii0.902.503.341 (10)156
N6—H6B···O2Cii0.902.493.382 (13)170
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z.
(II) cis(6,13-dimethyl-1,4,8,11-tetraazacyclotetradecan-6,13-diamine)zinc(II) perchlorate top
Crystal data top
[Zn(C12H30N6)]·2ClO4F(000) = 544
Mr = 522.69Dx = 1.611 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.075 (1) ÅCell parameters from 25 reflections
b = 12.891 (1) Åθ = 10–14°
c = 9.963 (3) ŵ = 1.44 mm1
β = 112.438 (9)°T = 295 K
V = 1077.3 (4) Å3Prism, colourless
Z = 20.30 × 0.13 × 0.10 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
916 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ω–2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 015
Tmin = 0.779, Tmax = 0.866l = 1110
2115 measured reflections3 standard reflections every 120 min
1987 independent reflections intensity decay: less than 5%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.175Calculated w = 1/[σ2(Fo2) + (0.0782P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
1987 reflectionsΔρmax = 0.72 e Å3
258 parametersΔρmin = 0.66 e Å3
20 restraintsAbsolute structure: Flack (1983)
Primary atom site location: PattersonAbsolute structure parameter: 0.04 (5)
Crystal data top
[Zn(C12H30N6)]·2ClO4V = 1077.3 (4) Å3
Mr = 522.69Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.075 (1) ŵ = 1.44 mm1
b = 12.891 (1) ÅT = 295 K
c = 9.963 (3) Å0.30 × 0.13 × 0.10 mm
β = 112.438 (9)°
Data collection top
Enraf-Nonius CAD4
diffractometer
916 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.073
Tmin = 0.779, Tmax = 0.8663 standard reflections every 120 min
2115 measured reflections intensity decay: less than 5%
1987 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.175Δρmax = 0.72 e Å3
S = 0.99Δρmin = 0.66 e Å3
1987 reflectionsAbsolute structure: Flack (1983)
258 parametersAbsolute structure parameter: 0.04 (5)
20 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Zn10.3904 (2)0.4998 (7)0.17406 (18)0.0360 (5)
N10.3989 (16)0.4215 (13)0.3698 (15)0.045 (4)
H10.43960.35680.37110.054*
N20.3704 (16)0.6515 (12)0.2785 (15)0.042 (3)
H20.28830.64810.30960.050*
N30.3193 (18)0.6016 (14)0.0095 (17)0.046 (5)
H30.40910.62650.01810.056*
N40.1437 (15)0.4383 (12)0.0991 (15)0.044 (4)
H40.07540.49190.09070.052*
N50.6324 (14)0.5196 (16)0.3192 (13)0.046 (4)
H5A0.68680.45950.33330.055*
H5B0.68210.56770.28600.055*
N60.3838 (18)0.3990 (13)0.0027 (15)0.043 (4)
H6A0.46140.41420.02950.052*
H6B0.39250.33210.03050.052*
C10.516 (2)0.483 (2)0.493 (2)0.074 (8)
H1A0.45700.52240.53950.088*
H1B0.58460.43510.56490.088*
C20.615 (2)0.5543 (16)0.4518 (17)0.046 (5)
C30.523 (2)0.6603 (17)0.405 (2)0.069 (6)
H3A0.50260.68800.48680.082*
H3B0.59150.70930.38220.082*
C40.340 (3)0.7328 (17)0.170 (2)0.074 (6)
H4A0.43950.75800.16820.088*
H4B0.28530.79040.19410.088*
C50.2360 (19)0.6884 (17)0.022 (2)0.062 (6)
H5C0.13460.66540.02290.075*
H5D0.21550.74120.05230.075*
C60.232 (3)0.5394 (15)0.1399 (19)0.056 (6)
H6C0.28290.54800.20900.067*
H6D0.12410.56580.18470.067*
C70.225 (2)0.4215 (14)0.1079 (19)0.035 (4)
C80.1068 (19)0.3919 (17)0.0464 (18)0.051 (5)
H8A0.10470.31690.03870.062*
H8B0.00180.41440.11140.062*
C90.141 (2)0.3679 (16)0.214 (2)0.059 (6)
H9A0.18270.30070.20300.070*
H9B0.03140.35830.20590.070*
C100.238 (2)0.4114 (16)0.3599 (18)0.055 (5)
H10A0.19610.47860.37200.066*
H10B0.23340.36550.43550.066*
C110.773 (2)0.579 (2)0.578 (2)0.091 (8)
H11A0.82940.51570.61500.136*
H11B0.75160.61400.65330.136*
H11C0.83690.62280.54340.136*
C120.192 (2)0.3603 (19)0.2535 (19)0.070 (6)
H12A0.17280.28860.23980.105*
H12B0.28210.36620.28050.105*
H12C0.09940.38900.32910.105*
Cl10.2082 (7)0.7406 (8)0.5682 (7)0.0712 (16)
O1A0.358 (2)0.747 (2)0.683 (2)0.152 (9)
O1B0.212 (2)0.8053 (18)0.456 (3)0.157 (11)
O1C0.186 (2)0.6408 (15)0.517 (2)0.136 (8)
O1D0.088 (2)0.771 (2)0.609 (2)0.155 (9)
Cl20.2609 (5)0.5700 (6)0.0080 (5)0.0599 (14)
O2A0.1466 (11)0.6051 (10)0.0601 (11)0.077 (4)
O2B0.326 (3)0.6541 (10)0.039 (3)0.114 (5)*0.66 (4)
O2C0.383 (2)0.5182 (17)0.1203 (15)0.114 (5)*0.66 (4)
O2D0.1899 (16)0.501 (2)0.107 (2)0.114 (5)*0.66 (4)
O2B'0.326 (5)0.4763 (17)0.076 (5)0.114 (5)*0.34 (4)
O2C'0.382 (4)0.6443 (15)0.038 (6)0.114 (5)*0.34 (4)
O2D'0.188 (2)0.555 (5)0.1427 (14)0.114 (5)*0.34 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0348 (9)0.0339 (10)0.0395 (9)0.0000 (14)0.0145 (7)0.0028 (14)
N10.050 (9)0.037 (9)0.048 (9)0.009 (8)0.020 (8)0.011 (8)
N20.050 (9)0.020 (8)0.062 (9)0.005 (7)0.028 (8)0.001 (7)
N30.044 (10)0.047 (11)0.050 (10)0.014 (9)0.021 (9)0.010 (9)
N40.031 (7)0.033 (8)0.073 (11)0.009 (7)0.026 (7)0.016 (8)
N50.040 (7)0.057 (14)0.043 (7)0.014 (8)0.018 (6)0.020 (9)
N60.058 (11)0.036 (9)0.036 (9)0.019 (8)0.018 (8)0.011 (7)
C10.067 (12)0.10 (2)0.041 (10)0.023 (16)0.010 (9)0.001 (14)
C20.042 (10)0.055 (12)0.029 (9)0.005 (9)0.001 (8)0.015 (9)
C30.071 (15)0.058 (15)0.070 (14)0.000 (12)0.020 (12)0.017 (12)
C40.091 (17)0.042 (13)0.091 (17)0.017 (12)0.039 (15)0.000 (14)
C50.030 (10)0.055 (13)0.091 (16)0.024 (10)0.011 (10)0.015 (12)
C60.077 (14)0.055 (16)0.031 (10)0.017 (11)0.014 (10)0.008 (10)
C70.052 (12)0.012 (9)0.042 (11)0.010 (9)0.019 (10)0.013 (8)
C80.032 (10)0.076 (14)0.040 (10)0.002 (10)0.006 (8)0.017 (10)
C90.039 (11)0.044 (12)0.072 (14)0.015 (9)0.002 (10)0.014 (11)
C100.063 (13)0.057 (13)0.058 (13)0.007 (10)0.039 (11)0.016 (11)
C110.066 (14)0.15 (2)0.054 (13)0.018 (16)0.015 (11)0.001 (15)
C120.071 (14)0.081 (16)0.047 (13)0.010 (13)0.010 (11)0.002 (11)
Cl10.090 (4)0.048 (3)0.102 (5)0.005 (3)0.066 (4)0.013 (3)
O1A0.067 (12)0.19 (2)0.162 (19)0.025 (13)0.001 (12)0.018 (19)
O1B0.151 (19)0.16 (2)0.22 (2)0.057 (16)0.134 (19)0.109 (19)
O1C0.20 (2)0.061 (12)0.164 (18)0.048 (13)0.082 (16)0.044 (12)
O1D0.151 (18)0.20 (2)0.174 (18)0.027 (17)0.130 (16)0.011 (18)
Cl20.050 (3)0.072 (3)0.064 (3)0.011 (3)0.029 (3)0.003 (3)
O2A0.068 (9)0.087 (11)0.104 (10)0.001 (8)0.065 (8)0.009 (9)
Geometric parameters (Å, º) top
Zn1—N62.128 (14)C4—H4B0.9700
Zn1—N52.134 (12)C5—H5C0.9700
Zn1—N32.141 (15)C5—H5D0.9700
Zn1—N12.170 (13)C6—C71.56 (2)
Zn1—N42.219 (13)C6—H6C0.9700
Zn1—N22.255 (12)C6—H6D0.9700
N1—C101.44 (2)C7—C81.48 (2)
N1—C11.51 (2)C7—C121.58 (2)
N1—H10.9100C8—H8A0.9700
N2—C41.45 (2)C8—H8B0.9700
N2—C31.48 (2)C9—C101.49 (2)
N2—H20.9100C9—H9A0.9700
N3—C51.45 (2)C9—H9B0.9700
N3—C61.47 (2)C10—H10A0.9700
N3—H30.9100C10—H10B0.9700
N4—C91.47 (2)C11—H11A0.9600
N4—C81.48 (2)C11—H11B0.9600
N4—H40.9100C11—H11C0.9600
N5—C21.46 (2)C12—H12A0.9600
N5—H5A0.9000C12—H12B0.9600
N5—H5B0.9000C12—H12C0.9600
N6—C71.47 (2)Cl1—O1D1.356 (16)
N6—H6A0.9000Cl1—O1C1.370 (17)
N6—H6B0.9000Cl1—O1B1.402 (18)
C1—C21.45 (3)Cl1—O1A1.407 (17)
C1—H1A0.9700Cl2—O2B1.397 (8)
C1—H1B0.9700Cl2—O2B'1.399 (8)
C2—C111.53 (2)Cl2—O2A1.400 (8)
C2—C31.57 (2)Cl2—O2D1.400 (8)
C3—H3A0.9700Cl2—O2C'1.401 (8)
C3—H3B0.9700Cl2—O2D'1.404 (8)
C4—C51.53 (2)Cl2—O2C1.406 (8)
C4—H4A0.9700
N6—Zn1—N5108.9 (6)C5—C4—H4A110.0
N6—Zn1—N377.4 (5)N2—C4—H4B110.0
N5—Zn1—N3113.7 (6)C5—C4—H4B110.0
N6—Zn1—N1114.7 (6)H4A—C4—H4B108.3
N5—Zn1—N176.9 (5)N3—C5—C4108.6 (14)
N3—Zn1—N1161.5 (5)N3—C5—H5C110.0
N6—Zn1—N478.2 (6)C4—C5—H5C110.0
N5—Zn1—N4156.4 (5)N3—C5—H5D110.0
N3—Zn1—N489.7 (5)C4—C5—H5D110.0
N1—Zn1—N479.7 (5)H5C—C5—H5D108.3
N6—Zn1—N2156.5 (5)N3—C6—C7113.6 (15)
N5—Zn1—N280.0 (6)N3—C6—H6C108.9
N3—Zn1—N279.2 (5)C7—C6—H6C108.9
N1—Zn1—N288.3 (5)N3—C6—H6D108.9
N4—Zn1—N2102.5 (5)C7—C6—H6D108.9
C10—N1—C1119.0 (15)H6C—C6—H6D107.7
C10—N1—Zn1107.2 (10)N6—C7—C8107.3 (13)
C1—N1—Zn1105.2 (11)N6—C7—C6103.9 (16)
C10—N1—H1108.3C8—C7—C6115.5 (16)
C1—N1—H1108.3N6—C7—C12112.4 (14)
Zn1—N1—H1108.3C8—C7—C12109.8 (15)
C4—N2—C3115.4 (15)C6—C7—C12107.9 (15)
C4—N2—Zn1108.0 (10)C7—C8—N4111.9 (14)
C3—N2—Zn1104.2 (10)C7—C8—H8A109.2
C4—N2—H2109.7N4—C8—H8A109.2
C3—N2—H2109.7C7—C8—H8B109.2
Zn1—N2—H2109.7N4—C8—H8B109.2
C5—N3—C6117.5 (15)H8A—C8—H8B107.9
C5—N3—Zn1107.5 (12)N4—C9—C10110.3 (13)
C6—N3—Zn1107.8 (11)N4—C9—H9A109.6
C5—N3—H3107.9C10—C9—H9A109.6
C6—N3—H3107.9N4—C9—H9B109.6
Zn1—N3—H3107.9C10—C9—H9B109.6
C9—N4—C8116.6 (14)H9A—C9—H9B108.1
C9—N4—Zn1106.0 (9)N1—C10—C9108.0 (14)
C8—N4—Zn1107.2 (9)N1—C10—H10A110.1
C9—N4—H4108.9C9—C10—H10A110.1
C8—N4—H4108.9N1—C10—H10B110.1
Zn1—N4—H4108.9C9—C10—H10B110.1
C2—N5—Zn1102.2 (9)H10A—C10—H10B108.4
C2—N5—H5A111.3C2—C11—H11A109.5
Zn1—N5—H5A111.3C2—C11—H11B109.5
C2—N5—H5B111.3H11A—C11—H11B109.5
Zn1—N5—H5B111.3C2—C11—H11C109.5
H5A—N5—H5B109.2H11A—C11—H11C109.5
C7—N6—Zn1101.6 (10)H11B—C11—H11C109.5
C7—N6—H6A111.5C7—C12—H12A109.5
Zn1—N6—H6A111.5C7—C12—H12B109.5
C7—N6—H6B111.5H12A—C12—H12B109.5
Zn1—N6—H6B111.5C7—C12—H12C109.5
H6A—N6—H6B109.3H12A—C12—H12C109.5
C2—C1—N1114.8 (14)H12B—C12—H12C109.5
C2—C1—H1A108.6O1D—Cl1—O1C111.2 (14)
N1—C1—H1A108.6O1D—Cl1—O1B109.3 (13)
C2—C1—H1B108.6O1C—Cl1—O1B107.8 (14)
N1—C1—H1B108.6O1D—Cl1—O1A112.1 (14)
H1A—C1—H1B107.5O1C—Cl1—O1A108.5 (14)
C1—C2—N5110.9 (16)O1B—Cl1—O1A107.8 (13)
C1—C2—C11112.7 (16)O2B—Cl2—O2A110.0 (3)
N5—C2—C11114.5 (15)O2B'—Cl2—O2A109.7 (3)
C1—C2—C3108.5 (17)O2B—Cl2—O2D109.8 (3)
N5—C2—C3103.1 (14)O2A—Cl2—O2D109.6 (3)
C11—C2—C3106.5 (16)O2B'—Cl2—O2C'109.6 (3)
N2—C3—C2113.8 (14)O2A—Cl2—O2C'109.5 (3)
N2—C3—H3A108.8O2B'—Cl2—O2D'109.7 (10)
C2—C3—H3A108.8O2A—Cl2—O2D'109.2 (3)
N2—C3—H3B108.8O2C'—Cl2—O2D'109.2 (3)
C2—C3—H3B108.8O2B—Cl2—O2C109.3 (3)
H3A—C3—H3B107.7O2A—Cl2—O2C109.1 (3)
N2—C4—C5108.7 (16)O2D—Cl2—O2C109.1 (3)
N2—C4—H4A110.0
N6—Zn1—N1—C1093.3 (12)N4—Zn1—N5—C255 (2)
N5—Zn1—N1—C10161.7 (12)N2—Zn1—N5—C243.1 (12)
N3—Zn1—N1—C1035 (2)N5—Zn1—N6—C7161.6 (10)
N4—Zn1—N1—C1021.5 (11)N3—Zn1—N6—C750.6 (11)
N2—Zn1—N1—C1081.5 (12)N1—Zn1—N6—C7114.6 (10)
N6—Zn1—N1—C1139.1 (13)N4—Zn1—N6—C741.8 (10)
N5—Zn1—N1—C134.1 (13)N2—Zn1—N6—C752.4 (19)
N3—Zn1—N1—C193 (2)C10—N1—C1—C2135.1 (18)
N4—Zn1—N1—C1149.1 (13)Zn1—N1—C1—C215 (2)
N2—Zn1—N1—C146.0 (12)N1—C1—C2—N526 (2)
N6—Zn1—N2—C44 (2)N1—C1—C2—C11155.3 (19)
N5—Zn1—N2—C4110.4 (12)N1—C1—C2—C387 (2)
N3—Zn1—N2—C46.3 (12)Zn1—N5—C2—C153.1 (17)
N1—Zn1—N2—C4172.7 (12)Zn1—N5—C2—C11178.0 (15)
N4—Zn1—N2—C493.6 (12)Zn1—N5—C2—C362.8 (14)
N6—Zn1—N2—C3127.6 (15)C4—N2—C3—C2136.7 (17)
N5—Zn1—N2—C312.8 (12)Zn1—N2—C3—C218.5 (18)
N3—Zn1—N2—C3129.5 (12)C1—C2—C3—N261 (2)
N1—Zn1—N2—C364.2 (12)N5—C2—C3—N256 (2)
N4—Zn1—N2—C3143.3 (11)C11—C2—C3—N2177.0 (16)
N6—Zn1—N3—C5156.4 (12)C3—N2—C4—C5150.6 (15)
N5—Zn1—N3—C598.4 (12)Zn1—N2—C4—C534.6 (17)
N1—Zn1—N3—C524 (3)C6—N3—C5—C4172.9 (16)
N4—Zn1—N3—C578.4 (12)Zn1—N3—C5—C451.3 (17)
N2—Zn1—N3—C524.4 (11)N2—C4—C5—N359 (2)
N6—Zn1—N3—C628.8 (12)C5—N3—C6—C7124.3 (19)
N5—Zn1—N3—C6134.1 (12)Zn1—N3—C6—C73 (2)
N1—Zn1—N3—C6104 (2)Zn1—N6—C7—C862.5 (14)
N4—Zn1—N3—C649.1 (12)Zn1—N6—C7—C660.4 (14)
N2—Zn1—N3—C6151.9 (12)Zn1—N6—C7—C12176.8 (12)
N6—Zn1—N4—C9108.7 (11)N3—C6—C7—N639 (2)
N5—Zn1—N4—C92 (2)N3—C6—C7—C878 (2)
N3—Zn1—N4—C9174.1 (11)N3—C6—C7—C12158.4 (14)
N1—Zn1—N4—C99.4 (11)N6—C7—C8—N451.3 (19)
N2—Zn1—N4—C995.3 (11)C6—C7—C8—N464 (2)
N6—Zn1—N4—C816.5 (11)C12—C7—C8—N4173.6 (14)
N5—Zn1—N4—C8126.8 (15)C9—N4—C8—C7131.6 (15)
N3—Zn1—N4—C860.7 (12)Zn1—N4—C8—C713.0 (17)
N1—Zn1—N4—C8134.6 (12)C8—N4—C9—C10158.0 (15)
N2—Zn1—N4—C8139.5 (11)Zn1—N4—C9—C1038.8 (16)
N6—Zn1—N5—C2159.3 (11)C1—N1—C10—C9167.9 (16)
N3—Zn1—N5—C2116.5 (12)Zn1—N1—C10—C949.0 (16)
N1—Zn1—N5—C247.4 (12)N4—C9—C10—N161.0 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.912.543.33 (2)146
N2—H2···O1C0.912.573.39 (2)150
N3—H3···O2Bii0.912.283.14 (2)158
N3—H3···O2Cii0.911.992.88 (2)166
N4—H4···O2A0.912.483.300 (16)151
N4—H4···O2D0.912.483.165 (18)133
N5—H5B···O2Dii0.902.613.12 (2)116
N5—H5B···O2Dii0.902.182.853 (19)132
N6—H6A···O2Cii0.902.373.22 (2)158
N6—H6A···O2Bii0.902.293.18 (2)169
N6—H6B···O2Biii0.902.413.201 (19)147
N6—H6B···O2Ciii0.902.423.30 (3)165
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x, y1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Ni(C12H30N6)]·2ClO4[Zn(C12H30N6)]·2ClO4
Mr516.03522.69
Crystal system, space groupMonoclinic, P21Monoclinic, P21
Temperature (K)295295
a, b, c (Å)9.198 (4), 12.771 (1), 9.880 (5)9.075 (1), 12.891 (1), 9.963 (3)
β (°) 113.09 (2) 112.438 (9)
V3)1067.6 (7)1077.3 (4)
Z22
Radiation typeMo KαMo Kα
µ (mm1)1.211.44
Crystal size (mm)0.50 × 0.50 × 0.500.30 × 0.13 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD4
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.404, 0.5460.779, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
2097, 1971, 1892 2115, 1987, 916
Rint0.0260.073
(sin θ/λ)max1)0.5940.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.117, 1.08 0.060, 0.175, 0.99
No. of reflections19711987
No. of parameters278258
No. of restraints2020
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.830.72, 0.66
Absolute structureFlack (1983)Flack (1983)
Absolute structure parameter0.03 (3)0.04 (5)

Computer programs: CAD-4 Manual (Enraf-Nonius, 1988), SET4 in CAD-4 Manual, Xtal3.2 (Hall, 1992), SHELXS86 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1990), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
Ni—N12.075 (5)Ni—N62.124 (5)
Ni—N32.077 (5)Ni—N42.126 (5)
Ni—N52.096 (5)Ni—N22.147 (5)
N1—Ni—N3171.0 (2)N5—Ni—N4161.63 (18)
N1—Ni—N578.39 (19)N6—Ni—N479.5 (2)
N3—Ni—N5107.0 (2)N1—Ni—N291.0 (2)
N1—Ni—N6106.6 (2)N3—Ni—N282.9 (2)
N3—Ni—N679.5 (2)N5—Ni—N281.3 (2)
N5—Ni—N6102.9 (2)N6—Ni—N2162.4 (2)
N1—Ni—N483.47 (19)N4—Ni—N2101.98 (19)
N3—Ni—N491.33 (19)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ci0.912.413.192 (10)144.3
N2—H2···O1D0.912.493.283 (10)145.7
N3—H3···O2Bii0.912.143.039 (8)167.3
N3—H3···O2B'ii0.912.082.917 (11)151.8
N4—H4···O2A0.912.383.213 (7)151.4
N4—H4···O2D0.912.573.271 (9)134.5
N5—H5A···O2Dii0.902.563.056 (8)115.5
N5—H5A···O2D'ii0.902.092.819 (10)137.4
N5—H5B···O1Ci0.902.623.389 (13)143.9
N6—H6A···O2Biii0.902.313.120 (8)149.5
N6—H6A···O2B'iii0.902.643.53 (3)168.3
N6—H6B···O2Cii0.902.503.341 (10)155.8
N6—H6B···O2C'ii0.902.493.382 (13)169.5
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z; (iii) x, y+1/2, z.
Selected geometric parameters (Å, º) for (II) top
Zn1—N62.128 (14)Zn1—N12.170 (13)
Zn1—N52.134 (12)Zn1—N42.219 (13)
Zn1—N32.141 (15)Zn1—N22.255 (12)
N6—Zn1—N5108.9 (6)N3—Zn1—N489.7 (5)
N6—Zn1—N377.4 (5)N1—Zn1—N479.7 (5)
N5—Zn1—N3113.7 (6)N6—Zn1—N2156.5 (5)
N6—Zn1—N1114.7 (6)N5—Zn1—N280.0 (6)
N5—Zn1—N176.9 (5)N3—Zn1—N279.2 (5)
N3—Zn1—N1161.5 (5)N1—Zn1—N288.3 (5)
N6—Zn1—N478.2 (6)N4—Zn1—N2102.5 (5)
N5—Zn1—N4156.4 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1Ai0.912.543.33 (2)146.2
N2—H2···O1C0.912.573.39 (2)150.3
N3—H3···O2Bii0.912.283.14 (2)158.4
N3—H3···O2C'ii0.911.992.88 (2)166.0
N4—H4···O2A0.912.483.300 (16)150.5
N4—H4···O2D0.912.483.165 (18)132.5
N5—H5B···O2Dii0.902.613.12 (2)116.1
N5—H5B···O2D'ii0.902.182.853 (19)131.5
N6—H6A···O2Cii0.902.373.22 (2)157.5
N6—H6A···O2B'ii0.902.293.18 (2)168.8
N6—H6B···O2Biii0.902.413.201 (19)147.4
N6—H6B···O2C'iii0.902.423.30 (3)165.0
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+1, y, z; (iii) x, y1/2, z.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds