Download citation
Download citation
link to html
Two new polymorphs of the title compound, μ-oxo-bis{oxo{2,2′-[propane-1,3-diyl­bis­(nitrilo­methyl­idyne)]­diphen­olato}rhenium(V)}, [Re2O(C17H16N2O3)2], are reported, containing either a conformation other than the one already known in the literature or a disorder involving both the new and the previously reported conformations. Four pseudo-polymorphs of the title compound are also reported, containing four chloro­form, two chloro­form, two disordered di­chloro­methane or two water solvate mol­ecules accompany­ing each Re complex molecule. Only in the hydrate does the Re complex adopt the old conformation. In all six structures, the complex molecule is located on a crystallographic inversion centre. Independent of the conformation, all ReV ions display the same, somewhat distorted, octahedral coordination. In all the solvates, hydrogen bonds are donated from the solvent to the O atoms bonded to Re, either of the C—H...O or O—H...O type, although the actual position of the solvent mol­ecule can vary. Only in the hydrate is a two-dimensional hydrogen-bonded network found; isolated clusters are formed in all the other solvates.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004108/fg1587sup1.cif
Contains datablocks global, II, III, IV, V, VI, VII

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587IIIsup3.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587IVsup4.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587Vsup5.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587VIsup6.hkl
Contains datablock VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004108/fg1587VIIsup7.hkl
Contains datablock VII

CCDC references: 147769; 147770; 147771; 147772; 147773; 147774

Comment top

µ-Oxo-bis{[bis(salicylidene)propane-1,3-diamine]oxorhenium(V)}, (1), [ReO(salpd)]2O, is readily formed from a number of (alkoxy)- and (aryloxy)-[bis(salicylidene)propane-1,3-diamine]oxorhenium(V) compounds, (2), [ReO(salpd)OR] (OR is an alkoxy or aryloxy group), by reacting with water. Presumably, this kind of binuclear Re complex is only formed when the bis(salicylidene)alkanediamine ligand of the starting material has all the coordinating atoms in the equatorial plane of the Re coordination sphere (van Bommel et al., 1998). The formation of [ReO(salpd)]2O involves as the first step the exchange of the alkoxy or aryloxy moiety with water from solvent or air to form [ReO(salpd)OH]. In the second step, two Re-aqua complexes dimerize under elimination of water. We will refer to this process as the dimerization of [ReO(salpd)OR]. Similar reactions have been found for oxorhenium porphyrins (Buchler & Kruppa, 1990) and rhenium dithioether complexes (Reisgys et al., 1997).

We obtained a total of seven crystal structures of polymorphs and pseudo-polymorphs of [ReO(salpd)]2O during the study of the configurational control of rhenium(V)-bis(salicylidene)alkanediamine complexes. The crystals were obtained from dimerization reactions in different solvents using a number of different [ReO(salpd)OR] complexes as starting material. In the course of this paper we will use the term `modification' to refer to polymorphs, pseudo-polymorphs and solvates. The monoclinic modification of [ReO(salpd)]2O with Z' = 1, (I), was recently published by us (van Bommel et al., 1998). Here, we report the crystallographic details of the other six structures and we will compare the conformation and packing of all seven structures. \sch

In all structures the Re complex is located at a crystallographic inversion centre, resulting in a linear central Re—O—Re moiety. This kind of atomic arrangement is often found in similar compounds reported in the Cambridge Structural Database (Allen & Kennard, 1983; version of October 1999). The seven modifications discussed here display no significant differences in bond lengths and angles. The Re—O bond lengths of the central moiety are comparable with those of other chemically symmetric Re—O—Re structures, where Re—O bond lengths are in the range 1.82–1.95 Å. Chemically asymmetric complexes generally have one long (2.0–2.4 Å) and one short (1.75–1.81 Å) bond length. The bis(salicylidene)propanediamine ligands are slightly bent towards the central O atom in all structures; the acute angle between the two phenyl rings of a single bis(salicylidene)propanediamine ligand lies in the range 6.6 (4)–10.4 (5)°. These small angles give rise to deviations from the least-squares plane through all atoms of as much as 0.25 Å.

Re in the seven compounds is six-coordinated; the four donating atoms of the single bis(salicylidene)propanediamine ligand form the equatorial plane of a somewhat distorted octahedron. Due to the presence of the propane bridge, the N—Re—N angles are slightly larger than the ideal octahedral value [observed range 94.2 (3)–96.8 (5)°], whereas the Osalpd—Re—Osalpd angles are found to be somewhat smaller than 90° [observed range 80.3 (2)–83.3 (2)°]. The N,O bite angles tend to be slightly larger than 90° [observed range 90.1 (5)–92.0 (2)°]. The double-bonded O atom is tilted somewhat towards the N atoms of the bis(salicylidene)propanediamine ligand [N—ReO is in the range 87.6 (6)–90.5 (3)°, whereas Osalpd—ReO is in the range 97.4 (3)–101.0 (2)°]. The bridging O atom is also tilted slightly towards the N atoms. Due to the small displacement of Re out of the coordination plane in the direction of the double-bonded O atom (approximately 0.12–0.15 Å), the angles found for the bridging O atom are smaller then those found for the terminal O atom: N—Re—Obridge is in the range 80.4 (2)–85.4 (2)°, whereas Osalpd—Re—Obridge is in the range 87.9 (2)–91.5 (2)°.

A more or less similar distortion pattern of the Re coordination was found for µ-oxo-bis{[bis(2-hydroxybenzyl)propane-1,3-diamine]oxorhenium(V)}, (3), and the 1-(2-hydroxyphenyl)ethyl analogue, (4), which both contain a completely saturated C—N(H)—C—C—C—N(H)—C moiety as the central part of the ligand (Pillai et al., 1994). This similarity is remarkable, since the replacement of the CN bond with a saturated bond can have a great influence on the conformation of the N,O chelate ring, the conformation of the bisalicylidene ligand and the conformation of the dimeric complex as a whole. Whereas the N,O chelate rings containing a CN moiety are almost flat, with total puckering amplitudes Q in the range 0.014 (5)–0.147 (5) Å (Cremer & Pople, 1975), the corresponding chelate rings in the saturated systems display values of Q in the range 0.47–0.55 Å. The hydroxyacetobenzyl compound adopts a centrosymmetric conformation resembling that of the title compound, whereas the hydroxybenzyl compound is not centrosymmetric and has clearly different conformations for the two ligands. Nevertheless, the N,O bite angles in both saturated compounds are found to be in the same range as in the [ReO(salpd)]2O structures reported here.

Modification (I) (van Bommel et al., 1998) was obtained by dimerization of [ReO(salpd)OEt] in ethanol and has two independent half complexes in the asymmetric unit, each located on a crystallographic inversion centre of space group P21/c. As in the other structures reported in this paper, the bis(salicylidene)propanediamine ligand is slightly bent. All atoms lie more or less within the `curved plane' of the ligand, with the exception of the central atom of the propane moiety. In (I), the protruding methylene units of both independent ligands point away from the inversion-related ligand with which the binuclear complex is formed, leaving the six-membered N,N chelate ring in an envelope conformation. This arrangement of atoms will be referred to as the `open' conformation throughout this paper, because it allows an unhindered view of the central O atom in a ball and stick model of the complex {the [ReO(salpd)]2O complex of modification (VII) is also in the open conformation; see Fig. 10}. The conformation is stabilized by intra- and intermolecular C—H···O contacts involving the central CH2 of the propane moiety and the terminal and salicylidene O atoms (this last only in intermolecular contacts).

Another monoclinic modification, (II), was obtained, which has the same space group as (I), but contains only one unique half Re complex. In this crystal structure, a new conformation was found for the [ReO(salpd)]2O complex (Fig. 1). The ligands are still slightly curved, but the protruding atom now points towards the inversion-related ligand. This conformation will be called `closed'. The conformation may be somewhat stabilized by a bifurcated intramolecular C—H···O contact between H9A and both salicylidene O atoms of the inversion-related ligand (see Table 2 for geometric details). The complex cannot change to the open conformation without distorting the crystal packing. If neighbouring complexes are not shifted, a close contact would arise between atoms C9 and C5(1 − x,-y,-z) and between atoms H9A and C5(1 − x,-y,-z) (0.47 and 0.83 Å shorter than the sum of the contact radii, respectively). Interestingly, the introduction of the closed conformation in the packing of (I) also results in some unacceptable intermolecular close contacts (more than 0.4 Å shorter than the sum of the Van der Waals radii). The packing of modification (II) involves a parallel stacking of the π systems of the C12—C17 ring and its (-x, 1 − y, −z) image [with a symmetry-implied interplane angle of 0° and a Cg···Cg distance of 3.698 (6) Å, where Cg is the geometric centre of the ring]. Apart from the already mentioned C—H···O contacts, the only directional contacts in the packing of (I) are two C—H···π interactions of type NC—H···π [D···A = 3.716 (8) Å and D—H···A = 117°] and Ph—H···π [involving the H para to the C=N moiety; D···A = 3.420 (7) Å and D—H···A = 136°].

The orthorhombic modification, (III), was found in the same batch as (II). In (III) both the open and closed conformations occur in a disordered fashion (see Fig. 2). The occupancy of the closed conformation was refined to a value of 0.682 (18). The central atom of the propane moiety displays an intramolecular C—H···O contact in both conformations. In the open conformation, the terminal oxygen O3 is the acceptor, while in the closed conformation one of the salicylidene O atoms (O1) acts as an acceptor (see Table 4 for geometric details). The position of the central CH2 of the propane moiety is therefore slightly different from that found in (II), where the geometry suggests the presence of a symmetric bifurcated hydrogen bond, donating to both O1 and O2, albeit that the D···A distances are rather long. In both conformations of (III), one of the H atoms of C10 is in a contact position with O3(1/2 − x, 1/2 + y, z). There are no unfavourable intermolecular short contacts in the major or minor component. Modification (III) does not show π···π stacking or C—H···π contacts. The fact that we have now identified crystals containing only the closed conformation, only the open conformation, or a disorder between open and closed conformation, indicates that the energy difference between the conformations is small. The occupancy observed in (III) and the larger number of structures found to adopt the closed conformation (see below), suggests that the closed conformation has the lowest energy.

Despite differences in intermolecular interaction types (such as π···π stacking and C—H···π interactions), modifications (I), (II) and (III) all possess layers of molecules in which the geometric centres of the molecules are ordered in an approximate sixfold symmetry. In (II), the layers are arranged so as to mimic a cubic closest packing of spheres (Fig. 3). Each Re complex has contacts with 12 neighbouring molecules. In (III), the layers are shifted somewhat, so a distorted cubic closest packing results. The shift and the orientation of the molecules within one layer enables the contact of two more molecules than in (II) (Fig. 4). In (I), the layers are shifted even more, so that the distribution of geometric centres in layers 1 and 3 is more or less on top of each other, thereby more resembling a hexagonal closest packing than a cubic closest packing. The percentage filled space [calculated according to Kitaigorodskii (1961) using PLATON/VOID (Spek, 2000)] in these modifications shows little variance, with values of 71.7, 70.4 and 72.6% for (I), (II) and (III), respectively.

Modification (IV) is the first in a series of solvent-containing crystal structures of [ReO(salpd)]2O. Two chloroform molecules are found in the asymmetric unit of this monoclinic modification, bringing the ratio Re-complex:solvent to 1:4. The Re complex has adopted the closed conformation. Adoption of the open conformation would give rise to close contacts between H and Cl atoms at an angle unfavourable for possible C—H···Cl interactions. As in the closed conformation in (III), the intramolecular C—H···O contact linking the two ligands in one Re complex involves one of the salicylidene O atoms (see Table 6 for geometric details). One of the chloroform solvent molecules donates a C—H···O hydrogen bond to the terminal O atom, while the other chloroform molecule is involved in a symmetric bifurcated hydrogen bond to the salicylidene O atoms (Fig. 5). The crystal packing further shows a number of parallel π-systems, but since the distance between the projection of their geometric centres on one of the ring planes is approximately 3 Å, this system cannot be regarded as a π···π stack. The packing clearly differs from the ones observed so far, since in (IV) a Re complex only has contacts with six neighbouring Re complexes instead of twelve [(I) and (II)] or fourteen [(III)]. Even if [ReO(salpd)]2O·4CHCl3 is seen as a single entity, such an entity only displays contacts to ten of its neigbours. A layer structure as found for modifications (I)-(III) can therefore not be identified. Instead, the Re complexes are organized in columns parallel to the a axis and are surrounded by a cylindrical layer of chloroform molecules (Fig. 6). The column of Re complexes and solvent molecules is surrounded by six other columns in a hexagonal fashion.

Modification (V) proved to be another chloroform solvate (Fig. 7). In this triclinic modification only one chloroform molecule is present in the asymmetric unit, resulting in a Re-complex:solvent ratio of 1:2. The Re complex is in the closed conformation, with the central CH2 moiety of the propane bridge in contact with one of the salicylidene O atoms of the inversion-related ligand in the same complex. Transformation of the closed conformation to an open conformation without changing the packing would give rise to collisions with one of the phenyl rings of the bis(salicylidene)propanediamine ligand [C9···C13(1 − x, −y, 1 − z) would become approximately 0.5 Å shorter than the sum of the Van der Waals radii]. The chloroform solvent molecule donates a C—H···O hydrogen bond to the O atoms of the Re complex (see Table 6 for geometric details). The D···A distance involving the terminal atom O3 is much longer than those involving the salicylidene atoms, O1 and O2. Since the C—H vector of the solvent molecule (which was set equal to the appropriately scaled sum of the three Cl—C vectors) is directed towards O1 and O2 with a small tilt towards O3, we prefer to describe this system as a trifurcated hydrogen bond. The packing of (V) further contains parallel π-systems (ring C1—C6 and its inversion-related image) of which, as in (IV), the geometric centres are too far apart to be regarded as π-stacks. The packing consists of layers of Re complexes, parallel to the ab plane, alternated with layers of chloroform (Fig. 8). A layer of Re complexes is ordered along a nearly perfect orthogonal grid, in which each molecule, due to its elongated shape, makes contact to six of its neighbours within the layer. The chloroform layers do not completely separate the Re layers, so that a Re complex in one layer still has contacts with a complex belonging to the next Re layer. The percentage filled space in (V) is with 69.6%, slightly higher than the value of 67.5% found for the di(chloroform) solvate, (IV), but both values are lower than the solvent-free modifications.

The dichloromethane solvate, modification (VI), also contains one solvent molecule per triclinic asymmetric unit (see Fig. 9). Like both chloroform solvates, (VI) shows the Re complex in the closed conformation. The central CH2 moiety makes a bifurcated C—H···O contact with both salicylidene O atoms, albeit with slightly longer contact distances than in the other closed conformations. The open conformation is again hindered by collisions with one of the phenyl rings of the bis(salicylidene)propanediamine ligand [C9···C13(1 − x, −y, 1 − z) would become approximately 0.3 Å shorter than the sum of the van der Waals radii]. The solvent molecule is disordered over two orientations. The central C atom and one of the Cl atoms occupy the same place in both disordered components; the other Cl atom and the H atoms of the major and the minor components are related by a rotation of over 46° around the common Cl—C bond. The occupancy of the major component refined to a value of 0.659 (8). Due to the rotation of the H atoms, the major and minor components of the dichloromethane solvate display different hydrogen-bonding schemes. In the major component, both H atoms of the dichloromethane form a hydrogen bond, one to one of the salicylidene O atoms (O2) and one to the terminal atom, O3. In the minor component, only one of the H atoms is involved in hydrogen bonding; it donates a bifurcated hydrogen bond to the other salicylidene O atom (O1) and to the terminal atom, O3. The crystal packing is very similar to that found for (V); in the chosen setting the layers are oriented parallel to the ac plane. One of the differences is that a Re complex makes contact with two Re complexes of the adjacent layer instead of one. The total number of neighbouring molecules in contact with a Re complex is therefore ten. There is a π···π stack between ring C1—C6 and its (-x, 1 − y, −z) image [with a symmetry-implied interplanar angle of 0° and a Cg···Cg distance of 3.726 (8) Å]. Due to slight shifts in the layer structure, this interaction is severely distorted in the otherwise very similar packing of (V). This indicates that the potential formation of the π···π stack is not a driving force in the crystal assembly of (V) and (VI). The percentage filled space of the dichloromethane solvate (71.6%) is higher than that of the chloroform solvates.

The last modification, (VII), contained water, which was present in minute quantities in the solvent. The asymmetric unit of this monoclinic modification contains one water molecule, bringing the ratio Re-complex:solvent to 1:2. In contrast with the other solvates, the Re complex has adopted the open conformation; the closed conformation cannot be adopted due to collisions with the hydrate water molecule. Intermolecular O···O distances show that the water molecule joins two Re complexes by donating a bifurcated hydrogen bond with one of its H atoms to the salicylidene atoms O1 and O2 in the same asymmetric unit, and a single hydrogen bond with its other H atom to the terminal atom O3 of the residue at (-x, 1/2 + y, 1/2 − z). The location of the Re complexes on a crystallographic inversion centre, combined with the hydrogen bonding, results in the formation of an infinite two-dimensional hydrogen-bonded aggregate with base vectors (0 1 0) and (0 0 1) (Fig. 11). The D···A distances for the O—H···O hydrogen bonds are somewhat longer than usual. Due to the bulkiness of the Re complex, the water molecule can not simultaneously approach all the acceptor atoms more closely. Despite the long D···A distances, the packing of the crystal is still the most efficient of all modifications reported here, with a percentage filled space of 73.8%. The crystal packing strongly resembles that found for (III) (Fig. 4), despite the difference in space group. As in (III), the Re complexes are gathered in layers, each of which is ordered in a hexagonal fashion, and a single Re complex makes contact with fourteen other Re complexes.

The differences between modifications (VI) and (VII) are interesting, since both solvent molecules possess two hydrogen-bond donors but display different packings. If the water molecule of the hydrate, (VII), had taken a similar position tp that of the solvent molecule in (VI), a similar pattern could have been formed with one bifurcated and one single hydrogen bond, both somewhat shorter in length and of approximately equal linearity, as observed in the packing of the hydrate, (VII). In the alternative packing, the Re complex could have adopted the energetically more favourable closed conformation, which is blocked by the presence of the water molecule in the observed packing of the hydrate. Apparently, the large void (approximately 95 Å3, i.e. 10% of the unit cell of the dichloromethane solvate) which would arise if the dichloromethane molecules were replaced by water molecules cannot be filled by adapting the translation symmetry and maintaining a favourable packing at the same time. Another unfavourable factor for the alternative hydrate packing might be that in optimizing the hydrogen-bond geometry, the Re···O distance tends to become smaller than the sum of the contact radii.

The common factor of all four solvates is the presence of hydrogen bonds donated from the solvent to the Re-bonded O atoms. These hydrogen bonds are found in all the different packings, with different positions of the solvent molecules, and for both conformations of the Re complex.

Experimental top

Synthetic details of the preparation of the starting materials, [ReO(salpd)OR], are given elsewhere (van Bommel et al., 1998). Modifications (II) and (III) were obtained simultaneously by dimerization of [ReO(salpd)OEt] in a mixture of diethyl ether and dichloromethane. Modification (IV) was also obtained by dimerization of [ReO(salpd)OEt], this time in chloroform. The other chloroform solvate, modification (V), was obtained by dimerization of [Re(salpd)OMe] in chloroform. Modification (VI) was obtained by dimerization of [Re(salpd)OPr] in dichloromethane. The hydrate, (VII), was obtained by dimerization of [Re(salpd)OiPr] in 2-propanol.

Refinement top

All ordered non-H atoms are refined with anisotropic displacement parameters. The minor disorder component positions of modifications (III) and (VI) were assigned an isotropic displacement parameter set equal to the equivalent isotropic displacement parameter of the major component. All H atoms bonded to C were included in the refinement at calculated positions, riding on their carrier atoms. Their isotropic displacement parameters were fixed at 1.2 times the value of the equivalent isotropic displacement parameter of their carrier atom. For modification (IV), broad highly structured reflection profiles of varying width were observed, which is indicative of a crystal consisting of several slightly misaligned individuals. Each reflection was measured at the ψ-angle for which the minimal profile width can be expected; the A-vector method (Duisenberg, 1983) was used to calculate this ψ-angle. The measured crystal consisted of at least four individuals, slightly rotated over vector (−0.095, 0.930, 0.356). An analytical absorption correction procedure could not be applied because the description of the crystal in terms of bounding lattice planes was not accurate enough due to the irregular crystal shape. A ψ-scan correction was not appropiate because of the anisotropic split of the reflections. Since the transmission factors obtained from an empirical correction based on ΔF fall well within the range of values calculated from the absorption coefficient and the rough crystal dimensions, this method was applied. A difference Fourier map showed the water-H atoms of modification (VII) to be in hydrogen-bonding positions with O1, O2 and O3. Since free refinement of the H atoms proved to be unstable, the water molecule was refined as a rigid group, with the H atoms at idealized positions and oxygen as the pivot atom. Weak distance restraints were necessary to keep the H atoms in hydrogen-bonding positions. The isotropic displacement parameters of H atoms bonded to O were fixed at 1.5 times the value of the equivalent isotropic displacement parameter of the O atom. A mild restraint was applied to prevent unrealistic anisotropy of the salicylidene O-atom displacement parameters.

Computing details top

Data collection: COLLECT (Nonius, 1999) for (II), (III); locally modified CAD-4 Software (Enraf-Nonius, 1989) for (IV), (V), (VI), (VII). Cell refinement: DENZO (Otwinowski & Minor, 1997) for (II), (III); SET4 (de Boer & Duisenberg, 1984) for (IV), (V), (VI), (VII). Data reduction: DENZO for (II), (III); HELENA (Spek, 1997) for (IV), (V), (VI), (VII). For all compounds, program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2000); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plot of II drawn at 30% probability level (Spek, 2000). H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Displacement ellipsoid plot of III drawn at 30% probability level (Spek, 2000). H atoms have been omitted for clarity. Bonds involving atoms of the minor disorder component are dashed.
[Figure 3] Fig. 3. Packing of II. Only the Re2N4O7 core is shown for clarity. Black molecules belong to the bottom layer, hatched molecules belong to the middle layer and white molecules belong to the top layer.
[Figure 4] Fig. 4. Packing of III. Only the Re2N4O7 core is shown for clarity. Black molecules belong to the bottom layer, hatched molecules belong to the middle layer and white molecules belong to the top layer.
[Figure 5] Fig. 5. Displacement ellipsoid plot of IV drawn at 30% probability level (Spek, 2000). H atoms are drawn at arbitrary radius, H atoms not involved in hydrogen bonds have been omitted for clarity
[Figure 6] Fig. 6. Packing of IV. Only the Re2N4O7 core (black) and the chloroform molecules (white) are shown for clarity.
[Figure 7] Fig. 7. Displacement ellipsoid plot of V drawn at 30% probability level (Spek, 2000). H atoms are drawn at arbitrary radius, H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 8] Fig. 8. Packing of V. Only the Re2N4O7 core (black) and the chloroform molecules (white) are shown for clarity.
[Figure 9] Fig. 9. Displacement ellipsoid plot of VI drawn at 30% probability level (Spek, 2000). H atoms are drawn at arbitrary radius, H atoms not involved in hydrogen bonds have been omitted for clarity. Bonds and hydrogen bonds involving atoms of the minor disorder component are dashed.
[Figure 10] Fig. 10. Displacement ellipsoid plot of VII drawn at 30% probability level (Spek, 2000). H atoms are drawn at arbitrary radius, H atoms not involved in hydrogen bonds have been omitted for clarity.
[Figure 11] Fig. 11. Packing of VII. Only the Re2N4O7 core (black) and the water molecules (white) are shown for clarity.
(II) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} top
Crystal data top
[Re2O(C17H16N2O3)2]F(000) = 940
Mr = 981.06Dx = 2.069 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 919 reflections
a = 9.044 (3) Åθ = 2.0–20.0°
b = 10.665 (2) ŵ = 7.74 mm1
c = 17.879 (5) ÅT = 150 K
β = 114.07 (5)°Block, dark green
V = 1574.6 (10) Å30.40 × 0.30 × 0.25 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2849 independent reflections
Radiation source: rotating anode2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.104
Detector resolution: 18.4 pixels mm-1θmax = 25.3°, θmin = 2.5°
Area detector ϕ and ω scansh = 1010
Absorption correction: multi-scan
(PLATON; Spek, 2000)
k = 1212
Tmin = 0.061, Tmax = 0.144l = 2121
20915 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.077 w = 1/[σ2(Fo2) + (0.0382P)2 + 3.0019P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
2849 reflectionsΔρmax = 1.96 e Å3
214 parametersΔρmin = 2.96 e Å3
Crystal data top
[Re2O(C17H16N2O3)2]V = 1574.6 (10) Å3
Mr = 981.06Z = 2
Monoclinic, P21/cMo Kα radiation
a = 9.044 (3) ŵ = 7.74 mm1
b = 10.665 (2) ÅT = 150 K
c = 17.879 (5) Å0.40 × 0.30 × 0.25 mm
β = 114.07 (5)°
Data collection top
Nonius KappaCCD
diffractometer
2849 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2000)
2582 reflections with I > 2σ(I)
Tmin = 0.061, Tmax = 0.144Rint = 0.104
20915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 1.08Δρmax = 1.96 e Å3
2849 reflectionsΔρmin = 2.96 e Å3
214 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.17817 (2)0.11077 (2)0.01839 (1)0.0239 (1)
O10.2940 (4)0.0372 (3)0.1309 (2)0.0303 (11)
O20.0924 (4)0.2276 (3)0.0800 (2)0.0290 (11)
O30.3302 (4)0.2031 (3)0.0151 (2)0.0326 (11)
O40000.0261 (14)
N10.2595 (5)0.0374 (4)0.0342 (3)0.0273 (14)
N20.0185 (5)0.1888 (4)0.0953 (3)0.0292 (14)
C10.3912 (6)0.0604 (5)0.1528 (3)0.0291 (16)
C20.4643 (7)0.0894 (6)0.2366 (3)0.0370 (19)
C30.5725 (7)0.1873 (6)0.2666 (4)0.0415 (19)
C40.6108 (7)0.2615 (6)0.2128 (4)0.0420 (19)
C50.5373 (7)0.2380 (6)0.1301 (4)0.0358 (17)
C60.4263 (6)0.1385 (5)0.0976 (3)0.0285 (17)
C70.3565 (7)0.1244 (5)0.0104 (4)0.0288 (17)
C80.2120 (7)0.0451 (5)0.1238 (3)0.0327 (17)
C90.0401 (7)0.0004 (6)0.1739 (3)0.0329 (16)
C100.0180 (7)0.1420 (6)0.1732 (3)0.0360 (17)
C110.0829 (6)0.2770 (5)0.1010 (3)0.0302 (16)
C120.1072 (6)0.3405 (5)0.0355 (3)0.0301 (17)
C130.2294 (6)0.4334 (6)0.0587 (3)0.0342 (17)
C140.2708 (7)0.4963 (6)0.0030 (4)0.0392 (17)
C150.1881 (7)0.4684 (6)0.0797 (4)0.0402 (19)
C160.0679 (7)0.3793 (5)0.1050 (4)0.0341 (17)
C170.0242 (6)0.3133 (5)0.0487 (3)0.0289 (16)
H20.438500.040000.273900.0440*
H30.620700.204000.323800.0500*
H40.687000.327700.233100.0500*
H50.562000.290300.093700.0430*
H70.384900.187300.019100.0350*
H8A0.221500.133300.138700.0390*
H8B0.288200.005700.138200.0390*
H9A0.033400.040200.152600.0390*
H9B0.007000.027300.231300.0390*
H10A0.106200.183600.183100.0430*
H10B0.085800.165300.218500.0430*
H110.150100.303500.155000.0360*
H130.285200.453000.115200.0410*
H140.354300.557600.020600.0470*
H150.214900.511300.119100.0490*
H160.012800.361800.161800.0410*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0212 (1)0.0276 (2)0.0214 (1)0.0007 (1)0.0073 (1)0.0006 (1)
O10.0280 (18)0.034 (2)0.0251 (17)0.0053 (16)0.0069 (14)0.0001 (14)
O20.0284 (18)0.031 (2)0.0242 (18)0.0048 (16)0.0074 (14)0.0010 (14)
O30.0272 (19)0.030 (2)0.041 (2)0.0038 (16)0.0144 (16)0.0024 (16)
O40.027 (2)0.028 (3)0.023 (2)0.001 (2)0.010 (2)0.0008 (19)
N10.022 (2)0.030 (3)0.030 (2)0.0002 (19)0.0106 (18)0.0032 (18)
N20.032 (2)0.032 (3)0.025 (2)0.002 (2)0.0132 (18)0.0025 (17)
C10.023 (2)0.030 (3)0.028 (3)0.004 (2)0.004 (2)0.001 (2)
C20.034 (3)0.043 (4)0.026 (3)0.005 (3)0.004 (2)0.001 (2)
C30.039 (3)0.039 (4)0.034 (3)0.001 (3)0.002 (3)0.005 (2)
C40.037 (3)0.034 (3)0.051 (4)0.006 (3)0.014 (3)0.012 (3)
C50.031 (3)0.036 (3)0.040 (3)0.001 (2)0.014 (2)0.001 (2)
C60.022 (3)0.026 (3)0.035 (3)0.001 (2)0.009 (2)0.001 (2)
C70.024 (3)0.027 (3)0.037 (3)0.003 (2)0.014 (2)0.002 (2)
C80.039 (3)0.033 (3)0.030 (3)0.002 (2)0.018 (2)0.004 (2)
C90.032 (3)0.047 (3)0.021 (2)0.007 (3)0.012 (2)0.002 (2)
C100.038 (3)0.047 (3)0.025 (3)0.004 (3)0.015 (2)0.002 (2)
C110.029 (3)0.036 (3)0.023 (2)0.002 (2)0.008 (2)0.002 (2)
C120.026 (3)0.029 (3)0.034 (3)0.004 (2)0.011 (2)0.002 (2)
C130.028 (3)0.033 (3)0.034 (3)0.003 (2)0.005 (2)0.010 (2)
C140.039 (3)0.030 (3)0.048 (3)0.004 (3)0.017 (3)0.001 (3)
C150.042 (3)0.038 (4)0.049 (3)0.003 (3)0.027 (3)0.005 (3)
C160.034 (3)0.036 (3)0.031 (3)0.003 (2)0.012 (2)0.001 (2)
C170.025 (2)0.029 (3)0.032 (3)0.002 (2)0.011 (2)0.000 (2)
Geometric parameters (Å, º) top
Re1—O12.010 (3)C12—C131.415 (8)
Re1—O22.016 (4)C12—C171.411 (7)
Re1—O31.712 (4)C13—C141.373 (9)
Re1—O41.9152 (7)C14—C151.390 (9)
Re1—N12.118 (5)C15—C161.374 (9)
Re1—N22.125 (5)C16—C171.410 (8)
O1—C11.315 (6)C2—H20.9506
O2—C171.334 (7)C3—H30.9508
N1—C71.302 (8)C4—H40.9493
N1—C81.482 (7)C5—H50.9503
N2—C101.478 (7)C7—H70.9511
N2—C111.288 (7)C8—H8A0.9909
C1—C21.403 (7)C8—H8B0.9897
C1—C61.423 (8)C9—H9A0.9904
C2—C31.381 (9)C9—H9B0.9897
C3—C41.394 (9)C10—H10A0.9898
C4—C51.374 (9)C10—H10B0.9893
C5—C61.413 (9)C11—H110.9501
C6—C71.431 (8)C13—H130.9502
C8—C91.523 (9)C14—H140.9502
C9—C101.524 (9)C15—H150.9506
C11—C121.445 (7)C16—H160.9496
Re1···H9A3.2906C1···H8Biii3.0713
Re1···H3i3.3144C2···H13vi3.0615
Re1···H9Aii3.2559C4···H2v3.0272
O1···C3i3.412 (7)C4···H10Aiii2.9380
O1···C4i3.346 (7)C5···H10Aiii3.0229
O2···C3i3.279 (8)C5···H8Biii2.9091
O3···C7iii3.161 (8)C6···H8Biii2.7697
O3···C14iv3.243 (7)C10···H16vii2.8481
O3···C5iii3.294 (8)H2···C4i3.0272
O4···C9ii3.274 (6)H2···H4i2.5129
O4···C93.274 (6)H3···Re1v3.3145
O1···H4i2.7708H3···O1v2.8913
O1···H9Aii2.5401H3···O2v2.5657
O1···H3i2.8913H3···O3v2.9037
O2···H3i2.5657H4···O1v2.7708
O2···H9Aii2.5552H4···H2v2.5129
O3···H5iii2.6733H5···H72.2813
O3···H7iii2.5539H5···O3iii2.6733
O3···H3i2.9037H7···H52.2813
O3···H14iv2.5599H7···H8A2.1238
O4···H9A2.6545H7···O3iii2.5539
O4···H9Aii2.6545H8A···H72.1238
C1···C11ii3.444 (8)H8B···H10A2.4240
C3···O2v3.279 (8)H8B···C1iii3.0713
C3···O1v3.412 (7)H8B···C5iii2.9091
C4···O1v3.346 (7)H8B···C6iii2.7697
C5···O3iii3.294 (8)H9A···Re13.2906
C5···C13ii3.290 (9)H9A···O42.6545
C6···C12ii3.404 (8)H9A···Re1ii3.2559
C6···C13ii3.541 (8)H9A···O1ii2.5401
C6···C11ii3.462 (8)H9A···O2ii2.5552
C7···O3iii3.161 (8)H9A···O42.6545
C7···C17ii3.408 (9)H9B···H16vii2.5537
C7···C12ii3.380 (8)H10A···H8B2.4240
C9···O43.274 (6)H10A···C4iii2.9380
C9···O43.274 (6)H10A···C5iii3.0229
C11···C1ii3.444 (8)H10A···H16vii2.5784
C11···C15iv3.573 (9)H10B···H112.0828
C11···C6ii3.462 (8)H10B···H16vii2.5004
C12···C7ii3.380 (8)H11···H10B2.0828
C12···C6ii3.404 (8)H11···H132.2914
C13···C17iv3.501 (8)H13···H112.2914
C13···C5ii3.290 (9)H13···C2viii3.0615
C13···C6ii3.541 (8)H14···O3iv2.5599
C14···O3iv3.243 (7)H16···C10ix2.8481
C15···C11iv3.573 (9)H16···H9Bix2.5537
C17···C13iv3.501 (8)H16···H10Aix2.5784
C17···C7ii3.408 (9)H16···H10Bix2.5004
O1—Re1—O281.61 (15)C12—C13—C14122.7 (5)
O1—Re1—O399.26 (16)C13—C14—C15118.6 (6)
O1—Re1—O489.40 (12)C14—C15—C16120.6 (6)
O1—Re1—N191.11 (17)C15—C16—C17121.6 (6)
O1—Re1—N2169.62 (18)O2—C17—C12125.0 (5)
O2—Re1—O399.02 (16)O2—C17—C16116.5 (5)
O2—Re1—O489.47 (12)C12—C17—C16118.5 (5)
O2—Re1—N1169.83 (17)C1—C2—H2118.90
O2—Re1—N291.02 (17)C3—C2—H2118.97
O3—Re1—O4168.63 (12)C2—C3—H3120.05
O3—Re1—N189.12 (18)C4—C3—H3120.13
O3—Re1—N289.07 (18)C3—C4—H4120.29
O4—Re1—N183.33 (14)C5—C4—H4120.27
O4—Re1—N283.19 (14)C4—C5—H5118.95
N1—Re1—N295.23 (19)C6—C5—H5119.03
Re1—O1—C1128.3 (3)N1—C7—H7115.46
Re1—O2—C17127.5 (3)C6—C7—H7115.53
Re1—O4—Re1ii180.00N1—C8—H8A108.94
Re1—N1—C7121.9 (4)N1—C8—H8B108.98
Re1—N1—C8121.4 (3)C9—C8—H8A108.91
C7—N1—C8116.6 (5)C9—C8—H8B108.95
Re1—N2—C10120.6 (4)H8A—C8—H8B107.69
Re1—N2—C11123.1 (4)C8—C9—H9A108.59
C10—N2—C11116.3 (5)C8—C9—H9B108.62
O1—C1—C2117.3 (5)C10—C9—H9A108.62
O1—C1—C6124.6 (4)C10—C9—H9B108.61
C2—C1—C6118.1 (5)H9A—C9—H9B107.56
C1—C2—C3122.1 (6)N2—C10—H10A108.92
C2—C3—C4119.8 (6)N2—C10—H10B108.90
C3—C4—C5119.4 (6)C9—C10—H10A108.95
C4—C5—C6122.0 (6)C9—C10—H10B109.03
C1—C6—C5118.5 (5)H10A—C10—H10B107.81
C1—C6—C7124.7 (5)N2—C11—H11115.93
C5—C6—C7116.8 (5)C12—C11—H11116.00
N1—C7—C6129.0 (6)C12—C13—H13118.58
N1—C8—C9113.2 (5)C14—C13—H13118.67
C8—C9—C10114.6 (5)C13—C14—H14120.72
N2—C10—C9113.1 (4)C15—C14—H14120.65
N2—C11—C12128.1 (5)C14—C15—H15119.74
C11—C12—C13116.7 (4)C16—C15—H15119.70
C11—C12—C17125.3 (5)C15—C16—H16119.18
C13—C12—C17118.0 (5)C17—C16—H16119.18
O2—Re1—O1—C1178.3 (4)Re1—N2—C10—C938.4 (7)
O3—Re1—O1—C183.9 (4)C11—N2—C10—C9141.0 (5)
O4—Re1—O1—C188.7 (4)Re1—N2—C11—C121.3 (8)
N1—Re1—O1—C15.4 (4)C10—N2—C11—C12179.3 (6)
O1—Re1—O2—C17171.5 (4)O1—C1—C2—C3177.8 (6)
O3—Re1—O2—C1790.3 (4)C6—C1—C2—C32.5 (9)
O4—Re1—O2—C1782.1 (4)O1—C1—C6—C5178.0 (5)
N2—Re1—O2—C171.1 (4)O1—C1—C6—C72.3 (9)
O1—Re1—N1—C73.2 (5)C2—C1—C6—C52.4 (8)
O1—Re1—N1—C8178.5 (4)C2—C1—C6—C7177.3 (6)
O3—Re1—N1—C796.0 (5)C1—C2—C3—C40.6 (10)
O3—Re1—N1—C882.3 (4)C2—C3—C4—C51.5 (10)
O4—Re1—N1—C792.5 (5)C3—C4—C5—C61.6 (10)
O4—Re1—N1—C889.2 (4)C4—C5—C6—C10.4 (9)
N2—Re1—N1—C7175.0 (5)C4—C5—C6—C7179.4 (6)
N2—Re1—N1—C86.7 (4)C5—C6—C7—N1175.7 (6)
O2—Re1—N2—C10179.9 (7)C1—C6—C7—N14.6 (11)
O2—Re1—N2—C110.7 (5)N1—C8—C9—C1072.8 (6)
O3—Re1—N2—C1080.9 (4)C8—C9—C10—N274.7 (7)
O3—Re1—N2—C1199.8 (5)N2—C11—C12—C13179.0 (6)
O4—Re1—N2—C1090.8 (4)N2—C11—C12—C172.0 (10)
O4—Re1—N2—C1188.6 (4)C17—C12—C13—C140.7 (9)
N1—Re1—N2—C108.1 (4)C11—C12—C17—O22.3 (9)
N1—Re1—N2—C11171.2 (5)C11—C12—C13—C14176.6 (6)
Re1—O1—C1—C2176.7 (4)C11—C12—C17—C16176.6 (6)
Re1—O1—C1—C63.6 (8)C13—C12—C17—O2179.3 (6)
Re1—O2—C17—C122.0 (8)C13—C12—C17—C160.4 (8)
Re1—O2—C17—C16176.9 (4)C12—C13—C14—C150.6 (10)
Re1—N1—C7—C60.7 (9)C13—C14—C15—C160.3 (10)
C8—N1—C7—C6177.7 (6)C14—C15—C16—C170.0 (10)
Re1—N1—C8—C935.5 (6)C15—C16—C17—C120.0 (9)
C7—N1—C8—C9146.1 (5)C15—C16—C17—O2179.0 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x, y+1/2, z1/2; (viii) x1, y+1/2, z1/2; (ix) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2v0.952.573.279 (8)132
C7—H7···O3iii0.952.553.161 (8)122
C9—H9A···O1ii0.992.543.432 (8)150
C9—H9A···O2ii0.992.563.436 (7)148
C14—H14···O3iv0.952.563.243 (7)129
Symmetry codes: (ii) x, y, z; (iii) x+1, y, z; (iv) x, y+1, z; (v) x+1, y1/2, z+1/2.
(III) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} top
Crystal data top
[Re2O(C17H16N2O3)2]F(000) = 1880
Mr = 981.06Dx = 2.071 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 830 reflections
a = 12.634 (3) Åθ = 1.6–25.0°
b = 12.832 (3) ŵ = 7.75 mm1
c = 19.406 (4) ÅT = 150 K
V = 3146.1 (12) Å3Irregular needle, dark green
Z = 40.3 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2846 independent reflections
Radiation source: rotating anode2475 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.099
Detector resolution: 18.4 pixels mm-1θmax = 25.3°, θmin = 2.7°
Area detector ϕ and ω scansh = 1115
Absorption correction: multi-scan
(PLATON; Spek, 2000)
k = 1514
Tmin = 0.325, Tmax = 0.461l = 2322
22613 measured reflections
Refinement top
Refinement on F295 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.01P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
2846 reflectionsΔρmax = 1.53 e Å3
224 parametersΔρmin = 3.73 e Å3
Crystal data top
[Re2O(C17H16N2O3)2]V = 3146.1 (12) Å3
Mr = 981.06Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 12.634 (3) ŵ = 7.75 mm1
b = 12.832 (3) ÅT = 150 K
c = 19.406 (4) Å0.3 × 0.1 × 0.1 mm
Data collection top
Nonius KappaCCD
diffractometer
2846 independent reflections
Absorption correction: multi-scan
(PLATON; Spek, 2000)
2475 reflections with I > 2σ(I)
Tmin = 0.325, Tmax = 0.461Rint = 0.099
22613 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04895 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.22Δρmax = 1.53 e Å3
2846 reflectionsΔρmin = 3.73 e Å3
224 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.35473 (3)0.46904 (3)0.01881 (2)0.0313 (1)
O10.3910 (6)0.3156 (5)0.0067 (4)0.041 (2)
O20.3268 (6)0.4560 (5)0.0829 (4)0.043 (2)
O30.2312 (6)0.4526 (5)0.0510 (4)0.049 (3)
O41/21/200.030 (3)
N10.4129 (7)0.4692 (6)0.1213 (4)0.037 (3)
N20.3312 (7)0.6365 (6)0.0151 (4)0.042 (3)
C10.4291 (7)0.2521 (7)0.0556 (5)0.033 (3)
C20.4454 (9)0.1486 (8)0.0359 (6)0.048 (3)
C30.4838 (10)0.0758 (9)0.0810 (6)0.056 (4)
C40.5090 (11)0.1026 (9)0.1473 (6)0.060 (4)
C50.4951 (10)0.2040 (9)0.1691 (5)0.049 (4)
C60.4542 (7)0.2806 (8)0.1233 (5)0.034 (3)
C70.4464 (8)0.3858 (8)0.1515 (5)0.039 (3)
C8A0.415 (2)0.5653 (8)0.1622 (9)0.048 (5)0.682 (18)
C9A0.4325 (12)0.6668 (10)0.1241 (7)0.040 (4)0.682 (18)
C10A0.3376 (13)0.6947 (12)0.0803 (7)0.048 (5)0.682 (18)
C110.3016 (8)0.6810 (7)0.0414 (5)0.038 (3)
C120.2857 (8)0.6390 (7)0.1070 (5)0.037 (3)
C130.2557 (9)0.7112 (9)0.1586 (6)0.051 (4)
C140.2498 (11)0.6842 (9)0.2268 (6)0.059 (4)
C150.2743 (10)0.5831 (9)0.2467 (6)0.053 (4)
C160.2989 (9)0.5094 (8)0.1974 (6)0.042 (3)
C170.3038 (8)0.5332 (7)0.1273 (5)0.035 (3)
C10B0.365 (4)0.700 (3)0.0731 (11)0.0480*0.318 (18)
C8B0.426 (4)0.563 (2)0.162 (2)0.0480*0.318 (18)
C9B0.343 (3)0.641 (2)0.1386 (15)0.0400*0.318 (18)
H20.429400.128200.010000.0570*
H70.468800.393900.197900.0470*
H8A0.471300.558200.197300.0580*0.682 (18)
H8B0.346800.570600.187200.0580*0.682 (18)
H9A0.445800.723200.157800.0480*0.682 (18)
H9B0.495800.660400.094400.0480*0.682 (18)
H10A0.272400.681400.107300.0570*0.682 (18)
H10B0.340100.770200.069800.0570*0.682 (18)
H110.288700.753700.037800.0450*
H130.239100.780700.145500.0610*
H140.229000.734300.260200.0710*
H150.274200.564700.294100.0630*
H160.313100.440000.211700.0510*
H30.493000.005800.066200.0680*
H40.536000.051700.178200.0720*
H50.512800.222800.215000.0590*
H8C0.497500.592600.155800.0580*0.318 (18)
H8D0.415900.547400.211800.0580*0.318 (18)
H9C0.275600.602500.132500.0480*0.318 (18)
H9D0.332200.691800.176100.0480*0.318 (18)
H10C0.325600.767100.073400.0570*0.318 (18)
H10D0.441500.715900.069400.0570*0.318 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0347 (2)0.0229 (2)0.0363 (2)0.0024 (2)0.0046 (2)0.0002 (2)
O10.050 (4)0.029 (3)0.045 (4)0.003 (3)0.012 (3)0.001 (3)
O20.056 (4)0.027 (3)0.046 (4)0.005 (3)0.023 (4)0.002 (3)
O30.043 (4)0.033 (4)0.072 (5)0.005 (3)0.002 (4)0.007 (4)
O40.039 (5)0.024 (4)0.026 (4)0.002 (4)0.004 (4)0.003 (3)
N10.052 (5)0.030 (4)0.029 (4)0.006 (4)0.000 (4)0.002 (3)
N20.046 (5)0.026 (4)0.055 (5)0.003 (4)0.007 (4)0.008 (4)
C10.035 (5)0.031 (5)0.033 (5)0.005 (4)0.004 (4)0.005 (4)
C20.062 (7)0.036 (5)0.046 (6)0.020 (5)0.010 (5)0.005 (5)
C30.075 (8)0.040 (6)0.054 (7)0.027 (6)0.015 (6)0.009 (5)
C40.086 (9)0.051 (7)0.042 (6)0.027 (7)0.012 (6)0.004 (5)
C50.067 (8)0.046 (6)0.035 (5)0.013 (6)0.006 (5)0.002 (5)
C60.033 (5)0.036 (5)0.032 (5)0.003 (4)0.001 (4)0.003 (4)
C70.049 (6)0.041 (6)0.028 (5)0.005 (5)0.002 (4)0.001 (4)
C8A0.083 (12)0.026 (6)0.035 (7)0.006 (7)0.001 (8)0.003 (5)
C9A0.061 (8)0.025 (5)0.034 (7)0.004 (6)0.002 (6)0.008 (5)
C10A0.068 (12)0.018 (6)0.057 (8)0.003 (7)0.006 (8)0.015 (6)
C110.036 (5)0.026 (5)0.052 (6)0.008 (4)0.003 (5)0.003 (4)
C120.033 (5)0.027 (5)0.051 (6)0.006 (4)0.005 (4)0.002 (4)
C130.058 (7)0.035 (5)0.060 (7)0.010 (5)0.010 (6)0.004 (5)
C140.078 (9)0.040 (6)0.059 (7)0.005 (6)0.024 (7)0.009 (5)
C150.067 (8)0.045 (6)0.047 (6)0.003 (6)0.024 (6)0.004 (5)
C160.053 (6)0.026 (5)0.048 (6)0.004 (4)0.019 (5)0.002 (4)
C170.033 (5)0.031 (5)0.042 (5)0.000 (4)0.015 (4)0.004 (4)
Geometric parameters (Å, º) top
Re1—O12.035 (7)C12—C131.416 (15)
Re1—O22.012 (8)C13—C141.370 (16)
Re1—O31.694 (8)C14—C151.389 (16)
Re1—O41.9130 (6)C15—C161.381 (16)
Re1—N12.120 (8)C16—C171.396 (15)
Re1—N22.171 (8)C2—H20.9502
O1—C11.340 (12)C3—H30.9502
O2—C171.345 (12)C4—H40.9500
N1—C71.291 (13)C5—H50.9495
N1—C8A1.467 (15)C7—H70.9496
N1—C8B1.45 (3)C8A—H8A0.9890
N2—C10A1.471 (16)C8A—H8B0.9912
N2—C111.292 (12)C8B—H8D0.9951
N2—C10B1.45 (3)C8B—H8C0.9873
C1—C21.397 (14)C9A—H9B0.9892
C1—C61.400 (14)C9A—H9A0.9898
C2—C31.369 (16)C9B—H9C0.9916
C3—C41.369 (17)C9B—H9D0.9865
C4—C51.379 (16)C10A—H10A0.9911
C5—C61.422 (15)C10A—H10B0.9905
C6—C71.460 (14)C10B—H10C0.9946
C8A—C9A1.514 (18)C10B—H10D0.9904
C8B—C9B1.52 (5)C11—H110.9496
C9A—C10A1.51 (2)C13—H130.9508
C9B—C10B1.51 (4)C14—H140.9500
C11—C121.397 (14)C15—H150.9497
C12—C171.432 (13)C16—H160.9499
Re1···H9B3.3701C16···H8Ci2.9969
Re1···H9C2.9664C16···H8Ai3.0301
Re1···H9Bi3.3394C16···H8Bv3.0753
Re1···H11ii3.4823C17···H8Ci3.0354
O1···C9Ai3.386 (16)H2···H3vi2.2599
O1···C11ii3.127 (12)H2···C11ii3.0574
O3···C9B3.28 (3)H3···H2vi2.2599
O3···C3iii3.196 (14)H3···H3vi2.5797
O3···C2iii3.375 (13)H3···C3vi3.0565
O4···C9Ai3.333 (13)H3···C2vi2.9081
O4···C9A3.333 (13)H4···H8Avii2.4192
O1···H10Di2.6120H4···H8Dvii2.2202
O1···H9Bi2.4473H5···H72.2890
O1···H11ii2.5556H5···H9Avii2.5233
O2···H8Ci2.7051H7···H8A2.1086
O2···H9Bi2.7026H7···H8D2.0974
O2···H13ii2.6887H7···H52.2890
O3···H10Bii2.5343H8A···H4x2.4192
O3···H10Cii2.5239H8A···H72.1086
O3···H9C2.5526H8A···C4x3.0791
O4···H9B2.7559H8A···C16i3.0301
O4···H9Bi2.7559H8B···C16iv3.0753
N1···H15iv2.9107H8B···H15iv2.3416
C1···C11i3.520 (13)H8B···C15iv2.8064
C1···C10Aii3.482 (19)H8B···H10A2.3042
C1···C11ii3.588 (14)H8C···C17i3.0354
C2···C11ii3.487 (15)H8C···H10D2.4115
C2···O3ii3.375 (13)H8C···C16i2.9969
C3···O3ii3.196 (14)H8C···O2i2.7051
C5···C13i3.337 (17)H8D···C15iv3.0376
C6···C12i3.459 (13)H8D···C4x2.9797
C6···C11i3.505 (14)H8D···H72.0974
C7···C14iv3.540 (16)H8D···H4x2.2202
C7···C12i3.508 (14)H9A···H5x2.5233
C7···C16i3.600 (15)H9B···Re13.3701
C7···C17i3.356 (14)H9B···O2i2.7026
C7···C15iv3.440 (16)H9B···O42.7559
C8A···C15iv3.53 (2)H9B···O1i2.4473
C9A···O43.333 (13)H9B···O42.7559
C9A···O1i3.386 (16)H9B···Re1i3.3394
C9A···O43.333 (13)H9C···O32.5526
C9B···O33.28 (3)H9C···Re12.9664
C10A···C1iii3.482 (19)H9D···C14viii2.6770
C11···O1iii3.127 (12)H9D···H14viii2.0316
C11···C1i3.520 (13)H10A···H8B2.3042
C11···C2iii3.487 (15)H10A···C1iii2.8828
C11···C6i3.505 (14)H10B···O3iii2.5343
C11···C1iii3.588 (14)H10B···H112.1970
C12···C7i3.508 (14)H10C···H112.2144
C12···C6i3.459 (13)H10C···O3iii2.5239
C13···C5i3.337 (17)H10D···O1i2.6120
C14···C7v3.540 (16)H10D···C1i2.9539
C15···C7v3.440 (16)H10D···C2i3.0398
C15···C8Av3.53 (2)H10D···H8C2.4115
C16···C7i3.600 (15)H11···O1iii2.5556
C17···C7i3.356 (14)H11···H10B2.1970
C1···H10Di2.9539H11···H132.2093
C1···H10Aii2.8828H11···Re1iii3.4823
C2···H10Di3.0398H11···H10C2.2144
C2···H3vi2.9081H13···O2iii2.6887
C3···H3vi3.0565H13···H16iii2.5028
C4···H8Dvii2.9797H13···H112.2093
C4···H8Avii3.0791H14···H9Dix2.0316
C7···H15iv3.0472H14···C9Bix2.9141
C8A···H15iv3.0357H15···N1v2.9107
C9B···H14viii2.9141H15···H8Bv2.3416
C11···H2iii3.0574H15···C7v3.0472
C14···H9Dix2.6770H15···C8Av3.0357
C15···H8Dv3.0376H16···H13ii2.5028
C15···H8Bv2.8064
O1—Re1—O281.1 (3)O2—C17—C12123.8 (9)
O1—Re1—O397.4 (3)O2—C17—C16118.2 (8)
O1—Re1—O487.9 (2)C12—C17—C16117.9 (9)
O1—Re1—N191.8 (3)C1—C2—H2119.14
O1—Re1—N2170.0 (3)C3—C2—H2119.13
O2—Re1—O3100.9 (3)C2—C3—H3119.68
O2—Re1—O489.9 (2)C4—C3—H3119.54
O2—Re1—N1168.8 (3)C3—C4—H4120.26
O2—Re1—N291.5 (3)C5—C4—H4120.04
O3—Re1—O4168.5 (3)C4—C5—H5119.83
O3—Re1—N188.5 (4)C6—C5—H5119.75
O3—Re1—N290.5 (3)N1—C7—H7115.93
O4—Re1—N181.2 (2)C6—C7—H7115.88
O4—Re1—N285.4 (2)N1—C8A—H8A107.95
N1—Re1—N294.5 (3)N1—C8A—H8B107.87
Re1—O1—C1126.0 (6)C9A—C8A—H8A108.09
Re1—O2—C17127.2 (6)C9A—C8A—H8B107.88
Re1—O4—Re1i180.00H8A—C8A—H8B107.12
Re1—N1—C7122.6 (7)C9B—C8B—H8C109.98
Re1—N1—C8A121.0 (8)C9B—C8B—H8D109.53
Re1—N1—C8B123.5 (15)H8C—C8B—H8D108.24
C7—N1—C8A116.4 (10)N1—C8B—H8D110.34
C7—N1—C8B113.8 (17)N1—C8B—H8C110.95
Re1—N2—C10A117.8 (7)H9A—C9A—H9B107.96
Re1—N2—C11120.4 (6)C10A—C9A—H9B109.45
Re1—N2—C10B119.3 (15)C8A—C9A—H9A109.34
C10A—N2—C11121.4 (9)C8A—C9A—H9B109.34
C10B—N2—C11119.6 (15)C10A—C9A—H9A109.44
O1—C1—C2115.9 (9)C8B—C9B—H9C107.47
O1—C1—C6125.9 (8)C8B—C9B—H9D108.08
C2—C1—C6118.1 (9)C10B—C9B—H9C107.96
C1—C2—C3121.7 (10)C10B—C9B—H9D108.43
C2—C3—C4120.8 (11)H9C—C9B—H9D107.37
C3—C4—C5119.7 (11)C9A—C10A—H10A108.72
C4—C5—C6120.4 (10)C9A—C10A—H10B108.77
C1—C6—C5119.2 (9)H10A—C10A—H10B107.68
C1—C6—C7125.3 (9)N2—C10A—H10B108.74
C5—C6—C7115.4 (9)N2—C10A—H10A108.76
N1—C7—C6128.2 (9)H10C—C10B—H10D108.09
N1—C8A—C9A117.5 (13)C9B—C10B—H10D110.18
N1—C8B—C9B108 (3)N2—C10B—H10C110.05
C8A—C9A—C10A111.2 (14)N2—C10B—H10D110.24
C8B—C9B—C10B117 (3)C9B—C10B—H10C109.76
N2—C10A—C9A114.0 (12)N2—C11—H11114.93
N2—C10B—C9B109 (3)C12—C11—H11114.92
N2—C11—C12130.1 (9)C12—C13—H13118.93
C11—C12—C13115.5 (9)C14—C13—H13118.91
C11—C12—C17126.4 (9)C13—C14—H14120.20
C13—C12—C17117.9 (9)C15—C14—H14120.28
C12—C13—C14122.2 (10)C14—C15—H15120.09
C13—C14—C15119.5 (11)C16—C15—H15120.08
C14—C15—C16119.8 (11)C15—C16—H16118.83
C15—C16—C17122.4 (10)C17—C16—H16118.79
O2—Re1—O1—C1175.9 (8)Re1—N2—C10A—C9A47.0 (14)
O3—Re1—O1—C184.1 (8)C11—N2—C10A—C9A140.2 (11)
O4—Re1—O1—C185.6 (7)Re1—N2—C11—C124.0 (15)
N1—Re1—O1—C14.6 (8)C10A—N2—C11—C12176.6 (12)
O1—Re1—O2—C17173.0 (8)O1—C1—C2—C3179.9 (10)
O3—Re1—O2—C1791.0 (8)C6—C1—C2—C30.6 (16)
O4—Re1—O2—C1785.2 (8)O1—C1—C6—C5179.4 (9)
N2—Re1—O2—C170.2 (8)O1—C1—C6—C72.2 (15)
O1—Re1—N1—C74.3 (8)C2—C1—C6—C50.1 (14)
O1—Re1—N1—C8A176.9 (12)C2—C1—C6—C7177.2 (9)
O3—Re1—N1—C793.1 (8)C1—C2—C3—C40.8 (19)
O3—Re1—N1—C8A85.7 (12)C2—C3—C4—C50.3 (19)
O4—Re1—N1—C791.9 (8)C3—C4—C5—C60 (2)
O4—Re1—N1—C8A89.4 (12)C4—C5—C6—C10.6 (16)
N2—Re1—N1—C7176.5 (8)C4—C5—C6—C7178.0 (11)
N2—Re1—N1—C8A4.7 (13)C5—C6—C7—N1179.6 (10)
O2—Re1—N2—C10A177.4 (9)C1—C6—C7—N12.4 (17)
O2—Re1—N2—C114.5 (8)N1—C8A—C9A—C10A70 (2)
O3—Re1—N2—C10A76.4 (9)C8A—C9A—C10A—N278.3 (15)
O3—Re1—N2—C1196.4 (8)N2—C11—C12—C13178.2 (11)
O4—Re1—N2—C10A92.8 (9)N2—C11—C12—C172.8 (18)
O4—Re1—N2—C1194.3 (8)C17—C12—C13—C143.9 (17)
N1—Re1—N2—C10A12.1 (9)C11—C12—C17—O28.6 (17)
N1—Re1—N2—C11175.0 (8)C11—C12—C13—C14171.9 (11)
Re1—O1—C1—C2178.3 (7)C11—C12—C17—C16170.4 (10)
Re1—O1—C1—C62.3 (13)C13—C12—C17—O2176.1 (10)
Re1—O2—C17—C126.1 (14)C13—C12—C17—C164.9 (15)
Re1—O2—C17—C16172.9 (7)C12—C13—C14—C150.3 (19)
Re1—N1—C7—C61.9 (15)C13—C14—C15—C163.4 (19)
C8A—N1—C7—C6179.3 (13)C14—C15—C16—C172.2 (18)
Re1—N1—C8A—C9A32 (2)C15—C16—C17—C122.0 (16)
C7—N1—C8A—C9A149.0 (15)C15—C16—C17—O2179.0 (10)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y1/2, z; (iii) x+1/2, y+1/2, z; (iv) x+1/2, y+1, z+1/2; (v) x+1/2, y+1, z1/2; (vi) x+1, y, z; (vii) x+1, y1/2, z+1/2; (viii) x, y+3/2, z+1/2; (ix) x, y+3/2, z1/2; (x) x+1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9A—H9B···O1i0.992.453.386 (16)158
C10A—H10B···O3iii0.992.533.469 (17)157
C10B—H10C···O3iii0.992.523.49 (4)163
C11—H11···O1iii0.952.563.127 (12)119
Symmetry codes: (i) x+1, y+1, z; (iii) x+1/2, y+1/2, z.
(IV) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} chloroform solvate (1:4) top
Crystal data top
[Re2O(C17H16N2O3)2]·4CHCl3F(000) = 1404
Mr = 1458.53Dx = 1.965 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22 reflections
a = 10.137 (10) Åθ = 9.8–13.7°
b = 18.733 (15) ŵ = 5.61 mm1
c = 16.131 (11) ÅT = 150 K
β = 126.43 (6)°Irregular plate, dark green
V = 2465 (4) Å30.5 × 0.4 × 0.1 mm
Z = 2
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3022 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.097
Graphite monochromatorθmax = 26.5°, θmin = 1.9°
ω scansh = 012
Absorption correction: part of the refinement model (ΔF)
(PLATON; Spek, 2000)
k = 023
Tmin = 0.138, Tmax = 0.571l = 1915
5052 measured reflections3 standard reflections every 60 min
4773 independent reflections intensity decay: 1%
Refinement top
Refinement on F2226 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.068H-atom parameters constrained
wR(F2) = 0.185 w = 1/[σ2(Fo2) + (0.0801P)2 + 29.94P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.043
4773 reflectionsΔρmax = 1.45 e Å3
286 parametersΔρmin = 1.83 e Å3
Crystal data top
[Re2O(C17H16N2O3)2]·4CHCl3V = 2465 (4) Å3
Mr = 1458.53Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.137 (10) ŵ = 5.61 mm1
b = 18.733 (15) ÅT = 150 K
c = 16.131 (11) Å0.5 × 0.4 × 0.1 mm
β = 126.43 (6)°
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3022 reflections with I > 2σ(I)
Absorption correction: part of the refinement model (ΔF)
(PLATON; Spek, 2000)
Rint = 0.097
Tmin = 0.138, Tmax = 0.5713 standard reflections every 60 min
5052 measured reflections intensity decay: 1%
4773 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.068226 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0801P)2 + 29.94P]
where P = (Fo2 + 2Fc2)/3
4773 reflectionsΔρmax = 1.45 e Å3
286 parametersΔρmin = 1.83 e Å3
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.21608 (7)0.03730 (3)0.09915 (5)0.0261 (2)
O10.1976 (12)0.0948 (5)0.0132 (8)0.028 (3)
O20.1150 (12)0.1269 (5)0.1099 (8)0.031 (3)
O30.4150 (12)0.0536 (5)0.1976 (8)0.032 (3)
O40000.029 (4)
N10.2910 (14)0.0548 (6)0.0578 (9)0.026 (3)
N20.1940 (15)0.0147 (6)0.2082 (9)0.029 (3)
C10.2301 (17)0.0746 (8)0.0779 (11)0.027 (4)
C20.201 (2)0.1239 (9)0.1509 (12)0.037 (5)
C30.2255 (19)0.1079 (9)0.2247 (11)0.035 (4)
C40.2780 (19)0.0392 (9)0.2292 (12)0.039 (5)
C50.3066 (19)0.0102 (8)0.1567 (12)0.034 (4)
C60.2805 (18)0.0042 (8)0.0808 (11)0.029 (4)
C70.3042 (17)0.0538 (7)0.0154 (12)0.029 (4)
C80.3256 (18)0.1198 (7)0.1154 (11)0.032 (4)
C90.2145 (19)0.1350 (8)0.1493 (13)0.038 (4)
C100.252 (2)0.0913 (7)0.2385 (13)0.036 (4)
C110.1316 (19)0.0158 (8)0.2493 (12)0.031 (4)
C120.0777 (18)0.0890 (8)0.2378 (11)0.030 (4)
C130.021 (2)0.1086 (10)0.2983 (13)0.043 (5)
C140.044 (2)0.1734 (9)0.2869 (12)0.042 (5)
C150.064 (2)0.2232 (9)0.2136 (14)0.044 (5)
C160.0054 (19)0.2055 (8)0.1579 (13)0.034 (4)
C170.0613 (18)0.1392 (8)0.1660 (12)0.032 (4)
Cl10.4329 (6)0.2306 (2)0.2493 (3)0.0474 (14)
Cl20.2757 (7)0.3180 (3)0.0671 (4)0.0620 (19)
Cl30.5301 (7)0.2194 (3)0.1140 (5)0.0622 (19)
C180.362 (2)0.2351 (8)0.1217 (12)0.038 (4)
Cl40.6516 (9)0.0009 (3)0.4612 (4)0.081 (2)
Cl50.5839 (10)0.1440 (3)0.4817 (5)0.091 (3)
Cl60.8584 (9)0.1138 (5)0.4787 (6)0.113 (3)
C190.659 (2)0.0870 (10)0.4309 (13)0.049 (5)
H20.163500.170200.150300.0450*
H30.206600.143500.272700.0420*
H40.293100.027400.280300.0470*
H50.345600.056100.157400.0410*
H70.334300.097900.028900.0360*
H8A0.440800.118000.177700.0380*
H8B0.316300.160400.072900.0380*
H9A0.099200.126300.090000.0460*
H9B0.224500.186100.167700.0460*
H10A0.371300.091700.293300.0440*
H10B0.197300.113200.267000.0440*
H110.119600.013400.292600.0380*
H130.030200.075700.346200.0530*
H140.077400.186300.328800.0510*
H150.116400.267800.203200.0520*
H160.011100.239900.112600.0400*
H180.277700.197200.081600.0460*
H190.587200.092100.354200.0590*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0248 (3)0.0253 (3)0.0276 (3)0.0010 (3)0.0152 (2)0.0006 (3)
O10.029 (5)0.023 (5)0.031 (5)0.005 (4)0.017 (4)0.003 (4)
O20.035 (6)0.023 (4)0.043 (6)0.002 (4)0.027 (5)0.006 (4)
O30.031 (5)0.035 (6)0.033 (5)0.010 (4)0.020 (4)0.008 (4)
O40.033 (6)0.033 (7)0.033 (6)0.004 (5)0.026 (5)0.003 (6)
N10.025 (6)0.029 (5)0.020 (5)0.004 (4)0.011 (5)0.008 (4)
N20.025 (6)0.033 (5)0.028 (6)0.010 (5)0.015 (5)0.010 (4)
C10.022 (7)0.032 (6)0.028 (7)0.008 (6)0.016 (6)0.001 (5)
C20.043 (9)0.039 (7)0.040 (8)0.001 (7)0.030 (8)0.001 (6)
C30.037 (8)0.046 (7)0.021 (7)0.000 (7)0.016 (6)0.007 (6)
C40.036 (8)0.050 (8)0.038 (8)0.006 (8)0.026 (7)0.002 (7)
C50.035 (8)0.032 (6)0.038 (8)0.010 (6)0.024 (7)0.012 (5)
C60.026 (7)0.028 (6)0.035 (7)0.015 (6)0.019 (6)0.012 (5)
C70.026 (7)0.027 (6)0.036 (7)0.001 (5)0.019 (6)0.008 (5)
C80.032 (8)0.023 (6)0.025 (7)0.006 (6)0.009 (6)0.008 (5)
C90.032 (8)0.022 (6)0.055 (9)0.003 (6)0.023 (7)0.005 (6)
C100.043 (9)0.027 (6)0.044 (8)0.003 (6)0.029 (8)0.012 (6)
C110.037 (8)0.037 (6)0.028 (7)0.000 (6)0.024 (7)0.002 (6)
C120.033 (8)0.035 (6)0.029 (7)0.011 (6)0.022 (6)0.016 (5)
C130.043 (9)0.062 (8)0.032 (8)0.003 (8)0.026 (7)0.013 (7)
C140.039 (9)0.059 (9)0.031 (8)0.009 (7)0.022 (7)0.031 (6)
C150.032 (8)0.045 (8)0.059 (10)0.007 (7)0.030 (8)0.021 (6)
C160.036 (8)0.024 (6)0.048 (9)0.011 (6)0.029 (7)0.010 (6)
C170.030 (8)0.031 (6)0.039 (8)0.005 (6)0.022 (6)0.010 (5)
Cl10.050 (3)0.039 (2)0.043 (2)0.0126 (19)0.022 (2)0.0076 (18)
Cl20.071 (4)0.046 (3)0.066 (3)0.011 (2)0.039 (3)0.016 (2)
Cl30.061 (3)0.056 (3)0.090 (4)0.007 (2)0.056 (3)0.012 (3)
C180.033 (9)0.037 (7)0.033 (7)0.005 (6)0.014 (7)0.006 (6)
Cl40.108 (5)0.053 (3)0.054 (3)0.006 (3)0.033 (3)0.004 (3)
Cl50.133 (6)0.078 (4)0.063 (4)0.031 (4)0.058 (4)0.001 (3)
Cl60.073 (4)0.165 (7)0.084 (5)0.046 (5)0.037 (4)0.021 (5)
C190.048 (9)0.055 (8)0.023 (9)0.005 (8)0.009 (8)0.004 (7)
Geometric parameters (Å, º) top
Re1—O12.019 (11)C9—C101.50 (2)
Re1—O22.027 (11)C11—C121.45 (2)
Re1—O31.696 (12)C12—C131.44 (3)
Re1—O41.919 (2)C12—C171.42 (2)
Re1—N12.145 (13)C13—C141.34 (3)
Re1—N22.136 (14)C14—C151.42 (3)
Cl1—C181.733 (17)C15—C161.38 (3)
Cl2—C181.743 (17)C16—C171.38 (2)
Cl3—C181.80 (2)C2—H20.9493
Cl4—C191.73 (2)C3—H30.9512
Cl5—C191.77 (2)C4—H40.9495
Cl6—C191.76 (2)C5—H50.9492
O1—C11.32 (2)C7—H70.9497
O2—C171.32 (2)C8—H8B0.9902
N1—C81.443 (18)C8—H8A0.9904
N1—C71.26 (2)C9—H9A0.9898
N2—C101.517 (18)C9—H9B0.9894
N2—C111.29 (3)C10—H10A0.9871
C1—C21.38 (2)C10—H10B0.9949
C1—C61.43 (2)C11—H110.9502
C2—C31.39 (3)C13—H130.9487
C3—C41.41 (3)C14—H140.9495
C4—C51.38 (2)C15—H150.9500
C5—C61.42 (3)C16—H160.9500
C6—C71.43 (2)C18—H180.9981
C8—C91.54 (3)C19—H191.0001
Re1···C183.926 (17)C9···O43.272 (17)
Re1···H9A3.2574C9···O43.272 (17)
Re1···H183.1069C11···C1i3.45 (2)
Re1···H9Ai3.2745C11···C6i3.39 (3)
Cl1···C8ii3.502 (15)C12···C7i3.43 (2)
Cl1···Cl53.495 (8)C12···C6i3.42 (2)
Cl1···O23.257 (13)C13···C5i3.26 (3)
Cl1···O33.397 (11)C14···Cl3viii3.59 (2)
Cl1···C173.59 (2)C15···Cl3viii3.42 (3)
Cl1···C193.619 (19)C17···Cl13.59 (2)
Cl2···Cl4ii3.558 (9)C17···C7i3.39 (3)
Cl3···Cl5iii3.575 (11)C18···Re13.926 (17)
Cl3···C14iv3.59 (2)C18···O23.14 (2)
Cl3···C15iv3.42 (3)C18···O13.180 (18)
Cl4···Cl2v3.558 (9)C19···O33.10 (2)
Cl5···Cl3vi3.575 (11)C19···Cl13.619 (19)
Cl5···Cl13.495 (8)C3···H8Avii3.0012
Cl1···H8Aii3.0462C4···H8Avii2.8605
Cl1···H192.9829C15···H2vi2.8483
Cl2···H3vi3.1367H2···C15iii2.8483
Cl3···H15iv3.0999H3···Cl2iii3.1367
Cl4···H10A3.0269H4···O3vii2.8547
O1···C183.180 (18)H5···O3vii2.8603
O2···Cl13.257 (13)H5···H72.2814
O2···C183.14 (2)H7···H52.2814
O3···C4vii3.33 (2)H7···H8B2.1111
O3···Cl13.397 (11)H8A···H10A2.4035
O3···C5vii3.36 (3)H8A···C4vii2.8605
O3···C193.10 (2)H8A···C3vii3.0012
O4···C93.272 (17)H8A···Cl1v3.0462
O4···C9i3.272 (16)H8B···H72.1111
O1···H9Ai2.5511H9A···O1i2.5511
O1···H182.2810H9A···Re1i3.2745
O2···H182.3573H9A···O2i2.6071
O2···H9Ai2.6071H9A···O42.6425
O3···H4vii2.8547H9A···O42.6425
O3···H5vii2.8603H9A···Re13.2574
O3···H192.1706H10A···H8A2.4035
O4···H9Ai2.6425H10A···Cl43.0269
O4···H9A2.6425H10B···H112.1616
C1···C11i3.45 (2)H10B···H15ix2.5182
C4···O3vii3.33 (3)H11···H10B2.1616
C5···C7vii3.42 (3)H11···H132.2990
C5···C13i3.26 (3)H13···H112.2990
C5···O3vii3.36 (3)H15···H10Bx2.5182
C6···C6vii3.58 (3)H15···Cl3viii3.0999
C6···C12i3.42 (2)H18···O22.3573
C6···C11i3.39 (3)H18···Re13.1069
C7···C5vii3.42 (3)H18···O12.2810
C7···C12i3.43 (2)H19···Cl12.9829
C7···C17i3.39 (3)H19···O32.1706
C8···Cl1v3.502 (15)
O1—Re1—O281.5 (5)C12—C17—C16119.0 (18)
O1—Re1—O399.8 (5)C1—C2—H2119.04
O1—Re1—O489.7 (3)C3—C2—H2118.92
O1—Re1—N190.6 (5)C2—C3—H3119.70
O1—Re1—N2169.6 (6)C4—C3—H3119.83
O2—Re1—O398.7 (5)C3—C4—H4121.14
O2—Re1—O489.3 (3)C5—C4—H4121.22
O2—Re1—N1169.5 (4)C4—C5—H5118.46
O2—Re1—N290.1 (5)C6—C5—H5118.25
O3—Re1—O4168.4 (3)N1—C7—H7115.32
O3—Re1—N189.6 (5)C6—C7—H7115.30
O3—Re1—N287.6 (6)N1—C8—H8A108.30
O4—Re1—N183.5 (4)N1—C8—H8B108.39
O4—Re1—N283.9 (4)C9—C8—H8A108.40
N1—Re1—N296.8 (5)C9—C8—H8B108.31
Re1—O1—C1128.5 (9)H8A—C8—H8B107.38
Re1—O2—C17129.5 (9)C8—C9—H9A108.58
Re1—O4—Re1i180.00C8—C9—H9B108.58
Re1—N1—C7122.1 (10)C10—C9—H9A108.62
Re1—N1—C8118.3 (11)C10—C9—H9B108.59
C7—N1—C8119.6 (13)H9A—C9—H9B107.52
Re1—N2—C10119.1 (12)N2—C10—H10A109.27
Re1—N2—C11123.0 (10)N2—C10—H10B108.85
C10—N2—C11117.9 (14)C9—C10—H10A109.50
O1—C1—C2117.0 (15)C9—C10—H10B109.02
O1—C1—C6123.6 (14)H10A—C10—H10B107.80
C2—C1—C6119.3 (16)N2—C11—H11116.02
C1—C2—C3122.0 (16)C12—C11—H11115.88
C2—C3—C4120.5 (15)C12—C13—H13119.96
C3—C4—C5117.6 (17)C14—C13—H13120.17
C4—C5—C6123.3 (16)C13—C14—H14119.12
C1—C6—C5117.2 (14)C15—C14—H14119.31
C1—C6—C7125.8 (16)C14—C15—H15120.81
C5—C6—C7117.0 (14)C16—C15—H15120.54
N1—C7—C6129.4 (14)C15—C16—H16119.00
N1—C8—C9115.8 (15)C17—C16—H16119.01
C8—C9—C10114.7 (15)Cl1—C18—Cl2111.9 (10)
N2—C10—C9112.3 (13)Cl1—C18—Cl3109.3 (10)
N2—C11—C12128.1 (16)Cl2—C18—Cl3108.8 (11)
C11—C12—C13115.2 (15)Cl1—C18—H18109.07
C11—C12—C17125.7 (17)Cl2—C18—H18109.07
C13—C12—C17118.8 (15)Cl3—C18—H18108.63
C12—C13—C14119.9 (17)Cl4—C19—Cl5109.9 (12)
C13—C14—C15121.6 (19)Cl4—C19—Cl6112.3 (12)
C14—C15—C16118.7 (17)Cl5—C19—Cl6108.9 (11)
C15—C16—C17122.0 (16)Cl4—C19—H19108.56
O2—C17—C12123.0 (15)Cl5—C19—H19108.54
O2—C17—C16117.9 (15)Cl6—C19—H19108.56
O2—Re1—O1—C1174.8 (14)Re1—N2—C10—C938 (2)
O3—Re1—O1—C187.8 (14)C11—N2—C10—C9141.2 (18)
O4—Re1—O1—C185.4 (14)Re1—N2—C11—C125 (3)
N1—Re1—O1—C11.9 (14)C10—N2—C11—C12175.8 (17)
O1—Re1—O2—C17173.2 (14)O1—C1—C2—C3177.9 (17)
O3—Re1—O2—C1788.1 (14)C6—C1—C2—C33 (3)
O4—Re1—O2—C1783.4 (14)O1—C1—C6—C5178.3 (16)
N2—Re1—O2—C170.5 (14)O1—C1—C6—C70 (3)
O1—Re1—N1—C70.4 (14)C2—C1—C6—C53 (3)
O1—Re1—N1—C8179.8 (12)C2—C1—C6—C7175.4 (18)
O3—Re1—N1—C7100.2 (15)C1—C2—C3—C42 (3)
O3—Re1—N1—C880.4 (12)C2—C3—C4—C51 (3)
O4—Re1—N1—C789.2 (14)C3—C4—C5—C62 (3)
O4—Re1—N1—C890.2 (12)C4—C5—C6—C13 (3)
N2—Re1—N1—C7172.3 (14)C4—C5—C6—C7175.6 (18)
N2—Re1—N1—C87.1 (13)C5—C6—C7—N1179.1 (19)
O2—Re1—N2—C10179.8 (12)C1—C6—C7—N12 (3)
O2—Re1—N2—C110.6 (14)N1—C8—C9—C1076.0 (17)
O3—Re1—N2—C1081.5 (12)C8—C9—C10—N275 (2)
O3—Re1—N2—C1199.2 (14)N2—C11—C12—C13176.8 (18)
O4—Re1—N2—C1090.5 (12)N2—C11—C12—C1710 (3)
O4—Re1—N2—C1188.7 (14)C17—C12—C13—C141 (3)
N1—Re1—N2—C107.8 (12)C11—C12—C17—O29 (3)
N1—Re1—N2—C11171.5 (14)C11—C12—C13—C14174.6 (18)
Re1—O1—C1—C2177.6 (12)C11—C12—C17—C16174.4 (18)
Re1—O1—C1—C62 (2)C13—C12—C17—O2177.5 (16)
Re1—O2—C17—C125 (2)C13—C12—C17—C161 (3)
Re1—O2—C17—C16179.0 (12)C12—C13—C14—C152 (3)
Re1—N1—C7—C62 (3)C13—C14—C15—C164 (3)
C8—N1—C7—C6178.3 (18)C14—C15—C16—C175 (3)
Re1—N1—C8—C936.7 (16)C15—C16—C17—C123 (3)
C7—N1—C8—C9142.7 (16)C15—C16—C17—O2179.8 (17)
Symmetry codes: (i) x, y, z; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1/2, z1/2; (iv) x+1, y, z; (v) x+1, y1/2, z+1/2; (vi) x, y+1/2, z+1/2; (vii) x+1, y, z; (viii) x1, y, z; (ix) x, y1/2, z+1/2; (x) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.46 (3)152
C18—H18···O11.002.283.180 (18)149
C18—H18···O21.002.363.14 (2)134
C19—H19···O31.002.173.10 (2)154
Symmetry code: (i) x, y, z.
(V) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} chloroform solvate (1:2) top
Crystal data top
[Re2O(C17H16N2O3)2]·2CHCl3Z = 1
Mr = 1219.79F(000) = 586
Triclinic, P1Dx = 2.047 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.0223 (12) ÅCell parameters from 25 reflections
b = 10.4856 (15) Åθ = 9.8–14.0°
c = 10.7375 (17) ŵ = 6.57 mm1
α = 79.750 (12)°T = 150 K
β = 89.256 (11)°Block, dark green
γ = 81.820 (11)°0.40 × 0.40 × 0.15 mm
V = 989.4 (3) Å3
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3333 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.073
Graphite monochromatorθmax = 26.5°, θmin = 1.9°
ω scansh = 1110
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
k = 120
Tmin = 0.256, Tmax = 0.373l = 1212
3862 measured reflections3 standard reflections every 60 min
3648 independent reflections intensity decay: 3%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.028H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0487P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3648 reflectionsΔρmax = 2.74 e Å3
250 parametersΔρmin = 1.65 e Å3
Crystal data top
[Re2O(C17H16N2O3)2]·2CHCl3γ = 81.820 (11)°
Mr = 1219.79V = 989.4 (3) Å3
Triclinic, P1Z = 1
a = 9.0223 (12) ÅMo Kα radiation
b = 10.4856 (15) ŵ = 6.57 mm1
c = 10.7375 (17) ÅT = 150 K
α = 79.750 (12)°0.40 × 0.40 × 0.15 mm
β = 89.256 (11)°
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3333 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
Rint = 0.073
Tmin = 0.256, Tmax = 0.3733 standard reflections every 60 min
3862 measured reflections intensity decay: 3%
3648 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.070H-atom parameters constrained
S = 1.05Δρmax = 2.74 e Å3
3648 reflectionsΔρmin = 1.65 e Å3
250 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.15331 (2)0.04726 (2)0.38361 (2)0.0129 (1)
O10.0007 (4)0.1686 (3)0.2698 (3)0.0182 (11)
O20.1596 (4)0.2105 (3)0.4544 (3)0.0166 (10)
O30.3050 (4)0.0568 (4)0.2888 (4)0.0213 (11)
O4001/20.0156 (14)
N10.1055 (5)0.1134 (4)0.3075 (4)0.0191 (12)
N20.2951 (5)0.0662 (4)0.5317 (4)0.0173 (12)
C10.0849 (6)0.1400 (5)0.1834 (5)0.0197 (16)
C20.1828 (6)0.2441 (6)0.1148 (6)0.0278 (17)
C30.2781 (7)0.2242 (7)0.0230 (6)0.0351 (19)
C40.2772 (7)0.0996 (7)0.0049 (6)0.0351 (19)
C50.1835 (6)0.0027 (6)0.0602 (5)0.0273 (17)
C60.0860 (6)0.0134 (5)0.1559 (5)0.0204 (17)
C70.0069 (6)0.1031 (5)0.2185 (5)0.0206 (17)
C80.1904 (7)0.2428 (5)0.3476 (6)0.0261 (17)
C90.2202 (6)0.2757 (5)0.4889 (6)0.0263 (16)
C100.3396 (6)0.2060 (5)0.5352 (6)0.0238 (17)
C110.3468 (5)0.0147 (5)0.6183 (5)0.0179 (16)
C120.3246 (5)0.1209 (5)0.6350 (5)0.0169 (16)
C130.4001 (6)0.1473 (6)0.7379 (5)0.0225 (17)
C140.3871 (6)0.2707 (6)0.7661 (5)0.0254 (17)
C150.2963 (6)0.3719 (6)0.6896 (6)0.0260 (17)
C160.2210 (6)0.3482 (5)0.5884 (5)0.0234 (17)
C170.2344 (5)0.2233 (5)0.5560 (5)0.0163 (14)
Cl10.05656 (18)0.50880 (16)0.17412 (19)0.0441 (5)
Cl20.2610 (2)0.3414 (2)0.04776 (18)0.0542 (7)
Cl30.36691 (19)0.45231 (16)0.25153 (18)0.0435 (6)
C180.2146 (7)0.3899 (5)0.1927 (6)0.0290 (17)
H20.183400.329900.132000.0330*
H30.344500.295900.021300.0420*
H40.341700.086100.069000.0420*
H50.183700.087500.040700.0330*
H70.005800.182100.190900.0250*
H8A0.287200.247600.303000.0310*
H8B0.134400.309100.322600.0310*
H9A0.251100.371400.512800.0310*
H9B0.125700.253300.533100.0310*
H10A0.367700.248000.623400.0280*
H10B0.429700.218200.482700.0280*
H110.408500.073600.680500.0210*
H130.462300.077800.789800.0270*
H140.439300.286900.836700.0310*
H150.286400.458100.707800.0310*
H160.157700.418400.538600.0280*
H180.192000.312100.254700.0350*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0124 (1)0.0125 (1)0.0133 (1)0.0030 (1)0.0027 (1)0.0000 (1)
O10.0188 (18)0.0174 (18)0.0183 (19)0.0045 (14)0.0090 (15)0.0007 (14)
O20.0172 (17)0.0122 (16)0.022 (2)0.0038 (13)0.0044 (15)0.0055 (14)
O30.0218 (19)0.0224 (19)0.019 (2)0.0071 (15)0.0008 (15)0.0016 (15)
O40.012 (2)0.017 (2)0.018 (3)0.0010 (19)0.005 (2)0.006 (2)
N10.021 (2)0.018 (2)0.020 (2)0.0041 (17)0.0064 (18)0.0072 (18)
N20.015 (2)0.014 (2)0.021 (2)0.0012 (16)0.0018 (18)0.0018 (17)
C10.015 (2)0.029 (3)0.015 (3)0.008 (2)0.002 (2)0.000 (2)
C20.028 (3)0.031 (3)0.023 (3)0.010 (2)0.010 (2)0.004 (2)
C30.025 (3)0.051 (4)0.026 (3)0.009 (3)0.015 (3)0.006 (3)
C40.028 (3)0.057 (4)0.021 (3)0.019 (3)0.010 (3)0.002 (3)
C50.025 (3)0.040 (3)0.020 (3)0.016 (3)0.002 (2)0.005 (3)
C60.019 (3)0.031 (3)0.013 (3)0.012 (2)0.005 (2)0.002 (2)
C70.020 (3)0.026 (3)0.019 (3)0.011 (2)0.004 (2)0.007 (2)
C80.030 (3)0.020 (3)0.029 (3)0.001 (2)0.002 (2)0.010 (2)
C90.026 (3)0.013 (2)0.037 (3)0.003 (2)0.004 (2)0.003 (2)
C100.017 (3)0.019 (3)0.033 (3)0.001 (2)0.004 (2)0.001 (2)
C110.011 (2)0.023 (3)0.016 (3)0.001 (2)0.004 (2)0.006 (2)
C120.011 (2)0.026 (3)0.014 (3)0.007 (2)0.0006 (19)0.001 (2)
C130.016 (3)0.035 (3)0.016 (3)0.008 (2)0.001 (2)0.000 (2)
C140.024 (3)0.043 (3)0.014 (3)0.012 (2)0.003 (2)0.012 (2)
C150.032 (3)0.026 (3)0.025 (3)0.013 (2)0.003 (2)0.011 (2)
C160.024 (3)0.023 (3)0.024 (3)0.007 (2)0.002 (2)0.003 (2)
C170.015 (2)0.024 (3)0.012 (2)0.011 (2)0.0008 (19)0.002 (2)
Cl10.0333 (8)0.0343 (8)0.0682 (12)0.0022 (7)0.0102 (8)0.0196 (8)
Cl20.0697 (13)0.0610 (12)0.0371 (10)0.0085 (10)0.0119 (9)0.0239 (9)
Cl30.0363 (9)0.0401 (9)0.0522 (11)0.0005 (7)0.0145 (8)0.0060 (8)
C180.039 (3)0.021 (3)0.027 (3)0.007 (2)0.002 (3)0.002 (2)
Geometric parameters (Å, º) top
Re1—O12.000 (3)C11—C121.450 (7)
Re1—O22.001 (3)C12—C131.394 (7)
Re1—O31.699 (4)C12—C171.407 (7)
Re1—O41.9106 (4)C13—C141.369 (9)
Re1—N12.097 (4)C14—C151.390 (8)
Re1—N22.128 (4)C15—C161.367 (8)
Cl1—C181.744 (6)C16—C171.402 (7)
Cl2—C181.749 (6)C2—H20.9493
Cl3—C181.772 (6)C3—H30.9499
O1—C11.316 (6)C4—H40.9492
O2—C171.327 (6)C5—H50.9493
N1—C81.455 (7)C7—H70.9499
N1—C71.294 (7)C8—H8A0.9899
N2—C101.458 (7)C8—H8B0.9902
N2—C111.279 (7)C9—H9A0.9905
C1—C21.404 (8)C9—H9B0.9897
C1—C61.412 (7)C10—H10A0.9905
C2—C31.379 (9)C10—H10B0.9895
C3—C41.390 (10)C11—H110.9499
C4—C51.358 (9)C13—H130.9507
C5—C61.409 (8)C14—H140.9504
C6—C71.441 (8)C15—H150.9500
C8—C91.514 (9)C16—H160.9498
C9—C101.520 (8)C18—H181.0004
Re1···C183.915 (6)C18···O23.167 (7)
Re1···H9B3.3141C18···Re13.915 (6)
Re1···H182.9402C5···H13i3.0901
Re1···H9Bi3.2993C12···H10Bvi2.7684
Cl1···C15ii3.638 (6)C13···H4viii3.0601
Cl2···C14iii3.385 (6)C13···H5i3.0909
Cl1···H8Biv2.8592C13···H10Bvi2.8505
Cl1···H23.1454C14···H8Avi3.0082
Cl2···H14iii2.8557C15···H9Aiv2.9840
Cl2···H5v3.1499C16···H9Aiv2.9579
Cl3···H10Avi3.1187C17···H10Bvi3.0478
O1···C183.216 (7)H2···Cl13.1454
O2···C183.167 (7)H3···H14ix2.5138
O3···C11vi3.254 (6)H4···H13ix2.3651
O3···C13vi3.212 (7)H4···C13ix3.0601
O4···C93.286 (5)H5···Cl2v3.1499
O4···C9i3.286 (5)H5···H72.2817
O1···H182.4319H5···C13i3.0909
O1···H9Bi2.6242H7···H52.2817
O2···H9Bi2.5552H7···H8B2.0664
O2···H182.2534H8A···C14vi3.0082
O3···H11vi2.6446H8A···H10B2.4207
O3···H182.6877H8B···Cl1x2.8592
O3···H13vi2.5781H8B···H72.0664
O4···H9B2.6989H9A···C16x2.9579
O4···H9Bi2.6989H9A···H15x2.4909
C1···C11i3.406 (7)H9A···C15x2.9840
C4···C7v3.326 (8)H9A···H16x2.4393
C5···C13i3.222 (8)H9B···O1i2.6242
C5···C5v3.543 (8)H9B···O2i2.5552
C5···C6v3.343 (8)H9B···Re1i3.2993
C5···C7v3.453 (8)H9B···Re13.3141
C5···C12i3.573 (7)H9B···O42.6989
C6···C12i3.357 (7)H9B···O42.6989
C6···C5v3.343 (8)H10A···H112.1100
C6···C11i3.357 (7)H10A···Cl3vi3.1187
C6···C13i3.572 (8)H10B···C13vi2.8505
C7···C12i3.374 (7)H10B···C17vi3.0478
C7···C4v3.326 (8)H10B···H8A2.4207
C7···C5v3.453 (8)H10B···C12vi2.7684
C7···C17i3.428 (7)H11···O3vi2.6446
C9···O43.286 (5)H11···H10A2.1100
C9···O43.286 (5)H11···H132.2428
C11···C6i3.357 (7)H13···C5i3.0901
C11···C1i3.406 (7)H13···O3vi2.5781
C11···O3vi3.254 (6)H13···H4viii2.3651
C12···C7i3.374 (7)H13···H112.2428
C12···C5i3.573 (7)H14···Cl2vii2.8557
C12···C6i3.357 (7)H14···H3viii2.5139
C13···O3vi3.212 (7)H15···H9Aiv2.4909
C13···C5i3.222 (8)H16···H9Aiv2.4393
C13···C6i3.572 (8)H18···Re12.9402
C14···Cl2vii3.385 (6)H18···O12.4319
C15···Cl1ii3.638 (6)H18···O22.2534
C17···C7i3.428 (7)H18···O32.6877
C18···O13.216 (7)
O1—Re1—O280.93 (13)C15—C16—C17121.9 (5)
O1—Re1—O399.16 (17)O2—C17—C12125.1 (5)
O1—Re1—O490.24 (10)O2—C17—C16117.6 (5)
O1—Re1—N191.31 (15)C12—C17—C16117.3 (5)
O1—Re1—N2169.48 (15)C1—C2—H2119.33
O2—Re1—O398.03 (17)C3—C2—H2119.36
O2—Re1—O490.25 (10)C2—C3—H3119.84
O2—Re1—N1169.82 (16)C4—C3—H3119.96
O2—Re1—N291.56 (15)C3—C4—H4120.22
O3—Re1—O4168.32 (14)C5—C4—H4120.20
O3—Re1—N189.67 (19)C4—C5—H5119.06
O3—Re1—N289.13 (18)C6—C5—H5119.05
O4—Re1—N183.16 (12)N1—C7—H7116.00
O4—Re1—N282.39 (12)C6—C7—H7115.94
N1—Re1—N295.23 (16)N1—C8—H8A108.99
Re1—O1—C1128.0 (3)N1—C8—H8B108.97
Re1—O2—C17127.6 (3)C9—C8—H8A109.00
Re1—O4—Re1i180.00C9—C8—H8B108.97
Re1—N1—C7122.9 (4)H8A—C8—H8B107.75
Re1—N1—C8120.8 (4)C8—C9—H9A108.60
C7—N1—C8116.2 (5)C8—C9—H9B108.68
Re1—N2—C10120.4 (3)C10—C9—H9A108.61
Re1—N2—C11121.8 (4)C10—C9—H9B108.61
C10—N2—C11117.8 (5)H9A—C9—H9B107.55
O1—C1—C2116.8 (5)N2—C10—H10A108.58
O1—C1—C6125.0 (5)N2—C10—H10B108.58
C2—C1—C6118.2 (5)C9—C10—H10A108.60
C1—C2—C3121.3 (6)C9—C10—H10B108.60
C2—C3—C4120.2 (6)H10A—C10—H10B107.59
C3—C4—C5119.6 (6)N2—C11—H11115.43
C4—C5—C6121.9 (6)C12—C11—H11115.40
C1—C6—C5118.8 (5)C12—C13—H13119.12
C1—C6—C7124.8 (5)C14—C13—H13119.15
C5—C6—C7116.5 (5)C13—C14—H14120.60
N1—C7—C6128.1 (5)C15—C14—H14120.57
N1—C8—C9113.0 (5)C14—C15—H15119.82
C8—C9—C10114.6 (5)C16—C15—H15119.76
N2—C10—C9114.7 (4)C15—C16—H16119.00
N2—C11—C12129.2 (5)C17—C16—H16119.07
C11—C12—C13115.6 (5)Cl1—C18—Cl2110.0 (4)
C11—C12—C17124.7 (5)Cl1—C18—Cl3110.0 (3)
C13—C12—C17119.7 (5)Cl2—C18—Cl3110.1 (3)
C12—C13—C14121.7 (5)Cl1—C18—H18108.90
C13—C14—C15118.8 (5)Cl2—C18—H18108.90
C14—C15—C16120.4 (6)Cl3—C18—H18108.96
O2—Re1—O1—C1174.5 (4)Re1—N2—C10—C935.4 (6)
O3—Re1—O1—C188.7 (4)C11—N2—C10—C9146.1 (5)
O4—Re1—O1—C184.3 (4)Re1—N2—C11—C120.4 (7)
N1—Re1—O1—C11.1 (4)C10—N2—C11—C12178.0 (5)
O1—Re1—O2—C17173.9 (4)O1—C1—C2—C3179.4 (5)
O3—Re1—O2—C1788.1 (4)C6—C1—C2—C30.1 (12)
O4—Re1—O2—C1783.7 (4)O1—C1—C6—C5179.8 (5)
N2—Re1—O2—C171.3 (4)O1—C1—C6—C70.1 (9)
O1—Re1—N1—C70.6 (4)C2—C1—C6—C50.8 (8)
O1—Re1—N1—C8176.5 (4)C2—C1—C6—C7179.6 (5)
O3—Re1—N1—C798.5 (4)C1—C2—C3—C41.0 (9)
O3—Re1—N1—C877.4 (4)C2—C3—C4—C51.0 (9)
O4—Re1—N1—C790.7 (4)C3—C4—C5—C60.1 (9)
O4—Re1—N1—C893.4 (4)C4—C5—C6—C10.8 (8)
N2—Re1—N1—C7172.4 (4)C4—C5—C6—C7179.5 (6)
N2—Re1—N1—C811.7 (4)C5—C6—C7—N1179.2 (5)
O2—Re1—N2—C10179.2 (4)C1—C6—C7—N10.5 (9)
O2—Re1—N2—C110.8 (4)N1—C8—C9—C1074.5 (6)
O3—Re1—N2—C1081.2 (4)C8—C9—C10—N271.2 (6)
O3—Re1—N2—C1197.2 (4)N2—C11—C12—C13178.2 (5)
O4—Re1—N2—C1090.8 (4)N2—C11—C12—C171.8 (8)
O4—Re1—N2—C1190.9 (4)C17—C12—C13—C141.1 (8)
N1—Re1—N2—C108.4 (4)C11—C12—C17—O21.3 (8)
N1—Re1—N2—C11173.2 (4)C11—C12—C13—C14178.8 (5)
Re1—O1—C1—C2179.4 (4)C11—C12—C17—C16177.8 (5)
Re1—O1—C1—C61.1 (8)C13—C12—C17—O2178.7 (5)
Re1—O2—C17—C120.5 (7)C13—C12—C17—C162.2 (7)
Re1—O2—C17—C16179.5 (3)C12—C13—C14—C150.1 (8)
Re1—N1—C7—C60.0 (8)C13—C14—C15—C160.3 (9)
C8—N1—C7—C6176.1 (5)C14—C15—C16—C171.5 (9)
Re1—N1—C8—C941.9 (6)C15—C16—C17—C122.4 (8)
C7—N1—C8—C9141.9 (5)C15—C16—C17—O2178.5 (5)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z+1; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y, z; (vi) x+1, y, z+1; (vii) x, y, z+1; (viii) x+1, y, z+1; (ix) x1, y, z1; (x) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.992.563.465 (7)153
C13—H13···O3vi0.952.583.212 (7)124
C18—H18···O11.002.433.216 (7)135
C18—H18···O21.002.253.167 (7)151
C18—H18···O31.002.693.444 (7)133
Symmetry codes: (i) x, y, z+1; (vi) x+1, y, z+1.
(VI) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} dichloromethane solvate (1:2) top
Crystal data top
[Re2O(C17H16N2O3)2]·2CH2Cl2Z = 1
Mr = 1150.91F(000) = 554
Triclinic, P1Dx = 2.008 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.9642 (16) ÅCell parameters from 25 reflections
b = 10.053 (3) Åθ = 11.5–13.9°
c = 10.669 (3) ŵ = 6.69 mm1
α = 91.23 (2)°T = 150 K
β = 91.685 (18)°Plate, dark green
γ = 97.913 (17)°0.5 × 0.3 × 0.1 mm
V = 951.6 (4) Å3
Data collection top
Enraf-Nonius CAD4-T
diffractometer
4148 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.086
Graphite monochromatorθmax = 27.5°, θmin = 1.9°
ω scansh = 711
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
k = 1312
Tmin = 0.154, Tmax = 0.512l = 1313
4978 measured reflections3 standard reflections every 60 min
4361 independent reflections intensity decay: 2%
Refinement top
Refinement on F20 restraints
Least-squares matrix: full0 constraints
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.1052P)2 + 2.57P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4361 reflectionsΔρmax = 2.45 e Å3
245 parametersΔρmin = 3.81 e Å3
Crystal data top
[Re2O(C17H16N2O3)2]·2CH2Cl2γ = 97.913 (17)°
Mr = 1150.91V = 951.6 (4) Å3
Triclinic, P1Z = 1
a = 8.9642 (16) ÅMo Kα radiation
b = 10.053 (3) ŵ = 6.69 mm1
c = 10.669 (3) ÅT = 150 K
α = 91.23 (2)°0.5 × 0.3 × 0.1 mm
β = 91.685 (18)°
Data collection top
Enraf-Nonius CAD4-T
diffractometer
4148 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
Rint = 0.086
Tmin = 0.154, Tmax = 0.5123 standard reflections every 60 min
4978 measured reflections intensity decay: 2%
4361 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 2.45 e Å3
4361 reflectionsΔρmin = 3.81 e Å3
245 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Re10.15453 (2)0.45630 (2)0.39340 (2)0.0282 (1)
O10.0009 (6)0.3519 (6)0.2743 (5)0.0365 (17)
O20.1473 (6)0.2761 (5)0.4705 (5)0.0330 (14)
O30.3114 (6)0.4533 (5)0.3087 (5)0.0350 (16)
O401/21/20.034 (2)
N10.1222 (8)0.6378 (7)0.3079 (7)0.0370 (17)
N20.2971 (7)0.5476 (7)0.5440 (6)0.0328 (17)
C10.0792 (8)0.3990 (8)0.1851 (6)0.0333 (19)
C20.1803 (9)0.3060 (9)0.1150 (7)0.045 (3)
C30.2729 (10)0.3438 (11)0.0213 (8)0.052 (3)
C40.2648 (10)0.4787 (10)0.0104 (7)0.047 (3)
C50.1656 (9)0.5723 (10)0.0556 (7)0.043 (2)
C60.0718 (8)0.5355 (8)0.1549 (7)0.0337 (19)
C70.0246 (9)0.6455 (8)0.2178 (7)0.037 (2)
C80.2122 (14)0.7640 (9)0.3502 (11)0.062 (3)
C90.2467 (12)0.7757 (9)0.4872 (10)0.056 (3)
C100.3514 (11)0.6916 (9)0.5410 (10)0.053 (3)
C110.3417 (8)0.4822 (9)0.6338 (7)0.038 (2)
C120.3105 (8)0.3386 (9)0.6533 (7)0.037 (2)
C130.3805 (10)0.2911 (11)0.7605 (8)0.048 (3)
C140.3565 (12)0.1632 (11)0.7933 (9)0.058 (3)
C150.2612 (12)0.0694 (10)0.7187 (9)0.054 (3)
C160.1931 (10)0.1123 (9)0.6103 (8)0.046 (3)
C170.2156 (8)0.2455 (8)0.5769 (7)0.0341 (19)
Cl10.1263 (5)0.0432 (4)0.1029 (4)0.0893 (11)
Cl210.4104 (5)0.0810 (5)0.2264 (8)0.099 (3)0.659 (8)
C180.2443 (12)0.1493 (10)0.2064 (10)0.058 (3)
Cl220.4328 (15)0.1839 (13)0.1518 (13)0.0990*0.341 (8)
H20.185300.213300.132800.0540*
H30.342800.277900.022200.0620*
H40.326900.505000.076500.0560*
H50.159400.664100.034400.0520*
H70.015100.733000.189800.0440*
H8A0.157600.839200.325800.0750*
H8B0.308300.774200.305700.0750*
H9A0.287400.870500.507500.0670*
H9B0.150300.756000.530600.0670*
H10A0.378700.724400.628000.0630*
H10B0.444700.704000.492700.0630*
H110.403500.533100.696500.0450*
H130.447400.353000.811200.0570*
H140.404000.135600.867200.0700*
H150.243100.022100.741600.0650*
H160.130000.048700.558400.0560*
H18A0.265300.240300.171700.0690*0.659 (8)
H18B0.195800.156600.287900.0690*0.659 (8)
H18C0.246800.107100.289300.0690*0.341 (8)
H18D0.202800.235000.217300.0690*0.341 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0296 (2)0.0321 (2)0.0235 (2)0.0072 (1)0.0008 (1)0.0016 (1)
O10.035 (3)0.040 (3)0.034 (3)0.004 (2)0.004 (2)0.002 (2)
O20.037 (3)0.036 (2)0.027 (2)0.0110 (19)0.0081 (19)0.0013 (19)
O30.034 (2)0.042 (3)0.030 (3)0.010 (2)0.0013 (19)0.009 (2)
O40.017 (3)0.041 (4)0.046 (4)0.004 (2)0.005 (3)0.009 (3)
N10.040 (3)0.036 (3)0.036 (3)0.007 (2)0.009 (3)0.003 (2)
N20.026 (3)0.044 (3)0.028 (3)0.005 (2)0.004 (2)0.005 (2)
C10.030 (3)0.048 (4)0.022 (3)0.006 (3)0.002 (2)0.001 (3)
C20.044 (4)0.058 (5)0.031 (4)0.002 (3)0.001 (3)0.004 (3)
C30.043 (4)0.077 (6)0.032 (4)0.000 (4)0.007 (3)0.001 (4)
C40.042 (4)0.076 (6)0.024 (3)0.015 (4)0.001 (3)0.007 (3)
C50.045 (4)0.069 (5)0.022 (3)0.025 (4)0.008 (3)0.012 (3)
C60.028 (3)0.051 (4)0.025 (3)0.013 (3)0.008 (2)0.008 (3)
C70.043 (4)0.040 (4)0.032 (4)0.018 (3)0.007 (3)0.006 (3)
C80.080 (7)0.037 (4)0.067 (6)0.003 (4)0.005 (5)0.003 (4)
C90.064 (6)0.043 (4)0.060 (6)0.006 (4)0.013 (5)0.014 (4)
C100.053 (5)0.040 (4)0.060 (6)0.005 (4)0.009 (4)0.019 (4)
C110.022 (3)0.058 (5)0.034 (4)0.010 (3)0.001 (3)0.014 (3)
C120.033 (3)0.060 (5)0.024 (3)0.023 (3)0.002 (3)0.002 (3)
C130.045 (4)0.075 (6)0.028 (4)0.028 (4)0.003 (3)0.005 (4)
C140.070 (6)0.075 (6)0.036 (4)0.032 (5)0.006 (4)0.005 (4)
C150.074 (6)0.054 (5)0.040 (4)0.025 (4)0.004 (4)0.010 (4)
C160.054 (5)0.052 (5)0.037 (4)0.023 (4)0.005 (3)0.004 (3)
C170.030 (3)0.047 (4)0.028 (3)0.014 (3)0.002 (3)0.004 (3)
Cl10.106 (2)0.0767 (19)0.076 (2)0.0135 (17)0.0217 (18)0.0089 (15)
Cl210.054 (2)0.068 (3)0.172 (7)0.0092 (19)0.028 (3)0.029 (3)
C180.069 (6)0.056 (5)0.049 (5)0.011 (4)0.002 (4)0.012 (4)
Geometric parameters (Å, º) top
Re1—O12.014 (6)C12—C171.404 (11)
Re1—O21.999 (5)C13—C141.330 (15)
Re1—O31.697 (5)C14—C151.399 (15)
Re1—O41.9090 (6)C15—C161.396 (13)
Re1—N12.109 (7)C16—C171.382 (12)
Re1—N22.133 (7)C2—H20.9503
Cl1—C181.745 (11)C3—H30.9499
Cl21—C181.733 (12)C4—H40.9500
Cl22—C181.795 (17)C5—H50.9495
O1—C11.311 (9)C7—H70.9490
O2—C171.336 (9)C8—H8A0.9908
N1—C81.462 (12)C8—H8B0.9899
N1—C71.291 (11)C9—H9A0.9895
N2—C101.464 (11)C9—H9B0.9903
N2—C111.260 (10)C10—H10A0.9907
C1—C21.397 (11)C10—H10B0.9899
C1—C61.409 (11)C11—H110.9496
C2—C31.374 (12)C13—H130.9504
C3—C41.397 (15)C14—H140.9498
C4—C51.370 (13)C15—H150.9503
C5—C61.420 (11)C16—H160.9498
C6—C71.446 (11)C18—H18A0.9903
C8—C91.484 (16)C18—H18B0.9893
C9—C101.460 (14)C18—H18C0.9901
C11—C121.453 (13)C18—H18D0.9903
C12—C131.412 (12)
Re1···C183.830 (10)C11···C6i3.345 (10)
Re1···H9B3.3267C12···C5i3.546 (11)
Re1···H18A3.4362C12···C7i3.362 (11)
Re1···H18B3.2660C12···C6i3.356 (11)
Re1···H18D2.9665C13···C6i3.594 (12)
Re1···H9Bi3.3583C13···C5i3.206 (12)
Cl1···Cl1ii3.128 (6)C14···Cl21iii3.443 (12)
Cl21···C14iii3.443 (12)C15···Cl21iii3.530 (12)
Cl21···C15iii3.530 (12)C17···C7i3.385 (11)
Cl22···C3iv3.260 (17)C18···O23.258 (12)
Cl22···C2iv3.552 (16)C18···Re13.830 (10)
Cl21···H10Av2.9143C18···O33.195 (11)
Cl21···H14iii3.0836C18···O13.269 (12)
Cl22···H10Av2.9102C12···H10Bv2.8029
Cl22···H14vi3.0624C13···H5i3.0623
Cl22···H3iv2.8561C13···H8Bv3.0516
O1···C183.269 (12)C15···H9Aix3.0162
O2···C183.258 (12)C16···H9Aix2.8866
O3···C4vii3.296 (9)H2···H15x2.3740
O3···C183.195 (11)H3···Cl22viii2.8561
O3···C11v3.128 (9)H4···O3vii2.5261
O4···C9i3.307 (10)H5···H72.2749
O4···C93.307 (10)H5···C13i3.0623
O1···H18D2.3762H7···H8A2.0799
O1···H9Bi2.6841H7···H52.2749
O1···H18B2.8054H8A···H72.0799
O2···H18C2.7923H8B···C13v3.0516
O2···H18D2.7935H8B···H10B2.4755
O2···H9Bi2.6424H9A···C15xi3.0162
O2···H18B2.3496H9A···H16xi2.4888
O3···H4vii2.5261H9A···C16xi2.8866
O3···H18A2.5453H9B···O1i2.6841
O3···H11v2.5428H9B···Re1i3.3583
O3···H18D2.4452H9B···Re13.3267
O4···H9Bi2.7438H9B···O42.7438
O4···H9B2.7438H9B···O2i2.6424
C1···C11i3.412 (10)H9B···O42.7438
C1···C5vii3.418 (10)H10A···H112.1096
C2···Cl22viii3.552 (16)H10A···Cl21v2.9143
C3···C7vii3.428 (12)H10A···Cl22v2.9102
C3···Cl22viii3.260 (17)H10B···C12v2.8029
C4···C7vii3.463 (12)H10B···H8B2.4755
C4···O3vii3.296 (9)H11···O3v2.5428
C4···C6vii3.447 (11)H11···H10A2.1096
C5···C12i3.546 (11)H11···H132.2789
C5···C1vii3.418 (10)H13···H112.2789
C5···C13i3.206 (12)H14···Cl21iii3.0836
C5···C6vii3.400 (11)H14···Cl22xii3.0624
C6···C12i3.356 (11)H15···H2x2.3740
C6···C13i3.594 (12)H16···H9Aix2.4888
C6···C11i3.345 (10)H18A···Re13.4362
C6···C4vii3.447 (11)H18A···O32.5453
C6···C5vii3.400 (11)H18B···Re13.2660
C7···C17i3.385 (11)H18B···O12.8054
C7···C12i3.362 (11)H18B···O22.3496
C7···C4vii3.463 (12)H18C···O22.7923
C7···C3vii3.428 (12)H18D···Re12.9665
C9···O43.307 (10)H18D···O12.3762
C9···O43.307 (10)H18D···O22.7935
C11···C1i3.412 (10)H18D···O32.4452
C11···O3v3.128 (9)
O1—Re1—O281.5 (2)C12—C17—C16118.9 (7)
O1—Re1—O399.5 (2)C1—C2—H2118.86
O1—Re1—O491.24 (16)C3—C2—H2118.81
O1—Re1—N191.0 (3)C2—C3—H3119.84
O1—Re1—N2170.2 (2)C4—C3—H3119.81
O2—Re1—O398.5 (2)C3—C4—H4120.63
O2—Re1—O490.60 (16)C5—C4—H4120.62
O2—Re1—N1170.3 (3)C4—C5—H5119.16
O2—Re1—N291.1 (2)C6—C5—H5119.17
O3—Re1—O4166.81 (17)N1—C7—H7116.41
O3—Re1—N188.8 (3)C6—C7—H7116.42
O3—Re1—N287.9 (2)N1—C8—H8A108.55
O4—Re1—N183.3 (2)N1—C8—H8B108.57
O4—Re1—N282.34 (17)C9—C8—H8A108.51
N1—Re1—N295.6 (3)C9—C8—H8B108.60
Re1—O1—C1127.7 (5)H8A—C8—H8B107.52
Re1—O2—C17127.8 (5)C8—C9—H9A107.72
Re1—O4—Re1i180.00C8—C9—H9B107.69
Re1—N1—C7123.5 (6)C10—C9—H9A107.71
Re1—N1—C8120.2 (6)C10—C9—H9B107.72
C7—N1—C8116.3 (8)H9A—C9—H9B107.12
Re1—N2—C10119.0 (6)N2—C10—H10A108.25
Re1—N2—C11122.9 (6)N2—C10—H10B108.23
C10—N2—C11118.0 (7)C9—C10—H10A108.23
O1—C1—C2117.1 (7)C9—C10—H10B108.31
O1—C1—C6125.3 (7)H10A—C10—H10B107.36
C2—C1—C6117.7 (7)N2—C11—H11115.95
C1—C2—C3122.3 (8)C12—C11—H11115.97
C2—C3—C4120.4 (9)C12—C13—H13118.66
C3—C4—C5118.8 (8)C14—C13—H13118.73
C4—C5—C6121.7 (9)C13—C14—H14120.05
C1—C6—C5119.2 (7)C15—C14—H14120.07
C1—C6—C7125.4 (7)C14—C15—H15120.45
C5—C6—C7115.4 (7)C16—C15—H15120.54
N1—C7—C6127.2 (7)C15—C16—H16119.35
N1—C8—C9114.9 (8)C17—C16—H16119.30
C8—C9—C10118.4 (9)Cl1—C18—Cl21107.6 (6)
N2—C10—C9116.1 (8)Cl1—C18—Cl22112.2 (7)
N2—C11—C12128.1 (7)Cl1—C18—H18A110.22
C11—C12—C13116.1 (8)Cl1—C18—H18B110.23
C11—C12—C17125.8 (7)Cl1—C18—H18C109.19
C13—C12—C17118.2 (8)Cl1—C18—H18D109.20
C12—C13—C14122.6 (9)Cl21—C18—H18A110.15
C13—C14—C15119.9 (9)Cl21—C18—H18B110.17
C14—C15—C16119.0 (9)Cl22—C18—H18C109.15
C15—C16—C17121.4 (8)Cl22—C18—H18D109.10
O2—C17—C12124.2 (7)H18A—C18—H18B108.43
O2—C17—C16116.8 (7)H18C—C18—H18D107.88
O2—Re1—O1—C1172.6 (6)Re1—N2—C10—C935.5 (11)
O3—Re1—O1—C190.2 (6)C11—N2—C10—C9147.1 (9)
O4—Re1—O1—C182.2 (6)Re1—N2—C11—C121.0 (11)
N1—Re1—O1—C11.2 (6)C10—N2—C11—C12176.3 (8)
O1—Re1—O2—C17174.0 (6)O1—C1—C2—C3178.3 (7)
O3—Re1—O2—C1787.6 (6)C6—C1—C2—C31.4 (11)
O4—Re1—O2—C1782.8 (6)O1—C1—C6—C5180.0 (7)
N2—Re1—O2—C170.5 (6)O1—C1—C6—C70.4 (12)
O1—Re1—N1—C72.8 (7)C2—C1—C6—C50.2 (10)
O1—Re1—N1—C8177.4 (7)C2—C1—C6—C7179.3 (8)
O3—Re1—N1—C7102.3 (7)C1—C2—C3—C42.3 (13)
O3—Re1—N1—C877.9 (7)C2—C3—C4—C51.5 (13)
O4—Re1—N1—C788.3 (7)C3—C4—C5—C60.1 (12)
O4—Re1—N1—C891.5 (7)C4—C5—C6—C11.0 (11)
N2—Re1—N1—C7169.9 (7)C4—C5—C6—C7178.6 (7)
N2—Re1—N1—C89.9 (7)C5—C6—C7—N1178.0 (8)
O2—Re1—N2—C10178.1 (6)C1—C6—C7—N12.4 (13)
O2—Re1—N2—C110.8 (7)N1—C8—C9—C1069.9 (13)
O3—Re1—N2—C1079.7 (6)C8—C9—C10—N269.8 (12)
O3—Re1—N2—C1197.6 (6)N2—C11—C12—C13177.5 (8)
O4—Re1—N2—C1091.4 (6)N2—C11—C12—C173.8 (13)
O4—Re1—N2—C1191.3 (6)C17—C12—C13—C142.0 (13)
N1—Re1—N2—C109.0 (6)C11—C12—C17—O24.1 (12)
N1—Re1—N2—C11173.7 (6)C11—C12—C13—C14176.7 (9)
Re1—O1—C1—C2179.4 (5)C11—C12—C17—C16177.8 (7)
Re1—O1—C1—C60.3 (11)C13—C12—C17—O2177.3 (7)
Re1—O2—C17—C121.7 (10)C13—C12—C17—C160.8 (11)
Re1—O2—C17—C16179.9 (6)C12—C13—C14—C151.5 (15)
Re1—N1—C7—C63.8 (12)C13—C14—C15—C160.2 (15)
C8—N1—C7—C6176.4 (8)C14—C15—C16—C171.3 (14)
Re1—N1—C8—C936.3 (12)C15—C16—C17—C120.8 (12)
C7—N1—C8—C9143.5 (9)C15—C16—C17—O2179.0 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x, y, z; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1, y+1, z+1; (vi) x, y, z1; (vii) x, y+1, z; (viii) x1, y, z; (ix) x, y1, z; (x) x, y, z+1; (xi) x, y+1, z; (xii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3vii0.952.533.296 (9)138
C9—H9B···O1i0.992.683.569 (12)149
C9—H9B···O2i0.992.643.542 (12)151
C11—H11···O3v0.952.543.128 (9)120
C18—H18A···O30.992.553.195 (11)123
C18—H18B···O20.992.353.258 (12)152
C18—H18D···O10.992.383.269 (12)150
C18—H18D···O30.992.453.195 (11)132
Symmetry codes: (i) x, y+1, z+1; (v) x+1, y+1, z+1; (vii) x, y+1, z.
(VII) µ-oxo-bis{oxo{2,2'-[propane-1,3-diylbis(nitrilomethylidyne)]diphenolato} rhenium(V)} hydrate (1:2) top
Crystal data top
[Re2O(C17H16N2O3)2]·2H2OF(000) = 980
Mr = 1017.09Least squares treatment of 25 SET4 setting angles.
Monoclinic, P21/cDx = 2.124 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.1085 (8) ÅCell parameters from 25 reflections
b = 11.2053 (8) Åθ = 11.7–14.0°
c = 14.0447 (7) ŵ = 7.67 mm1
β = 91.367 (5)°T = 150 K
V = 1590.37 (19) Å3Block, dark green
Z = 20.24 × 0.09 × 0.07 mm
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3143 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.145
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω scansh = 1313
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
k = 140
Tmin = 0.149, Tmax = 0.615l = 1818
7271 measured reflections3 standard reflections every 60 min
3639 independent reflections intensity decay: 5%
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.008P)2 + 4.5P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.047(Δ/σ)max < 0.001
wR(F2) = 0.101Δρmax = 2.21 e Å3
S = 1.01Δρmin = 2.94 e Å3
3639 reflectionsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=k Fc[1+0.001 x Fc2λ3sin(2θ)]-1/4
227 parametersExtinction coefficient: 0.0033 (2)
15 restraints
Crystal data top
[Re2O(C17H16N2O3)2]·2H2OV = 1590.37 (19) Å3
Mr = 1017.09Z = 2
Monoclinic, P21/cMo Kα radiation
a = 10.1085 (8) ŵ = 7.67 mm1
b = 11.2053 (8) ÅT = 150 K
c = 14.0447 (7) Å0.24 × 0.09 × 0.07 mm
β = 91.367 (5)°
Data collection top
Enraf-Nonius CAD4-T
diffractometer
3143 reflections with I > 2σ(I)
Absorption correction: ψ-scan
(PLATON; Spek, 2000)
Rint = 0.145
Tmin = 0.149, Tmax = 0.6153 standard reflections every 60 min
7271 measured reflections intensity decay: 5%
3639 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04715 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.01Δρmax = 2.21 e Å3
3639 reflectionsΔρmin = 2.94 e Å3
227 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Re10.05409 (2)0.02546 (2)0.12986 (2)0.0210 (1)
O10.0606 (4)0.2038 (4)0.1094 (4)0.0247 (13)
O20.1299 (5)0.0684 (4)0.1653 (4)0.0298 (15)
O30.1302 (6)0.0210 (4)0.2410 (5)0.0318 (16)
O40000.022 (2)
N10.2434 (6)0.0024 (5)0.0682 (5)0.0260 (19)
N20.0136 (6)0.1605 (4)0.1412 (5)0.0240 (16)
C10.1543 (6)0.2655 (6)0.0665 (5)0.0243 (17)
C20.1318 (7)0.3854 (6)0.0556 (6)0.030 (2)
C30.2213 (8)0.4572 (7)0.0121 (8)0.035 (3)
C40.3406 (8)0.4106 (7)0.0207 (7)0.037 (3)
C50.3648 (7)0.2935 (6)0.0088 (6)0.033 (2)
C60.2730 (6)0.2164 (6)0.0332 (6)0.0233 (19)
C70.3086 (7)0.0899 (6)0.0371 (6)0.029 (2)
C80.2986 (7)0.1157 (6)0.0548 (8)0.036 (2)
C90.2508 (8)0.2100 (6)0.1218 (7)0.037 (2)
C100.1134 (8)0.2489 (5)0.1131 (7)0.035 (2)
C110.0968 (7)0.1994 (6)0.1727 (6)0.0280 (19)
C120.2107 (7)0.1311 (6)0.2005 (5)0.0240 (17)
C130.3175 (7)0.1982 (6)0.2344 (6)0.028 (2)
C140.4361 (7)0.1476 (7)0.2578 (7)0.034 (2)
C150.4511 (8)0.0246 (7)0.2461 (8)0.038 (3)
C160.3488 (7)0.0469 (6)0.2126 (7)0.030 (2)
C170.2266 (7)0.0090 (5)0.1916 (6)0.0235 (19)
O50.2214 (7)0.3184 (5)0.1365 (5)0.050 (2)
H20.052500.419100.078700.0360*
H30.202400.539700.004000.0420*
H40.403000.460700.050600.0450*
H50.446500.261700.029400.0390*
H70.392900.070800.012800.0350*
H8A0.396100.110300.061800.0430*
H8B0.277700.141700.011200.0430*
H9A0.307600.281200.114200.0450*
H9B0.265900.180400.187500.0450*
H10A0.102700.321300.152500.0420*
H10B0.094900.271800.046000.0420*
H110.104400.283500.178400.0330*
H130.307100.282000.241500.0340*
H140.506000.195000.281400.0410*
H150.533000.011400.261200.0450*
H160.360600.130400.204200.0360*
H510.229900.358400.187300.0760*
H520.152700.275800.146100.0760*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Re10.0210 (2)0.0140 (2)0.0281 (2)0.0019 (1)0.0024 (1)0.0008 (1)
O10.022 (2)0.0083 (17)0.044 (3)0.0005 (14)0.007 (2)0.0057 (19)
O20.036 (3)0.0070 (17)0.047 (3)0.0025 (16)0.015 (3)0.004 (2)
O30.044 (3)0.015 (2)0.036 (3)0.0023 (19)0.007 (3)0.001 (2)
O40.027 (4)0.020 (3)0.020 (4)0.008 (2)0.001 (3)0.001 (3)
N10.010 (3)0.038 (3)0.030 (4)0.0098 (19)0.000 (3)0.001 (3)
N20.029 (3)0.011 (2)0.032 (3)0.0008 (18)0.000 (3)0.001 (2)
C10.019 (3)0.029 (3)0.025 (3)0.009 (2)0.003 (3)0.002 (3)
C20.033 (4)0.020 (3)0.036 (4)0.000 (2)0.005 (4)0.002 (3)
C30.029 (4)0.036 (4)0.040 (5)0.007 (3)0.000 (4)0.002 (3)
C40.040 (4)0.031 (4)0.042 (5)0.014 (3)0.013 (4)0.003 (3)
C50.027 (4)0.033 (4)0.039 (4)0.002 (3)0.004 (4)0.003 (3)
C60.012 (3)0.024 (3)0.034 (4)0.001 (2)0.003 (3)0.006 (3)
C70.020 (3)0.024 (3)0.044 (5)0.002 (2)0.002 (3)0.005 (3)
C80.027 (3)0.017 (3)0.064 (6)0.010 (2)0.009 (4)0.005 (3)
C90.037 (4)0.025 (3)0.050 (5)0.010 (3)0.002 (4)0.003 (3)
C100.041 (4)0.009 (2)0.054 (5)0.001 (2)0.006 (4)0.004 (3)
C110.031 (3)0.020 (3)0.033 (4)0.003 (2)0.002 (3)0.007 (3)
C120.031 (3)0.023 (3)0.018 (3)0.000 (3)0.001 (3)0.002 (3)
C130.030 (4)0.022 (3)0.032 (4)0.003 (2)0.002 (3)0.005 (3)
C140.025 (3)0.040 (4)0.038 (4)0.008 (3)0.006 (4)0.001 (3)
C150.030 (4)0.035 (4)0.049 (6)0.003 (3)0.012 (4)0.002 (4)
C160.024 (4)0.029 (3)0.037 (5)0.006 (2)0.006 (4)0.004 (3)
C170.022 (3)0.019 (3)0.030 (4)0.005 (2)0.009 (3)0.001 (3)
O50.068 (4)0.031 (3)0.052 (4)0.009 (3)0.006 (4)0.002 (3)
Geometric parameters (Å, º) top
Re1—O12.020 (5)C11—C121.444 (10)
Re1—O21.996 (5)C12—C171.383 (9)
Re1—O31.724 (7)C12—C131.408 (10)
Re1—O41.9129 (3)C13—C141.373 (10)
Re1—N12.135 (6)C14—C151.396 (11)
Re1—N22.130 (5)C15—C161.399 (11)
O1—C11.329 (8)C16—C171.422 (10)
O2—C171.364 (8)C2—H20.9502
O5—H520.8508C3—H30.9503
O5—H510.8487C4—H40.9497
N1—C81.450 (9)C5—H50.9509
N1—C71.265 (9)C7—H70.9499
N2—C101.474 (9)C8—H8A0.9900
N2—C111.286 (9)C8—H8B0.9896
C1—C21.371 (10)C9—H9B0.9890
C1—C61.410 (9)C9—H9A0.9902
C2—C31.366 (11)C10—H10B0.9902
C3—C41.402 (12)C10—H10A0.9894
C4—C51.344 (10)C11—H110.9490
C5—C61.408 (10)C13—H130.9499
C6—C71.463 (9)C14—H140.9499
C8—C91.502 (12)C15—H150.9495
C9—C101.458 (11)C16—H160.9502
Re1···H9B3.2370C13···C1ii3.238 (11)
Re1···H523.5090C17···C7iv3.420 (12)
Re1···H11i3.4681C1···H10Biv2.9423
O1···O53.158 (8)C2···H10Biv2.9584
O1···C11i3.259 (10)C8···H5v3.0800
O2···O52.975 (7)C9···H51ii2.8014
O3···O5ii2.981 (8)C10···H3vi2.9722
O3···C93.330 (10)C17···H8Biv3.0782
O3···C11i3.379 (9)H3···H10Bvii2.4537
O5···C3iii3.268 (11)H3···O5iii2.5450
O5···O13.158 (8)H3···C10vii2.9722
O5···O3i2.981 (8)H4···H4viii2.5512
O5···O22.975 (7)H5···H72.2882
O1···H10Biv2.7661H5···C8v3.0800
O1···H522.3703H5···H8Av2.3772
O2···H522.3503H7···H8A2.1428
O2···H8Biv2.7270H7···H52.2882
O2···H10Ai2.8492H7···H8Av2.4392
O3···H51ii2.3024H8A···H7v2.4392
O3···H13i2.8478H8A···H72.1428
O3···H9B2.7547H8A···H5v2.3772
O3···H11i2.4824H8B···O2iv2.7270
O5···H8Biv2.7006H8B···O5iv2.7006
O5···H9Bi2.5230H8B···C17iv3.0782
O5···H162.7176H8B···H10B2.5012
O5···H3iii2.5450H9B···Re13.2370
C1···C13i3.238 (11)H9B···O32.7547
C1···C11iv3.476 (11)H9B···H51ii1.8558
C1···C12i3.505 (10)H9B···O5ii2.5230
C2···C12i3.503 (11)H10A···H112.1750
C2···C13i3.583 (11)H10A···O2ii2.8492
C3···O5iii3.268 (11)H10B···H3vi2.4537
C5···C13iv3.367 (12)H10B···H8B2.5012
C5···C12iv3.576 (10)H10B···O1iv2.7661
C6···C13i3.421 (12)H10B···C1iv2.9423
C6···C12iv3.462 (11)H10B···C2iv2.9584
C6···C11iv3.365 (11)H11···H10A2.1750
C7···C12iv3.489 (11)H11···Re1ii3.4681
C7···C17iv3.420 (12)H11···O3ii2.4824
C9···O33.330 (10)H11···H132.2518
C11···C1iv3.476 (11)H13···H112.2518
C11···O1ii3.259 (10)H13···O3ii2.8478
C11···O3ii3.379 (9)H14···H16ix2.3875
C11···C6iv3.365 (11)H16···O52.7176
C12···C7iv3.489 (11)H16···H14x2.3875
C12···C1ii3.505 (10)H51···O3i2.3024
C12···C6iv3.462 (11)H51···C9i2.8014
C12···C2ii3.503 (11)H51···H9Bi1.8558
C12···C5iv3.576 (10)H52···Re13.5090
C13···C5iv3.367 (12)H52···O12.3703
C13···C6ii3.421 (12)H52···O22.3503
C13···C2ii3.583 (11)
O1—Re1—O280.25 (18)C12—C13—C14122.8 (7)
O1—Re1—O398.2 (2)C13—C14—C15118.2 (7)
O1—Re1—O491.23 (16)C14—C15—C16121.7 (7)
O1—Re1—N191.7 (2)C15—C16—C17118.1 (6)
O1—Re1—N2170.1 (2)O2—C17—C16114.1 (5)
O2—Re1—O3100.3 (3)C12—C17—C16121.1 (6)
O2—Re1—O491.54 (16)O2—C17—C12124.8 (6)
O2—Re1—N1168.5 (2)C1—C2—H2119.38
O2—Re1—N292.0 (2)C3—C2—H2119.46
O3—Re1—O4165.92 (18)C2—C3—H3119.55
O3—Re1—N188.8 (3)C4—C3—H3119.67
O3—Re1—N289.2 (2)C5—C4—H4120.73
O4—Re1—N180.43 (18)C3—C4—H4120.71
O4—Re1—N282.78 (19)C6—C5—H5118.92
N1—Re1—N295.0 (2)C4—C5—H5118.99
Re1—O1—C1127.2 (4)N1—C7—H7115.38
Re1—O2—C17126.3 (4)C6—C7—H7115.26
Re1—O4—Re1iv180.00N1—C8—H8B108.42
H51—O5—H52105.17C9—C8—H8A108.37
Re1—N1—C8121.0 (5)N1—C8—H8A108.46
C7—N1—C8117.2 (6)H8A—C8—H8B107.50
Re1—N1—C7121.7 (5)C9—C8—H8B108.36
Re1—N2—C11121.8 (5)C8—C9—H9A107.65
C10—N2—C11118.0 (5)C8—C9—H9B107.68
Re1—N2—C10120.2 (4)C10—C9—H9B107.70
O1—C1—C6124.7 (6)H9A—C9—H9B107.09
C2—C1—C6119.1 (6)C10—C9—H9A107.68
O1—C1—C2116.3 (6)N2—C10—H10B108.30
C1—C2—C3121.2 (7)C9—C10—H10A108.35
C2—C3—C4120.8 (7)C9—C10—H10B108.37
C3—C4—C5118.6 (8)H10A—C10—H10B107.40
C4—C5—C6122.1 (7)N2—C10—H10A108.45
C1—C6—C7125.2 (6)C12—C11—H11115.90
C5—C6—C7116.5 (6)N2—C11—H11115.98
C1—C6—C5118.3 (6)C12—C13—H13118.66
N1—C7—C6129.4 (7)C14—C13—H13118.56
N1—C8—C9115.5 (7)C15—C14—H14120.90
C8—C9—C10118.5 (7)C13—C14—H14120.90
N2—C10—C9115.7 (6)C14—C15—H15119.08
N2—C11—C12128.1 (6)C16—C15—H15119.17
C11—C12—C17126.3 (7)C15—C16—H16120.95
C13—C12—C17118.1 (6)C17—C16—H16121.00
C11—C12—C13115.5 (6)
O2—Re1—O1—C1168.5 (6)Re1—N2—C10—C927.9 (10)
O3—Re1—O1—C192.3 (6)C11—N2—C10—C9151.8 (8)
O4—Re1—O1—C177.1 (5)Re1—N2—C11—C123.2 (12)
N1—Re1—O1—C13.3 (6)C10—N2—C11—C12177.1 (8)
O1—Re1—O2—C17177.9 (6)O1—C1—C2—C3179.7 (8)
O3—Re1—O2—C1785.5 (6)C6—C1—C2—C30.9 (12)
O4—Re1—O2—C1786.9 (6)O1—C1—C6—C5178.4 (7)
N2—Re1—O2—C174.1 (6)O1—C1—C6—C72.7 (12)
O1—Re1—N1—C70.1 (7)C2—C1—C6—C51.0 (11)
O1—Re1—N1—C8176.1 (7)C2—C1—C6—C7177.9 (8)
O3—Re1—N1—C798.2 (7)C1—C2—C3—C41.6 (14)
O3—Re1—N1—C885.8 (7)C2—C3—C4—C50.3 (14)
O4—Re1—N1—C790.9 (6)C3—C4—C5—C61.6 (14)
O4—Re1—N1—C885.1 (6)C4—C5—C6—C12.2 (12)
N2—Re1—N1—C7172.7 (7)C4—C5—C6—C7176.7 (8)
N2—Re1—N1—C83.3 (7)C5—C6—C7—N1177.9 (8)
O2—Re1—N2—C10173.9 (6)C1—C6—C7—N11.0 (14)
O2—Re1—N2—C116.4 (7)N1—C8—C9—C1068.5 (10)
O3—Re1—N2—C1085.8 (6)C8—C9—C10—N269.3 (11)
O3—Re1—N2—C1193.9 (7)N2—C11—C12—C13178.7 (8)
O4—Re1—N2—C1082.6 (6)N2—C11—C12—C175.3 (14)
O4—Re1—N2—C1197.7 (6)C17—C12—C13—C140.7 (13)
N1—Re1—N2—C102.9 (6)C11—C12—C17—O28.2 (13)
N1—Re1—N2—C11177.4 (7)C11—C12—C13—C14175.6 (8)
Re1—O1—C1—C2175.7 (5)C11—C12—C17—C16173.6 (8)
Re1—O1—C1—C65.0 (10)C13—C12—C17—O2175.9 (7)
Re1—O2—C17—C121.9 (11)C13—C12—C17—C162.3 (12)
Re1—O2—C17—C16179.7 (6)C12—C13—C14—C150.8 (13)
Re1—N1—C7—C61.8 (12)C13—C14—C15—C160.7 (15)
C8—N1—C7—C6174.3 (8)C14—C15—C16—C170.9 (15)
Re1—N1—C8—C926.1 (10)C15—C16—C17—C122.4 (13)
C7—N1—C8—C9157.7 (8)C15—C16—C17—O2176.0 (8)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z; (iv) x, y, z; (v) x+1, y, z; (vi) x, y1, z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) x1, y1/2, z+1/2; (x) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O3i0.852.302.981 (8)137
O5—H52···O10.852.373.158 (8)154
O5—H52···O20.852.352.975 (7)131
C3—H3···O5iii0.952.553.268 (11)133
C9—H9B···O5ii0.992.523.429 (12)152
C11—H11···O3ii0.952.483.379 (9)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y1/2, z+1/2; (iii) x, y+1, z.

Experimental details

(II)(III)(IV)(V)
Crystal data
Chemical formula[Re2O(C17H16N2O3)2][Re2O(C17H16N2O3)2][Re2O(C17H16N2O3)2]·4CHCl3[Re2O(C17H16N2O3)2]·2CHCl3
Mr981.06981.061458.531219.79
Crystal system, space groupMonoclinic, P21/cOrthorhombic, PbcaMonoclinic, P21/cTriclinic, P1
Temperature (K)150150150150
a, b, c (Å)9.044 (3), 10.665 (2), 17.879 (5)12.634 (3), 12.832 (3), 19.406 (4)10.137 (10), 18.733 (15), 16.131 (11)9.0223 (12), 10.4856 (15), 10.7375 (17)
α, β, γ (°)90, 114.07 (5), 9090, 90, 9090, 126.43 (6), 9079.750 (12), 89.256 (11), 81.820 (11)
V3)1574.6 (10)3146.1 (12)2465 (4)989.4 (3)
Z2421
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)7.747.755.616.57
Crystal size (mm)0.40 × 0.30 × 0.250.3 × 0.1 × 0.10.5 × 0.4 × 0.10.40 × 0.40 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Enraf-Nonius CAD4-T
diffractometer
Enraf-Nonius CAD4-T
diffractometer
Absorption correctionMulti-scan
(PLATON; Spek, 2000)
Multi-scan
(PLATON; Spek, 2000)
Part of the refinement model (ΔF)
(PLATON; Spek, 2000)
ψ-scan
(PLATON; Spek, 2000)
Tmin, Tmax0.061, 0.1440.325, 0.4610.138, 0.5710.256, 0.373
No. of measured, independent and
observed [I > 2σ(I)] reflections
20915, 2849, 2582 22613, 2846, 2475 5052, 4773, 3022 3862, 3648, 3333
Rint0.1040.0990.0970.073
(sin θ/λ)max1)0.6000.6000.6280.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.077, 1.08 0.048, 0.112, 1.22 0.068, 0.185, 1.03 0.028, 0.070, 1.05
No. of reflections2849284647733648
No. of parameters214224286250
No. of restraints0952260
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0382P)2 + 3.0019P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.01P)2 + 5P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0801P)2 + 29.94P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0487P)2 + 0.28P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.96, 2.961.53, 3.731.45, 1.832.74, 1.65


(VI)(VII)
Crystal data
Chemical formula[Re2O(C17H16N2O3)2]·2CH2Cl2[Re2O(C17H16N2O3)2]·2H2O
Mr1150.911017.09
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)150150
a, b, c (Å)8.9642 (16), 10.053 (3), 10.669 (3)10.1085 (8), 11.2053 (8), 14.0447 (7)
α, β, γ (°)91.23 (2), 91.685 (18), 97.913 (17)90, 91.367 (5), 90
V3)951.6 (4)1590.37 (19)
Z12
Radiation typeMo KαMo Kα
µ (mm1)6.697.67
Crystal size (mm)0.5 × 0.3 × 0.10.24 × 0.09 × 0.07
Data collection
DiffractometerEnraf-Nonius CAD4-T
diffractometer
Enraf-Nonius CAD4-T
diffractometer
Absorption correctionψ-scan
(PLATON; Spek, 2000)
ψ-scan
(PLATON; Spek, 2000)
Tmin, Tmax0.154, 0.5120.149, 0.615
No. of measured, independent and
observed [I > 2σ(I)] reflections
4978, 4361, 4148 7271, 3639, 3143
Rint0.0860.145
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.137, 1.06 0.047, 0.101, 1.01
No. of reflections43613639
No. of parameters245227
No. of restraints015
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1052P)2 + 2.57P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.008P)2 + 4.5P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.45, 3.812.21, 2.94

Computer programs: COLLECT (Nonius, 1999), locally modified CAD-4 Software (Enraf-Nonius, 1989), DENZO (Otwinowski & Minor, 1997), SET4 (de Boer & Duisenberg, 1984), DENZO, HELENA (Spek, 1997), SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2000), PLATON.

Selected geometric parameters (Å, º) for (II) top
Re1—O12.010 (3)Re1—O41.9152 (7)
Re1—O22.016 (4)Re1—N12.118 (5)
Re1—O31.712 (4)Re1—N22.125 (5)
O1—Re1—O281.61 (15)O2—Re1—N291.02 (17)
O1—Re1—O399.26 (16)O3—Re1—O4168.63 (12)
O1—Re1—O489.40 (12)O3—Re1—N189.12 (18)
O1—Re1—N191.11 (17)O3—Re1—N289.07 (18)
O1—Re1—N2169.62 (18)O4—Re1—N183.33 (14)
O2—Re1—O399.02 (16)O4—Re1—N283.19 (14)
O2—Re1—O489.47 (12)N1—Re1—N295.23 (19)
O2—Re1—N1169.83 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O2i0.952.573.279 (8)132
C7—H7···O3ii0.952.553.161 (8)122
C9—H9A···O1iii0.992.543.432 (8)150
C9—H9A···O2iii0.992.563.436 (7)148
C14—H14···O3iv0.952.563.243 (7)129
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y+1, z.
Selected geometric parameters (Å, º) for (III) top
Re1—O12.035 (7)Re1—O41.9130 (6)
Re1—O22.012 (8)Re1—N12.120 (8)
Re1—O31.694 (8)Re1—N22.171 (8)
O1—Re1—O281.1 (3)O2—Re1—N291.5 (3)
O1—Re1—O397.4 (3)O3—Re1—O4168.5 (3)
O1—Re1—O487.9 (2)O3—Re1—N188.5 (4)
O1—Re1—N191.8 (3)O3—Re1—N290.5 (3)
O1—Re1—N2170.0 (3)O4—Re1—N181.2 (2)
O2—Re1—O3100.9 (3)O4—Re1—N285.4 (2)
O2—Re1—O489.9 (2)N1—Re1—N294.5 (3)
O2—Re1—N1168.8 (3)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C9A—H9B···O1i0.992.453.386 (16)158
C10A—H10B···O3ii0.992.533.469 (17)157
C10B—H10C···O3ii0.992.523.49 (4)163
C11—H11···O1ii0.952.563.127 (12)119
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z.
Selected geometric parameters (Å, º) for (IV) top
Re1—O12.019 (11)Re1—O41.919 (2)
Re1—O22.027 (11)Re1—N12.145 (13)
Re1—O31.696 (12)Re1—N22.136 (14)
O1—Re1—O281.5 (5)O2—Re1—N290.1 (5)
O1—Re1—O399.8 (5)O3—Re1—O4168.4 (3)
O1—Re1—O489.7 (3)O3—Re1—N189.6 (5)
O1—Re1—N190.6 (5)O3—Re1—N287.6 (6)
O1—Re1—N2169.6 (6)O4—Re1—N183.5 (4)
O2—Re1—O398.7 (5)O4—Re1—N283.9 (4)
O2—Re1—O489.3 (3)N1—Re1—N296.8 (5)
O2—Re1—N1169.5 (4)
Hydrogen-bond geometry (Å, º) for (IV) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O1i0.992.553.46 (3)152
C18—H18···O11.002.283.180 (18)149
C18—H18···O21.002.363.14 (2)134
C19—H19···O31.002.173.10 (2)154
Symmetry code: (i) x, y, z.
Selected geometric parameters (Å, º) for (V) top
Re1—O12.000 (3)Re1—O41.9106 (4)
Re1—O22.001 (3)Re1—N12.097 (4)
Re1—O31.699 (4)Re1—N22.128 (4)
O1—Re1—O280.93 (13)O2—Re1—N291.56 (15)
O1—Re1—O399.16 (17)O3—Re1—O4168.32 (14)
O1—Re1—O490.24 (10)O3—Re1—N189.67 (19)
O1—Re1—N191.31 (15)O3—Re1—N289.13 (18)
O1—Re1—N2169.48 (15)O4—Re1—N183.16 (12)
O2—Re1—O398.03 (17)O4—Re1—N282.39 (12)
O2—Re1—O490.25 (10)N1—Re1—N295.23 (16)
O2—Re1—N1169.82 (16)
Hydrogen-bond geometry (Å, º) for (V) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···O2i0.992.563.465 (7)153
C13—H13···O3ii0.952.583.212 (7)124
C18—H18···O11.002.433.216 (7)135
C18—H18···O21.002.253.167 (7)151
C18—H18···O31.002.693.444 (7)133
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1.
Selected geometric parameters (Å, º) for (VI) top
Re1—O12.014 (6)Re1—O41.9090 (6)
Re1—O21.999 (5)Re1—N12.109 (7)
Re1—O31.697 (5)Re1—N22.133 (7)
O1—Re1—O281.5 (2)O2—Re1—N291.1 (2)
O1—Re1—O399.5 (2)O3—Re1—O4166.81 (17)
O1—Re1—O491.24 (16)O3—Re1—N188.8 (3)
O1—Re1—N191.0 (3)O3—Re1—N287.9 (2)
O1—Re1—N2170.2 (2)O4—Re1—N183.3 (2)
O2—Re1—O398.5 (2)O4—Re1—N282.34 (17)
O2—Re1—O490.60 (16)N1—Re1—N295.6 (3)
O2—Re1—N1170.3 (3)
Hydrogen-bond geometry (Å, º) for (VI) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O3i0.952.533.296 (9)138
C9—H9B···O1ii0.992.683.569 (12)149
C9—H9B···O2ii0.992.643.542 (12)151
C11—H11···O3iii0.952.543.128 (9)120
C18—H18A···O30.992.553.195 (11)123
C18—H18B···O20.992.353.258 (12)152
C18—H18D···O10.992.383.269 (12)150
C18—H18D···O30.992.453.195 (11)132
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (VII) top
Re1—O12.020 (5)Re1—O41.9129 (3)
Re1—O21.996 (5)Re1—N12.135 (6)
Re1—O31.724 (7)Re1—N22.130 (5)
O1—Re1—O280.25 (18)O2—Re1—N1168.5 (2)
O1—Re1—O398.2 (2)O2—Re1—N292.0 (2)
O1—Re1—O491.23 (16)O3—Re1—O4165.92 (18)
O1—Re1—N191.7 (2)O3—Re1—N188.8 (3)
O1—Re1—N2170.1 (2)O3—Re1—N289.2 (2)
O2—Re1—O3100.3 (3)O4—Re1—N180.43 (18)
O2—Re1—O491.54 (16)O4—Re1—N282.78 (19)
Hydrogen-bond geometry (Å, º) for (VII) top
D—H···AD—HH···AD···AD—H···A
O5—H51···O3i0.852.302.981 (8)137
O5—H52···O10.852.373.158 (8)154
O5—H52···O20.852.352.975 (7)131
C3—H3···O5ii0.952.553.268 (11)133
C9—H9B···O5iii0.992.523.429 (12)152
C11—H11···O3iii0.952.483.379 (9)158
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds