research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure, DFT calculations and Hirshfeld surface analysis of 3-(4-methyl­phen­yl)-6-nitro-1H-indazole

CROSSMARK_Color_square_no_text.svg

aLaboratoire de Chimie Organique Hétérocyclique, Centre de Recherche des Sciences des Médicaments, URAC 21, Pôle de Compétence Pharmacochimie, Av Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bDepartment of Chemistry, Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow 117198, Russian Federation, cDepartment of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan, and dDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: yns.elbakri@gmail.com

Edited by K. Fejfarova, Institute of Biotechnology CAS, Czech Republic (Received 23 October 2018; accepted 19 November 2018; online 22 November 2018)

The asymmetric unit of the title compound, C14H11N3O3, consists of two independent mol­ecules having very similar conformations in which the indazole moieties are planar. The independent mol­ecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N—H⋯O and C—H⋯O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H⋯O hydrogen bonds link the chains into layers parallel to (10[\overline{1}]). These are connected by slipped π-stacking and C—H⋯π(ring) inter­actions.

1. Chemical context

Indazoles are an important class of heterocyclic compounds having a wide range of biological and pharmaceutical applications. There is enormous potential in the synthesis of novel heterocyclic systems to be used as building blocks for the next generation of pharmaceuticals as anti-bacterial, anti-depressant and anti-inflammatory agents. Fused aromatic 1H and 2H-indazoles are well recognized for their anti-hypertensive and anti-cancer properties while other indazole derivatives are a versatile class of compounds that have found use in biology, catalysis and medicinal chemistry (Schmidt et al., 2008[Schmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073-4095.]). Although rare in nature (Liu et al., 2004[Liu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454-455.]; Ali et al., 2008[Ali, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111-1112.]), indazoles exhibit a variety of biological activities such as HIV protease inhibition (Patel et al., 1999[Patel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217-3220.]), anti­arrhythmic and analgesic activities (Mosti et al., 2000[Mosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963-972.]) and anti­tumor activity and anti­hypertensive properties (Bouissane et al., 2006[Bouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078-1088.]; Abbassi et al., 2012[Abbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240-249.]). As a continuation of our studies of indazole derivatives (Mohamed Abdelahi et al., 2017a[Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170660.],b[Mohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170637.],c[Mohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017c). IUCrData, 2, x170652.]), we report the synthesis and structure of the title compound, (I)[link].

[Scheme 1]

2. Structural commentary

The asymmetric unit of (I)[link] consists of two independent mol­ecules differing only slightly in conformation (Fig. 1[link], Table 1). The largest difference is in the twist of the nitro group as indicated by the torsion angles O2—N3—C3—C2 and O5—N6—C17—C16 which are −1.1 (9) and 4.0 (9)°, respectively. In the mol­ecule containing N1, the indazole portion is planar to within 0.045 (6) Å (r.m.s. deviation = 0.007 Å) and the C8–C13 ring is inclined to this plane by 30.8 (3)°. In the mol­ecule containing N4, the indazole portion is planar to within 0.036 (5) Å (r.m.s. deviation = 0.007 Å) and the C22–C27 ring is inclined to this plane by 31.6 (3)°.

[Figure 1]
Figure 1
The asymmetric unit of (I)[link] with the labelling scheme and 50% probability ellipsoids.

3. Supra­molecular features

In the crystal of (I)[link], alternating N2—H2A⋯O5 and N4—H4A⋯O2 hydrogen bonds coupled with C16—H16⋯O1 hydrogen bonds form zigzag chains extending along the b-axis direction (Table 1[link] and Fig. 2[link]). These chains are connected into layers parallel to (10[\overline{1}]) by C4—H4⋯O1 hydrogen bonds (Table 1[link] and Fig. 3[link]). The layers bound to one another by a combination of slipped π-stacking inter­actions between the C1–C6 and N1/N2/C1/C6/C7 rings [centroid–centroid distance = 3.699 (4) Å, dihedral angle = 2.4 (4)°] and between the N4/N5/C21/C20/C15 and C15–C20 rings [centroid–centroid distance= 3.636 (4) Å, dihedral angle = 2.6 (4)°]. These are reinforced by the C—H⋯π(ring) inter­actions (C10—H10⋯Cg3, C13—H13⋯Cg7, C23—H23⋯Cg7 and C26—H26⋯Cg3; Table 1[link] and Fig. 4[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O5i 0.90 2.11 3.005 (9) 173
C2—H2⋯O4i 0.95 2.41 3.201 (10) 140
C4—H4⋯O6ii 0.95 2.60 3.329 (9) 134
N4—H4A⋯O2iii 0.91 2.15 3.043 (9) 168
C16—H16⋯O1iii 0.95 2.39 3.171 (10) 139
C18—H18⋯O3iv 0.95 2.61 3.340 (10) 134
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) [x-1, -y+1, z-{\script{1\over 2}}]; (iii) [x, -y+1, z-{\script{1\over 2}}]; (iv) [x+1, -y, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
Detail of one zigzag chain in (I)[link] viewed along the a-axis direction. N—H⋯O and C—H⋯O hydrogen bonds are shown, respectively, by blue and black dashed lines.
[Figure 3]
Figure 3
Plan view of the layer structure of (I)[link] seen along the c-axis direction. Portions of one chain extend horizontally with the intra­chain hydrogen bonds depicted as in Fig. 2[link]. The C—H⋯O hydrogen bonds connecting the chains into layers are depicted by purple dashed lines.
[Figure 4]
Figure 4
Elevation view of the layer structure of (I)[link] projected on (401). π-stacking and C—H⋯π(ring) inter­actions are shown, respectively, by orange and green dashed lines. Hydrogen bonds are depicted as in Fig. 2[link].

4. Database survey

A search of the Cambridge Structural Database (Version 5.39; Groom et al., 2016[Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171-179.]) found 70 structures of indazoles not containing a substituent on the secondary nitro­gen atom and not ligands in metal complexes. Of these, only seven are nitro derivatives. These are 3,7-di­nitro­indazole (Cabildo et al., 2011[Cabildo, P., Claramunt, R. M., López, C., García, M. A., Pérez-Torralba, M., Pinilla, E., Torres, M. R., Alkorta, I. & Elguero, J. (2011). J. Mol. Struct. 985, 75-81.]), two determinations of 7-nitro­indazole (Ooms et al., 2000[Ooms, F., Norberg, B., Isin, E. M., Castagnoli, N., Van der Schyf, C. J. & Wouters, J. (2000). Acta Cryst. C56, e474-e475.]; Sopková-de Oliveira Santos et al., 2000[Sopková-de Oliveira Santos, J., Collot, V. & Rault, S. (2000). Acta Cryst. C56, 1503-1504.]), 7-nitro-1H-indazol-3-ol (Claramunt et al., 2009[Claramunt, R. M., Sanz, D., López, C., Pinilla, E., Torres, M. R., Elguero, J., Nioche, P. & Raman, C. S. (2009). Helv. Chim. Acta, 92, 1952-1962.]), 3-(4-methyl­phen­yl)-6-nitro-1H-indazole (Liu et al., 2014[Liu, Z., Wang, L., Tan, H., Zhou, S., Fu, T., Xia, Y., Zhang, Y. & Wang, J. (2014). Chem. Commun. 50, 5061-5063.]) and 5-nitro-3-thio­morpholino-1H-indazole and 5-nitro-3-(4-methyl­piper­az­ino)-1H-indazole (Gzella & Wrzeciono, 2001[Gzella, A. & Wrzeciono, U. (2001). Acta Cryst. C57, 1189-1191.]). The structures of the nitro derivatives are fairly similar to that in the present work in that the indazole moieties are essentially planar with the nitro groups twisted out the plane by 3–6°. In the 4-methyl­phenyl derivative, the phenyl ring is inclined to the plane of the indazole moiety by 12.94 (8)°.

5. DFT calculations and Hirshfeld surface analysis

5.1. DFT calculations

The structure of the title compound in the gas phase was optimized by means of density functional theory. The DFT calculation was performed by the hybrid B3LYP method, which is based on the idea of Becke and considers a mixture of the exact (HF) and DFT exchange utilizing the B3 functional together with the LYP correlation functional (Becke, 1993[Becke, A. D. (1993). J. Chem. Phys. 98, 5648-5652.]; Lee et al., 1988[Lee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785-789.]; Miehlich et al., 1989[Miehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200-206.]). The B3LYP calculation was performed in conjunction with a triple-x basis set which was designed for the DFT optimization [designated as TZVP (DFT orbital); Godbout et al., 1992[Godbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560-571.]]. After obtaining the converged geometry, the harmonic vibrational frequencies were calculated at the same theoretical level to confirm that the number of the imaginary frequency is zero for the stationary point. Both the geometry optimization and harmonic vibrational frequency analysis of the title compound were carried out with the Gaussian16 program (Frisch et al., 2016[Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford CT.]).

5.2. Hirshfeld surface calculations

Both the definition of a mol­ecule in a condensed phase and the recognition of distinct entities in mol­ecular liquids and crystals are fundamental concepts in chemistry. Based on Hirshfeld's partitioning scheme, a method to divide the electron distribution in a crystalline phase into mol­ecular fragments was proposed (Spackman & Byrom, 1997[Spackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215-220.]; McKinnon et al., 2004[McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627-668.]; Spackman & Jayatilaka, 2009[Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19-32.]). This partitioned the crystal into regions where the electron distribution of a sum of spherical atoms for the mol­ecule dominates over the corresponding sum of the crystal. Because it derived from Hirshfeld's stockholder partitioning, the mol­ecular surface is named the Hirshfeld surface. In this study, the Hirshfeld surface analysis of the title compound was performed using the CrystalExplorer program (Turner et al., 2017[Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17.]).

5.3. theoretical comparison of the title compound

The results of the B3LYP geometry optimization of (I)[link] are depicted in Fig. 5[link] and a comparative study of the gas-phase structure and the solid-phase one for (I)[link] was performed, with the results summarized in Table 2[link] together with a previous geometrical study on 1H-indazole itself (Hathaway et al., 1998[Hathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713-2720.]). The discrepancy between our B3LYP result and the previous MP2(fc) calculations may be due to the substitutent effects of both the NO2 and meth­oxy­phenyl groups (Hathaway et al., 1998[Hathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713-2720.]).

Table 2
The B3LYP-optimized and the X-ray structural parameters (Å, °) for (I)

  B3LYP X-ray 1H-indazolea
N1—N2 1.357 1.358 (8) 1.349
N1—C7 1.328 1.323 (9) 1.337
N2—C1 1.365 1.363 (10) 1.367
C1—C2 1.394 1.378 (11) 1.406
C1—C6 1.417 1.404 (10) 1.422
C2—C3 1.328 1.368 (9) 1.389
C3—C4 1.408 1.410 (11) 1.419
C4—C5 1.380 1.370 (10) 1.388
C5—C6 1.405 1.420 (10) 1.412
C6—C7 1.439 1.438 (10) 1.424
C7—N1—N2 107.1 106.8 (7) 105.5
Note: (a) MP2(fc)/6–311G** calculated values (Hathaway et al., 1998[Hathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713-2720.]).
[Figure 5]
Figure 5
The B3LYP-optimized geometries (Å,°) of (I)[link].

5.4. Hirshfeld analysis of the title compound

The standard resolution mol­ecular Hirshfeld surface (dnorm) of the title compound is shown in Fig. 6[link] and is transparent so the mol­ecular moiety can be visualized in a similar orientation for all of the structures around which they were calculated. The 3D dnorm surface can be used to identify very close inter­molecular inter­actions with dnorm being negative (positive) when inter­molecular contacts are shorter (longer) than the sum of the van der Waals radii. The dnorm value is mapped onto the Hirshfeld surface by red, white or blue colours. The red regions represent closer contacts with a negative dnorm while the blue regions represent longer contacts with a positive dnorm and the white regions represent contacts equal to the van der Waals separation with dnorm equal to zero. As depicted in Fig. 6[link], the major inter­actions in the title compound are the inter­molecular H⋯O and H⋯N hydrogen bonds.

[Figure 6]
Figure 6
The dnorm Hirshfeld surface of (I)[link] (red: negative, white: zero, blue: positive; scale: −0.4664–1.4050 a.u.).

The 2D fingerprint plots highlight particular atom-pair contacts and enable the separation of contributions from different inter­action types that overlap in the full fingerprint. Using the standard 0.6–2.6 Å view with the de and di distance scales displayed on the graph axes, the 2D fingerprint plot for the title compound is shown in Fig. 7[link](a). Including the recip­rocal contacts, the contribution of the O⋯H contacts (15.7%) for the title compound is larger than that of the N⋯H contacts (4.6%) [Fig. 7[link](b) and 7(c)].

[Figure 7]
Figure 7
Two-dimensional fingerprint plots of (I)[link]: (a) full, (b) resolved into H⋯O contacts; (c) resolved into H⋯N contacts.

6. Synthesis and crystallization

6-Nitro-3-(4-meth­oxy­phen­yl)-1H-indazole (I)[link]:

To a solution of 6-nitro­indazole (0.1 g) dissolved in 1.5 mL of a mixture of 1,4-dioxane/EtOH (3/1, v/v) in a microwave tube with a stir bar were added p-meth­oxy­phenyl­boronic acid (1.5 equiv.), a solution of caesium carbonate (1.3 equiv.) dissolved in 0.5 mL of H2O and Pd(PPh3)4 (0.1 equiv.) under argon. The reaction vessel was sealed with a silicone septum and was subjected to microwave irradiation at 413 K with stirring. The reaction mixture was then allowed to cool to room temperature, diluted with ethyl acetate (15 mL) and water (10 mL) and extracted (3 times). The combined organic layer was dried over MgSO4 and concentrated under reduced pressure. The crude material was purified by column chromatography on silica gel (EtOAc/Ether) to give the desired final product. Yield: 74%. Orange solid, m.p. 503–505 K. 1H NMR (400 MHz, DMSO-d6) δ 13.74 (s, 1H), 8.46 (d, J = 1.5 Hz, 1H), 8.24 (d, J = 9.0 Hz, 1H), 7.96 (dd, J = 1.5, 9.0 Hz, 1H), 7.92 (d, J = 8.6 Hz, 2H), 7.10 (d, J = 8.6 Hz, 2H), 3.82 (3H, s). 13C NMR (100 MHz, DMSO-d6) δ 159.8, 146.1, 144.2, 140.7, 128.7, 125.3, 123.3, 122.4, 115.5, 114.9, 107.8, 55.6. HRMS (ESI) m/z calculated for C14H11N3O3 [M + H]+: 270.0834, found 270.0780.

7. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms attached to carbon were placed in calculated positions (C—H = 0.95–0.98 Å) while those attached to nitro­gen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with Uiso(H) = 1.2–1.5Ueq(C,N).

Table 3
Experimental details

Crystal data
Chemical formula C14H11N3O3
Mr 269.26
Crystal system, space group Monoclinic, Pc
Temperature (K) 180
a, b, c (Å) 14.1447 (14), 11.8380 (12), 7.4252 (8)
β (°) 96.681 (7)
V3) 1234.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.18 × 0.02 × 0.02
 
Data collection
Diffractometer Bruker SMART APEX
Absorption correction Multi-scan (SADABS; Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.70, 0.75
No. of measured, independent and observed [I > 2σ(I)] reflections 25051, 6667, 2803
Rint 0.111
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.158, 0.94
No. of reflections 6667
No. of parameters 363
No. of restraints 2
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.46, −0.32
Absolute structure Flack x determined using 891 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])
Absolute structure parameter 0.6 (10)
Computer programs: APEX3 and SAINT (Bruker, 2016[Bruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXT (Sheldrick, 2015a[Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.]), SHELXL2018 (Sheldrick, 2015b[Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.]), DIAMOND (Brandenburg & Putz, 2012[Brandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.]) and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Computing details top

Data collection: APEX3 (Bruker, 2016); cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

3-(4-Methylphenyl)-6-nitro-1H-indazole top
Crystal data top
C14H11N3O3F(000) = 560
Mr = 269.26Dx = 1.448 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
a = 14.1447 (14) ÅCell parameters from 1994 reflections
b = 11.8380 (12) Åθ = 3.4–24.8°
c = 7.4252 (8) ŵ = 0.11 mm1
β = 96.681 (7)°T = 180 K
V = 1234.9 (2) Å3Needle, orange
Z = 40.18 × 0.02 × 0.02 mm
Data collection top
Bruker SMART APEX
diffractometer
6667 independent reflections
Radiation source: fine-focus sealed tube2803 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 8.333 pixels mm-1θmax = 30.5°, θmin = 1.7°
ωφ scansh = 2019
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 1616
Tmin = 0.70, Tmax = 0.75l = 1010
25051 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.158 w = 1/[σ2(Fo2) + (0.0622P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
6667 reflectionsΔρmax = 0.46 e Å3
363 parametersΔρmin = 0.32 e Å3
2 restraintsAbsolute structure: Flack x determined using 891 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.6 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4650 (5)0.7694 (5)0.4740 (8)0.0490 (17)
O20.5455 (5)0.6197 (5)0.5579 (8)0.0492 (19)
O30.2022 (4)0.3751 (4)0.0943 (6)0.0305 (14)
N10.2293 (4)0.2766 (6)0.2357 (7)0.0253 (17)
H2A0.35180.24430.36130.030*
N20.3179 (4)0.3039 (6)0.3141 (7)0.0248 (15)
N30.4744 (5)0.6668 (7)0.4797 (9)0.0311 (16)
C10.3319 (5)0.4178 (7)0.3224 (9)0.0237 (18)
C20.4084 (5)0.4805 (7)0.3985 (9)0.0259 (19)
H20.46540.44590.45230.031*
C30.3978 (6)0.5954 (7)0.3925 (9)0.0231 (17)
C40.3146 (6)0.6497 (6)0.3121 (9)0.0234 (18)
H40.31060.72980.31150.028*
C50.2396 (5)0.5862 (6)0.2349 (9)0.0221 (18)
H50.18340.62160.17900.026*
C60.2473 (5)0.4667 (7)0.2400 (8)0.0180 (17)
C70.1848 (6)0.3728 (6)0.1920 (9)0.019 (2)
C80.0853 (6)0.3749 (7)0.1091 (9)0.021 (2)
C90.0491 (4)0.4629 (5)0.0003 (8)0.0244 (14)
H90.09040.52230.02690.029*
C100.0468 (4)0.4668 (5)0.0732 (9)0.0260 (14)
H100.07020.52770.14900.031*
C110.1067 (6)0.3808 (6)0.0330 (9)0.0205 (19)
C120.0721 (4)0.2916 (5)0.0784 (8)0.0281 (15)
H120.11350.23240.10540.034*
C130.0229 (4)0.2896 (5)0.1498 (8)0.0248 (14)
H130.04590.22930.22740.030*
C140.2404 (5)0.4616 (6)0.2163 (10)0.0406 (18)
H14A0.20920.45860.32730.061*
H14B0.22910.53560.15860.061*
H14C0.30900.44990.24640.061*
O40.5210 (5)0.2692 (5)0.0879 (8)0.0461 (16)
O50.4437 (4)0.1201 (5)0.0121 (8)0.0434 (18)
O61.1756 (4)0.1266 (4)0.7138 (6)0.0322 (14)
N40.6648 (4)0.1951 (6)0.2571 (7)0.0262 (15)
H4A0.62770.25440.21450.031*
N50.7533 (4)0.2231 (6)0.3387 (7)0.0252 (17)
N60.5133 (5)0.1670 (8)0.0758 (8)0.0323 (17)
C150.6528 (5)0.0827 (6)0.2389 (9)0.0195 (16)
C160.5754 (5)0.0192 (6)0.1567 (9)0.0234 (18)
H160.51860.05280.09990.028*
C170.5892 (6)0.0958 (7)0.1658 (9)0.0236 (17)
C180.6700 (6)0.1506 (7)0.2516 (10)0.0273 (19)
H180.67300.23070.25740.033*
C190.7451 (6)0.0852 (6)0.3273 (9)0.0239 (18)
H190.80130.11980.38480.029*
C200.7376 (5)0.0320 (7)0.3184 (8)0.0185 (17)
C210.7974 (6)0.1252 (6)0.3794 (9)0.021 (2)
C220.8960 (6)0.1244 (6)0.4662 (9)0.019 (2)
C230.9577 (5)0.0380 (5)0.4298 (9)0.0273 (14)
H230.93480.02130.35010.033*
C241.0518 (5)0.0361 (5)0.5068 (8)0.0284 (15)
H241.09290.02320.47870.034*
C251.0852 (6)0.1210 (7)0.6245 (9)0.024 (2)
C261.0248 (4)0.2077 (5)0.6667 (8)0.0267 (15)
H261.04790.26520.74960.032*
C270.9311 (4)0.2099 (5)0.5878 (8)0.0261 (14)
H270.89030.26950.61590.031*
C281.2406 (5)0.0424 (7)0.6675 (11)0.0450 (19)
H28A1.24830.04840.53840.067*
H28B1.21590.03260.69260.067*
H28C1.30240.05350.73980.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.049 (4)0.028 (5)0.067 (4)0.012 (4)0.006 (3)0.007 (3)
O20.035 (4)0.038 (4)0.067 (4)0.006 (3)0.023 (3)0.001 (3)
O30.024 (3)0.030 (3)0.036 (3)0.001 (2)0.005 (2)0.004 (2)
N10.016 (3)0.026 (5)0.032 (3)0.000 (3)0.002 (3)0.001 (3)
N20.027 (4)0.012 (3)0.033 (3)0.001 (3)0.004 (3)0.004 (3)
N30.032 (4)0.026 (4)0.036 (4)0.012 (4)0.006 (3)0.003 (4)
C10.023 (4)0.024 (5)0.024 (4)0.001 (4)0.003 (3)0.002 (3)
C20.018 (4)0.034 (6)0.025 (4)0.007 (4)0.001 (3)0.007 (3)
C30.022 (4)0.019 (4)0.028 (4)0.009 (4)0.000 (3)0.000 (3)
C40.025 (4)0.015 (4)0.030 (4)0.002 (4)0.001 (3)0.001 (3)
C50.019 (4)0.024 (5)0.023 (4)0.000 (4)0.000 (3)0.001 (3)
C60.016 (4)0.018 (4)0.020 (3)0.001 (4)0.002 (3)0.000 (3)
C70.019 (5)0.021 (6)0.016 (4)0.000 (3)0.001 (4)0.002 (3)
C80.019 (5)0.026 (6)0.017 (4)0.003 (3)0.002 (4)0.000 (3)
C90.026 (3)0.025 (3)0.024 (3)0.005 (3)0.006 (3)0.003 (3)
C100.024 (4)0.024 (3)0.029 (3)0.001 (3)0.003 (3)0.000 (3)
C110.020 (5)0.019 (5)0.023 (4)0.001 (3)0.003 (3)0.003 (3)
C120.031 (4)0.023 (4)0.029 (3)0.004 (3)0.004 (3)0.004 (3)
C130.029 (4)0.023 (3)0.021 (3)0.000 (3)0.002 (3)0.003 (3)
C140.035 (4)0.042 (4)0.041 (4)0.000 (3)0.012 (3)0.014 (4)
O40.042 (4)0.028 (5)0.067 (4)0.010 (4)0.001 (3)0.005 (3)
O50.029 (4)0.045 (5)0.053 (4)0.004 (3)0.009 (3)0.001 (3)
O60.023 (3)0.030 (3)0.041 (3)0.001 (2)0.008 (2)0.004 (2)
N40.020 (4)0.024 (4)0.034 (3)0.007 (3)0.003 (3)0.001 (3)
N50.026 (4)0.021 (4)0.027 (3)0.005 (3)0.001 (3)0.001 (3)
N60.027 (4)0.037 (5)0.032 (4)0.010 (4)0.003 (3)0.004 (3)
C150.016 (4)0.020 (5)0.023 (3)0.001 (4)0.003 (3)0.005 (3)
C160.026 (4)0.020 (5)0.024 (4)0.005 (4)0.001 (3)0.004 (3)
C170.022 (4)0.028 (5)0.021 (3)0.009 (4)0.004 (3)0.010 (3)
C180.033 (5)0.022 (4)0.029 (4)0.006 (4)0.013 (4)0.002 (4)
C190.027 (5)0.019 (4)0.026 (4)0.004 (4)0.004 (3)0.005 (3)
C200.024 (4)0.017 (4)0.015 (3)0.003 (4)0.002 (3)0.000 (3)
C210.026 (6)0.014 (6)0.023 (4)0.001 (4)0.002 (4)0.002 (3)
C220.022 (5)0.013 (5)0.022 (4)0.002 (3)0.002 (4)0.002 (3)
C230.027 (4)0.026 (4)0.028 (3)0.002 (3)0.001 (3)0.003 (3)
C240.027 (4)0.032 (4)0.027 (3)0.003 (3)0.007 (3)0.002 (3)
C250.021 (5)0.032 (6)0.018 (4)0.003 (4)0.005 (4)0.001 (3)
C260.032 (4)0.030 (4)0.018 (3)0.010 (3)0.002 (3)0.002 (3)
C270.030 (4)0.020 (3)0.029 (3)0.000 (3)0.005 (3)0.001 (3)
C280.024 (4)0.054 (5)0.054 (5)0.004 (3)0.005 (3)0.010 (4)
Geometric parameters (Å, º) top
O1—N31.222 (8)O4—N61.217 (9)
O2—N31.233 (9)O5—N61.248 (8)
O3—C111.377 (9)O6—C251.372 (9)
O3—C141.431 (7)O6—C281.425 (8)
N1—C71.323 (9)N4—C151.346 (10)
N1—N21.358 (8)N4—N51.367 (8)
N2—C11.363 (10)N4—H4A0.9100
N2—H2A0.9007N5—C211.334 (9)
N3—C31.465 (10)N6—C171.463 (10)
C1—C21.378 (11)C15—C161.407 (10)
C1—C61.404 (10)C15—C201.408 (10)
C2—C31.368 (9)C16—C171.375 (10)
C2—H20.9500C16—H160.9500
C3—C41.410 (11)C17—C181.401 (12)
C4—C51.370 (10)C18—C191.380 (11)
C4—H40.9500C18—H180.9500
C5—C61.420 (10)C19—C201.393 (10)
C5—H50.9500C19—H190.9500
C6—C71.438 (10)C20—C211.431 (10)
C7—C81.470 (11)C21—C221.467 (12)
C8—C91.381 (9)C22—C231.392 (9)
C8—C131.398 (9)C22—C271.407 (9)
C9—C101.402 (8)C23—C241.385 (8)
C9—H90.9500C23—H230.9500
C10—C111.378 (9)C24—C251.379 (9)
C10—H100.9500C24—H240.9500
C11—C121.395 (9)C25—C261.394 (9)
C12—C131.385 (8)C26—C271.385 (7)
C12—H120.9500C26—H260.9500
C13—H130.9500C27—H270.9500
C14—H14A0.9800C28—H28A0.9800
C14—H14B0.9800C28—H28B0.9800
C14—H14C0.9800C28—H28C0.9800
C11—O3—C14117.2 (5)C25—O6—C28116.2 (6)
C7—N1—N2106.8 (7)C15—N4—N5112.5 (6)
N1—N2—C1112.1 (6)C15—N4—H4A131.8
N1—N2—H2A113.8N5—N4—H4A115.3
C1—N2—H2A133.6C21—N5—N4105.7 (7)
O1—N3—O2123.0 (9)O4—N6—O5122.7 (9)
O1—N3—C3119.1 (8)O4—N6—C17119.0 (8)
O2—N3—C3117.9 (8)O5—N6—C17118.3 (8)
N2—C1—C2130.9 (7)N4—C15—C16130.9 (7)
N2—C1—C6106.0 (7)N4—C15—C20106.7 (6)
C2—C1—C6123.0 (7)C16—C15—C20122.4 (7)
C3—C2—C1116.3 (8)C17—C16—C15114.1 (8)
C3—C2—H2121.8C17—C16—H16122.9
C1—C2—H2121.8C15—C16—H16122.9
C2—C3—C4123.4 (8)C16—C17—C18125.7 (8)
C2—C3—N3119.0 (8)C16—C17—N6117.1 (8)
C4—C3—N3117.5 (7)C18—C17—N6117.2 (8)
C5—C4—C3119.6 (7)C19—C18—C17118.3 (7)
C5—C4—H4120.2C19—C18—H18120.8
C3—C4—H4120.2C17—C18—H18120.8
C4—C5—C6118.8 (8)C18—C19—C20119.2 (8)
C4—C5—H5120.6C18—C19—H19120.4
C6—C5—H5120.6C20—C19—H19120.4
C1—C6—C5118.8 (8)C19—C20—C15120.1 (8)
C1—C6—C7104.9 (7)C19—C20—C21135.6 (7)
C5—C6—C7136.1 (7)C15—C20—C21104.3 (7)
N1—C7—C6110.1 (7)N5—C21—C20110.8 (7)
N1—C7—C8121.5 (7)N5—C21—C22120.0 (7)
C6—C7—C8128.4 (7)C20—C21—C22129.1 (7)
C9—C8—C13118.1 (7)C23—C22—C27118.1 (7)
C9—C8—C7122.0 (7)C23—C22—C21120.3 (6)
C13—C8—C7119.7 (7)C27—C22—C21121.6 (6)
C8—C9—C10121.8 (6)C24—C23—C22121.7 (6)
C8—C9—H9119.1C24—C23—H23119.2
C10—C9—H9119.1C22—C23—H23119.2
C11—C10—C9118.9 (6)C25—C24—C23119.5 (6)
C11—C10—H10120.6C25—C24—H24120.3
C9—C10—H10120.6C23—C24—H24120.3
O3—C11—C10124.7 (6)O6—C25—C24125.0 (7)
O3—C11—C12115.0 (6)O6—C25—C26114.7 (7)
C10—C11—C12120.4 (7)C24—C25—C26120.3 (7)
C13—C12—C11119.9 (6)C27—C26—C25120.0 (6)
C13—C12—H12120.1C27—C26—H26120.0
C11—C12—H12120.1C25—C26—H26120.0
C12—C13—C8120.9 (6)C26—C27—C22120.4 (6)
C12—C13—H13119.6C26—C27—H27119.8
C8—C13—H13119.6C22—C27—H27119.8
O3—C14—H14A109.5O6—C28—H28A109.5
O3—C14—H14B109.5O6—C28—H28B109.5
H14A—C14—H14B109.5H28A—C28—H28B109.5
O3—C14—H14C109.5O6—C28—H28C109.5
H14A—C14—H14C109.5H28A—C28—H28C109.5
H14B—C14—H14C109.5H28B—C28—H28C109.5
C7—N1—N2—C10.1 (7)C15—N4—N5—C212.4 (7)
N1—N2—C1—C2176.2 (7)N5—N4—C15—C16176.9 (6)
N1—N2—C1—C61.4 (7)N5—N4—C15—C201.9 (7)
N2—C1—C2—C3176.4 (7)N4—C15—C16—C17179.6 (6)
C6—C1—C2—C30.9 (10)C20—C15—C16—C171.8 (9)
C1—C2—C3—C40.7 (10)C15—C16—C17—C181.8 (10)
C1—C2—C3—N3176.7 (6)C15—C16—C17—N6177.3 (5)
O1—N3—C3—C2179.9 (7)O4—N6—C17—C16176.7 (7)
O2—N3—C3—C21.1 (9)O5—N6—C17—C164.0 (9)
O1—N3—C3—C42.5 (9)O4—N6—C17—C184.2 (9)
O2—N3—C3—C4176.5 (6)O5—N6—C17—C18175.1 (6)
C2—C3—C4—C50.1 (10)C16—C17—C18—C193.2 (11)
N3—C3—C4—C5177.6 (6)N6—C17—C18—C19175.8 (6)
C3—C4—C5—C60.8 (10)C17—C18—C19—C200.9 (10)
N2—C1—C6—C5177.6 (6)C18—C19—C20—C152.4 (10)
C2—C1—C6—C50.2 (10)C18—C19—C20—C21179.5 (7)
N2—C1—C6—C72.0 (6)N4—C15—C20—C19177.2 (6)
C2—C1—C6—C7175.8 (6)C16—C15—C20—C193.9 (10)
C4—C5—C6—C10.6 (9)N4—C15—C20—C210.7 (6)
C4—C5—C6—C7173.2 (6)C16—C15—C20—C21178.2 (5)
N2—N1—C7—C61.3 (7)N4—N5—C21—C201.8 (7)
N2—N1—C7—C8177.9 (6)N4—N5—C21—C22178.7 (6)
C1—C6—C7—N12.1 (7)C19—C20—C21—N5178.2 (7)
C5—C6—C7—N1176.5 (7)C15—C20—C21—N50.7 (7)
C1—C6—C7—C8177.0 (6)C19—C20—C21—C225.3 (12)
C5—C6—C7—C82.6 (11)C15—C20—C21—C22177.2 (7)
N1—C7—C8—C9153.8 (7)N5—C21—C22—C23147.3 (7)
C6—C7—C8—C927.2 (10)C20—C21—C22—C2328.9 (10)
N1—C7—C8—C1330.2 (9)N5—C21—C22—C2732.7 (10)
C6—C7—C8—C13148.8 (7)C20—C21—C22—C27151.0 (7)
C13—C8—C9—C101.4 (9)C27—C22—C23—C241.4 (10)
C7—C8—C9—C10177.4 (6)C21—C22—C23—C24178.7 (6)
C8—C9—C10—C110.5 (9)C22—C23—C24—C250.9 (9)
C14—O3—C11—C103.6 (9)C28—O6—C25—C245.4 (9)
C14—O3—C11—C12177.0 (6)C28—O6—C25—C26177.1 (6)
C9—C10—C11—O3179.4 (6)C23—C24—C25—O6177.7 (6)
C9—C10—C11—C120.0 (9)C23—C24—C25—C260.4 (10)
O3—C11—C12—C13179.2 (6)O6—C25—C26—C27178.7 (5)
C10—C11—C12—C130.2 (9)C24—C25—C26—C271.1 (9)
C11—C12—C13—C81.1 (9)C25—C26—C27—C220.6 (8)
C9—C8—C13—C121.7 (9)C23—C22—C27—C260.6 (9)
C7—C8—C13—C12177.8 (6)C21—C22—C27—C26179.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O5i0.902.113.005 (9)173
C2—H2···O4i0.952.413.201 (10)140
C4—H4···O6ii0.952.603.329 (9)134
N4—H4A···O2iii0.912.153.043 (9)168
C16—H16···O1iii0.952.393.171 (10)139
C18—H18···O3iv0.952.613.340 (10)134
Symmetry codes: (i) x, y, z+1/2; (ii) x1, y+1, z1/2; (iii) x, y+1, z1/2; (iv) x+1, y, z+1/2.
The B3LYP-optimized and the X-ray structural parameters (Å, °) for (I) top
B3LYPX-ray1H-indazolea
N1—N21.3571.358 (8)1.349
N1—C71.3281.323 (9)1.337
N2—C11.3651.363 (10)1.367
C1—C21.3941.378 (11)1.406
C1—C61.4171.404 (10)1.422
C2—C31.3281.368 (9)1.389
C3—C41.4081.410 (11)1.419
C4—C51.3801.370 (10)1.388
C5—C61.4051.420 (10)1.412
C6—C71.4391.438 (10)1.424
C7—N1—N2107.1106.8 (7)105.5
Note: (a) MP2(fc)/6-311G** calculated values (Hathaway et al., 1998).
 

Funding information

JTM thanks Tulane University for support of the Tulane Crystallography Laboratory. This publication was prepared with the support of the RUDN University Program 5–100.

References

First citationAbbassi, N., Chicha, H., Rakib, el M., Hannioui, A., Alaoui, M., Hajjaji, A., Geffken, D., Aiello, C., Gangemi, R., Rosano, C. & Viale, M. (2012). Eur. J. Med. Chem. 57, 240–249.  Web of Science CrossRef CAS PubMed Google Scholar
First citationAli, Z., Ferreira, D., Carvalho, P., Avery, M. A. & Khan, I. A. (2008). J. Nat. Prod. 71, 1111–1112.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBecke, A. D. (1993). J. Chem. Phys. 98, 5648–5652.  CrossRef CAS Web of Science Google Scholar
First citationBouissane, L., El Kazzouli, S., Léonce, S., Pfeiffer, B., Rakib, M. E., Khouili, M. & Guillaumet, G. (2006). Bioorg. Med. Chem. 14, 1078–1088.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBrandenburg, K. & Putz, H. (2012). DIAMOND, Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2016). APEX3, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCabildo, P., Claramunt, R. M., López, C., García, M. A., Pérez-Torralba, M., Pinilla, E., Torres, M. R., Alkorta, I. & Elguero, J. (2011). J. Mol. Struct. 985, 75–81.  CrossRef Google Scholar
First citationClaramunt, R. M., Sanz, D., López, C., Pinilla, E., Torres, M. R., Elguero, J., Nioche, P. & Raman, C. S. (2009). Helv. Chim. Acta, 92, 1952–1962.  CrossRef Google Scholar
First citationFrisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A., Peralta, J. E. Jr, Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B. & Fox, D. J. (2016). Gaussian16, Revision A. 03. Gaussian, Inc., Wallingford CT.  Google Scholar
First citationGodbout, N., Salahub, D. R., Andzelm, J. & Wimmer, E. (1992). Can. J. Chem. 70, 560–571.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.  Web of Science CrossRef IUCr Journals Google Scholar
First citationGzella, A. & Wrzeciono, U. (2001). Acta Cryst. C57, 1189–1191.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHathaway, B. A., Day, G., Lewis, M. & Glaser, R. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 2713–2720.  CrossRef Google Scholar
First citationLee, C., Yang, W. & Parr, R. G. (1988). Phys. Rev. B, 37, 785–789.  CrossRef CAS Web of Science Google Scholar
First citationLiu, Z., Wang, L., Tan, H., Zhou, S., Fu, T., Xia, Y., Zhang, Y. & Wang, J. (2014). Chem. Commun. 50, 5061–5063.  CrossRef Google Scholar
First citationLiu, Y., Yang, J. & Liu, Q. (2004). Chem. Pharm. Bull. 52, 454–455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMcKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMiehlich, B., Savin, A., Stoll, H. & Preuss, H. (1989). Chem. Phys. Lett. 157, 200–206.  CrossRef CAS Web of Science Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017b). IUCrData, 2, x170637.  Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017a). IUCrData, 2, x170660.  Google Scholar
First citationMohamed Abdelahi, M. M., El Bakri, Y., Minnih, M. S., Benchidmi, M., Essassi, E. M. & Mague, J. T. (2017c). IUCrData, 2, x170652.  Google Scholar
First citationMosti, L., Menozzi, G., Fossa, P., Filippelli, W., Gessi, S., Rinaldi, B. & Falcone, G. (2000). Arzneim.-Forsch. Drug. Res. 50, 963–972.  CAS Google Scholar
First citationOoms, F., Norberg, B., Isin, E. M., Castagnoli, N., Van der Schyf, C. J. & Wouters, J. (2000). Acta Cryst. C56, e474–e475.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPatel, M., Rodgers, J. D., McHugh, R. J. Jr, Johnson, B. L., Cordova, B. C., Klabe, R. M., Bacheler, L. T., Erickson-Viitanen, S. & Ko, S. S. (1999). Bioorg. Med. Chem. Lett. 9, 3217–3220.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchmidt, A., Beutler, A. & Snovydovych, B. (2008). Eur. J. Org. Chem. pp. 4073–4095.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSopková-de Oliveira Santos, J., Collot, V. & Rault, S. (2000). Acta Cryst. C56, 1503–1504.  CrossRef IUCr Journals Google Scholar
First citationSpackman, M. A. & Byrom, P. G. (1997). Chem. Phys. Lett. 267, 215–220.  CrossRef CAS Web of Science Google Scholar
First citationSpackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.  Web of Science CrossRef CAS Google Scholar
First citationTurner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer 17Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds