organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1633-o1634

4,4′-Oxybis(2,6-di­methyl­pyridinium) bis­­(tri­fluoro­methane­sulfonate)

aDepartment of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747, USA, and bDepartment of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: dmanke@umassd.edu

(Received 1 October 2013; accepted 8 October 2013; online 12 October 2013)

In the asymmetric unit of the title salt, C14H18N2O2+·2CF3O3S, the components are linked by two N—H⋯O and one C—H⋯O hydrogen bonds. The dipyridinium salt demonstrates a skew conformation based upon C—O—C—C torsion angles of 61.5 (3) and 15.1 (4)°. A C—O—C angle of 119.3 (2)° and C—O bond distances of 1.364 (3) and 1.389 (3) Å are consistent with other dipyridyl ethers. The planes of the pyridyl rings exhibit a twist angle of 67.89 (8)°. One of the tri­fluoro­methane­sulfonate ions shows disorder of the F atoms [in a 0.52 (7):0.48 (7) occupancy ratio] and an O atom [0.64 (8):0.36 (8) occupancy ratio]. In the crystal, the components are linked by C—H⋯O inter­actions, which form chains along [101].

Related literature

For the structure of the unsubstituted 4,4′-oxybisdi­pyridine, see: Dunne et al. (1996[Dunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040-2042.]). For the structure of bis­[4′-(2,2′:6′,2′′-terpyridin­yl)]ether, see: Constable et al. (1995[Constable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360-367.]). For the stuctures of the neutral ether 9,9′-oxybisacridine and its dication, see: Maas (1985[Maas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985-1988.]). For a description of conformations in bridged di­phenyls, see: van der Heijden et al. (1975[Heijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084-2092.]).

[Scheme 1]

Experimental

Crystal data
  • C14H18N2O2+·2CF3O3S

  • Mr = 528.44

  • Monoclinic, P 21 /n

  • a = 12.7397 (18) Å

  • b = 11.3610 (16) Å

  • c = 15.611 (2) Å

  • β = 101.405 (4)°

  • V = 2214.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.24 × 0.18 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.925, Tmax = 0.968

  • 15390 measured reflections

  • 4360 independent reflections

  • 3546 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.125

  • S = 1.09

  • 4360 reflections

  • 316 parameters

  • 53 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.04 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4 0.86 (2) 1.93 (2) 2.783 (3) 171 (3)
N2—H2N⋯O7 0.87 (2) 1.97 (2) 2.826 (3) 169 (3)
C2—H2A⋯O6i 0.95 2.36 3.170 (4) 142
C6—H6B⋯O6i 0.98 2.50 3.383 (4) 149
C7—H7B⋯O3ii 0.98 2.47 3.421 (4) 164
C9—H9A⋯O3iii 0.95 2.44 3.293 (4) 149
C12—H12A⋯O5iv 0.95 2.26 3.168 (4) 160
C14—H14A⋯O6 0.98 2.52 3.436 (4) 155
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y+1, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The structures of bridged diaryls have been examined for many years and here we submit another structure into this data set. Based upon dissimilar C–O–C–C torsion angles of 61.5 (3)° and 15.1 (4)°, this structure exhibits a skew conformation (van der Heijden et al. 1975). The previously reported structures of 4,4'-oxybisdipyridyls and their cations (Dunne et al. 1996, Maas, 1985, Constable et al., 1995) have shown a twist structure, with torsion angles that are closer in size. Otherwise, the C–O–C angle of 119.3 (2)° and C–O bond distances of 1.364 (3) Å and 1.389 (3) Å are consistent with reported dipyridyl ethers

The structure of the title salt is shown in Figure 1. N–H···O hydrogen bonds between the dication and the two anions are seen between N1–H1N···O4 and N2–H2N···O7. There are no π-π interactions between pyridinium rings of the dications observed. One of the trifluoromethanesulfonate ions shows a disorder at the fluorines with a 52.0:48.0 percentage distribution and at one oxygen with a 64:36 percentage distribution.

Related literature top

For the structure of the unsubstituted 4,4'-oxybisdipyridine, see: Dunne et al. (1996). For the structure of bis[4'-(2,2':6',2"-terpyridinyl)]ether, see: Constable et al. (1995). For the stuctures of the neutral ether 9,9'-oxybisacridine and its dication, see: Maas (1985). For a description of conformations in bridged diphenyls, see: van der Heijden et al. (1975).

Experimental top

Colorless crystals of the title compound formed from the slow decomposition of neat 2,6-dimethyl-4-triflatopyridine.

Refinement top

All non-hydrogen atoms were refined anisotropically by full matrix least squares on F2. Fluorine atoms F1, F2, and F3 were disordered over two positions (52.0/48.0) and were refined anisotropically with similar distances and amplitudes using SADI restraints and EADP constraints. Oxygen atom O2 was found to be disordered over two sites (63.5/36.5) and was refined with DFIX restraints for S–O bond length of 1.44(0.01) Å and O–O distances of 2.41(0.02) Å and ISOR restraint for O2 and O2'. Hydrogen atoms H1N and H2N were found from a Fourier difference map and were refined isotropically with N—H distance of 0.87 (2) Å and 1.20 Ueq of parent N atom. All other hydrogen atoms were placed in calculated positions with appropriate carbon hydrogen bond lengths; C—H(Ar) 0.950 Å and CH3 0.980 Å and 1.20 and 1.50 Ueq of parent C atom.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom labeling scheme, with displacement ellipsoids drawn at the 50% probability level. H atoms are presented as spheres of arbitrary radius. Hydrogen bonding is shown with dashed lines.
4,4'-Oxybis(2,6-dimethylpyridinium) bis(trifluoromethanesulfonate) top
Crystal data top
C14H18N2O2+·2CF3O3SF(000) = 1080
Mr = 528.44Dx = 1.585 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5851 reflections
a = 12.7397 (18) Åθ = 2.4–26.2°
b = 11.3610 (16) ŵ = 0.33 mm1
c = 15.611 (2) ÅT = 100 K
β = 101.405 (4)°Block, colourless
V = 2214.8 (6) Å30.24 × 0.18 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4360 independent reflections
Radiation source: fine-focus sealed tube3546 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 26.0°, θmin = 2.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1515
Tmin = 0.925, Tmax = 0.968k = 1410
15390 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0486P)2 + 3.6577P]
where P = (Fo2 + 2Fc2)/3
4360 reflections(Δ/σ)max = 0.023
316 parametersΔρmax = 0.94 e Å3
53 restraintsΔρmin = 1.04 e Å3
Crystal data top
C14H18N2O2+·2CF3O3SV = 2214.8 (6) Å3
Mr = 528.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7397 (18) ŵ = 0.33 mm1
b = 11.3610 (16) ÅT = 100 K
c = 15.611 (2) Å0.24 × 0.18 × 0.10 mm
β = 101.405 (4)°
Data collection top
Bruker APEXII CCD
diffractometer
4360 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3546 reflections with I > 2σ(I)
Tmin = 0.925, Tmax = 0.968Rint = 0.027
15390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04953 restraints
wR(F2) = 0.125H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.94 e Å3
4360 reflectionsΔρmin = 1.04 e Å3
316 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.30074 (6)0.21804 (7)0.30451 (5)0.0244 (2)
S21.28559 (6)0.28663 (8)0.84123 (5)0.0261 (2)
F10.2582 (5)0.0159 (3)0.3316 (4)0.0595 (7)0.520 (7)
F20.3592 (5)0.0635 (5)0.4423 (4)0.0595 (7)0.520 (7)
F30.1942 (4)0.1172 (5)0.4014 (4)0.0595 (7)0.520 (7)
F1'0.2686 (5)0.0044 (4)0.3063 (4)0.0595 (7)0.480 (7)
F2'0.3863 (4)0.0710 (5)0.4133 (4)0.0595 (7)0.480 (7)
F3'0.2151 (5)0.0891 (5)0.4199 (3)0.0595 (7)0.480 (7)
F41.45831 (17)0.3944 (2)0.92267 (16)0.0540 (7)
F51.33893 (18)0.36761 (19)1.00127 (13)0.0429 (6)
F61.3158 (2)0.5016 (2)0.90176 (19)0.0642 (8)
O10.81802 (15)0.55937 (18)0.51520 (13)0.0198 (5)
O20.3883 (10)0.178 (3)0.268 (2)0.065 (4)0.64 (8)
O2'0.3796 (13)0.206 (3)0.2489 (14)0.039 (5)0.36 (8)
O30.19673 (19)0.2307 (2)0.24973 (15)0.0349 (6)
O40.32838 (16)0.30914 (19)0.36998 (14)0.0247 (5)
O51.33183 (18)0.1762 (2)0.87294 (14)0.0283 (5)
O61.3101 (2)0.3260 (3)0.75980 (16)0.0445 (7)
O71.17400 (17)0.3012 (2)0.84615 (16)0.0322 (6)
N10.53677 (19)0.3908 (2)0.42520 (15)0.0166 (5)
H1N0.4755 (19)0.358 (3)0.408 (2)0.020*
N21.05589 (19)0.4233 (2)0.70080 (15)0.0180 (5)
H2N1.099 (2)0.386 (3)0.7421 (18)0.022*
C10.7249 (2)0.4988 (3)0.48821 (18)0.0163 (6)
C20.6599 (2)0.5394 (3)0.41160 (18)0.0184 (6)
H2A0.68110.60520.38150.022*
C30.5646 (2)0.4833 (3)0.38005 (18)0.0177 (6)
C40.5987 (2)0.3485 (3)0.49946 (18)0.0164 (6)
C50.6942 (2)0.4040 (3)0.53340 (18)0.0167 (6)
H5A0.73790.37780.58650.020*
C60.4891 (2)0.5170 (3)0.29786 (19)0.0244 (7)
H6A0.47110.44720.26100.037*
H6B0.52300.57590.26640.037*
H6C0.42370.54990.31230.037*
C70.5605 (2)0.2412 (3)0.5387 (2)0.0255 (7)
H7A0.48400.24900.53890.038*
H7B0.60030.23190.59880.038*
H7C0.57220.17210.50420.038*
C80.8979 (2)0.5106 (3)0.57885 (18)0.0164 (6)
C90.9320 (2)0.5738 (3)0.65427 (19)0.0197 (6)
H9A0.90060.64750.66310.024*
C101.0135 (2)0.5270 (3)0.71692 (19)0.0204 (6)
C111.0248 (2)0.3602 (3)0.62686 (19)0.0184 (6)
C120.9443 (2)0.4049 (3)0.56316 (19)0.0178 (6)
H12A0.92120.36400.50970.021*
C131.0564 (3)0.5851 (3)0.8025 (2)0.0358 (9)
H13A1.05340.52980.85010.054*
H13B1.01310.65470.80880.054*
H13C1.13080.60890.80460.054*
C141.0780 (3)0.2449 (3)0.6199 (2)0.0268 (7)
H14A1.15370.25030.64830.040*
H14B1.07250.22470.55810.040*
H14C1.04290.18390.64850.040*
C150.2854 (2)0.0901 (3)0.3686 (2)0.0548 (13)
C161.3531 (3)0.3933 (3)0.9209 (3)0.0378 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0170 (4)0.0248 (4)0.0308 (4)0.0001 (3)0.0029 (3)0.0091 (3)
S20.0188 (4)0.0357 (5)0.0208 (4)0.0053 (3)0.0038 (3)0.0133 (3)
F10.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F20.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F30.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F1'0.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F2'0.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F3'0.0720 (13)0.0293 (11)0.0614 (17)0.0171 (9)0.0252 (11)0.0380 (11)
F40.0295 (12)0.0722 (17)0.0517 (14)0.0213 (12)0.0126 (10)0.0118 (12)
F50.0547 (14)0.0371 (12)0.0327 (11)0.0026 (10)0.0012 (10)0.0034 (9)
F60.0656 (17)0.0273 (13)0.084 (2)0.0100 (12)0.0240 (14)0.0171 (12)
O10.0126 (9)0.0218 (11)0.0226 (11)0.0023 (8)0.0029 (8)0.0070 (9)
O20.050 (4)0.060 (7)0.096 (8)0.011 (4)0.041 (4)0.024 (6)
O2'0.035 (6)0.039 (8)0.047 (8)0.003 (4)0.017 (5)0.011 (5)
O30.0352 (13)0.0293 (13)0.0318 (13)0.0027 (11)0.0139 (10)0.0049 (10)
O40.0194 (11)0.0242 (12)0.0279 (12)0.0032 (9)0.0019 (9)0.0056 (9)
O50.0270 (12)0.0356 (13)0.0202 (11)0.0024 (10)0.0002 (9)0.0045 (10)
O60.0331 (14)0.071 (2)0.0257 (13)0.0148 (13)0.0037 (10)0.0244 (13)
O70.0202 (11)0.0377 (14)0.0354 (13)0.0016 (10)0.0024 (10)0.0132 (11)
N10.0118 (11)0.0201 (13)0.0165 (12)0.0003 (10)0.0004 (9)0.0007 (10)
N20.0136 (11)0.0239 (14)0.0152 (12)0.0018 (10)0.0004 (9)0.0021 (10)
C10.0118 (13)0.0184 (14)0.0181 (14)0.0011 (11)0.0013 (11)0.0007 (11)
C20.0161 (13)0.0225 (16)0.0168 (14)0.0015 (12)0.0040 (11)0.0058 (12)
C30.0162 (14)0.0213 (15)0.0157 (13)0.0042 (12)0.0035 (11)0.0019 (12)
C40.0155 (13)0.0184 (15)0.0148 (13)0.0021 (11)0.0020 (11)0.0012 (11)
C50.0147 (13)0.0213 (15)0.0130 (13)0.0023 (11)0.0003 (10)0.0024 (11)
C60.0175 (14)0.0340 (18)0.0191 (15)0.0005 (13)0.0026 (12)0.0071 (13)
C70.0218 (15)0.0262 (17)0.0250 (16)0.0054 (13)0.0037 (12)0.0070 (13)
C80.0104 (12)0.0207 (15)0.0175 (14)0.0027 (11)0.0012 (10)0.0050 (11)
C90.0162 (14)0.0205 (15)0.0228 (15)0.0015 (12)0.0049 (11)0.0001 (12)
C100.0172 (14)0.0264 (16)0.0172 (14)0.0002 (12)0.0028 (11)0.0020 (12)
C110.0143 (13)0.0212 (15)0.0190 (14)0.0019 (12)0.0012 (11)0.0005 (12)
C120.0138 (13)0.0236 (16)0.0150 (13)0.0028 (12)0.0002 (11)0.0018 (12)
C130.0367 (19)0.042 (2)0.0243 (17)0.0095 (16)0.0037 (15)0.0122 (15)
C140.0226 (15)0.0240 (17)0.0303 (17)0.0034 (13)0.0033 (13)0.0024 (14)
C150.040 (2)0.025 (2)0.080 (3)0.0091 (18)0.033 (2)0.004 (2)
C160.0332 (19)0.032 (2)0.041 (2)0.0067 (16)0.0092 (16)0.0111 (16)
Geometric parameters (Å, º) top
S1—O21.422 (6)C1—C21.392 (4)
S1—O31.435 (2)C2—C31.373 (4)
S1—O41.448 (2)C2—H2A0.9500
S1—O2'1.459 (9)C3—C61.493 (4)
S1—C151.797 (4)C4—C51.380 (4)
S2—O51.432 (2)C4—C71.488 (4)
S2—O61.439 (2)C5—H5A0.9500
S2—O71.448 (2)C6—H6A0.9800
S2—C161.825 (4)C6—H6B0.9800
F1—C151.352 (4)C6—H6C0.9800
F2—C151.368 (4)C7—H7A0.9800
F3—C151.393 (4)C7—H7B0.9800
F1'—C151.364 (4)C7—H7C0.9800
F2'—C151.353 (4)C8—C91.374 (4)
F3'—C151.314 (4)C8—C121.382 (4)
F4—C161.335 (4)C9—C101.384 (4)
F5—C161.334 (4)C9—H9A0.9500
F6—C161.332 (4)C10—C131.493 (4)
O1—C11.364 (3)C11—C121.376 (4)
O1—C81.389 (3)C11—C141.489 (4)
N1—C31.351 (4)C12—H12A0.9500
N1—C41.354 (4)C13—H13A0.9800
N1—H1N0.86 (2)C13—H13B0.9800
N2—C101.340 (4)C13—H13C0.9800
N2—C111.350 (4)C14—H14A0.9800
N2—H2N0.87 (2)C14—H14B0.9800
C1—C51.386 (4)C14—H14C0.9800
O2—S1—O3120.0 (12)H7A—C7—H7C109.5
O2—S1—O4114.2 (5)H7B—C7—H7C109.5
O3—S1—O4114.57 (14)C9—C8—C12122.1 (3)
O3—S1—O2'108.6 (9)C9—C8—O1117.9 (3)
O4—S1—O2'112.7 (8)C12—C8—O1119.9 (3)
O2—S1—C1598.1 (16)C8—C9—C10118.1 (3)
O3—S1—C15102.94 (14)C8—C9—H9A121.0
O4—S1—C15102.87 (14)C10—C9—H9A121.0
O2'—S1—C15114.8 (13)N2—C10—C9118.6 (3)
O5—S2—O6115.54 (17)N2—C10—C13117.8 (3)
O5—S2—O7115.02 (14)C9—C10—C13123.6 (3)
O6—S2—O7113.47 (15)N2—C11—C12118.2 (3)
O5—S2—C16103.86 (15)N2—C11—C14118.0 (3)
O6—S2—C16103.92 (17)C12—C11—C14123.8 (3)
O7—S2—C16102.88 (17)C11—C12—C8118.4 (3)
C1—O1—C8119.3 (2)C11—C12—H12A120.8
C3—N1—C4123.6 (2)C8—C12—H12A120.8
C3—N1—H1N119 (2)C10—C13—H13A109.5
C4—N1—H1N117 (2)C10—C13—H13B109.5
C10—N2—C11124.5 (3)H13A—C13—H13B109.5
C10—N2—H2N120 (2)C10—C13—H13C109.5
C11—N2—H2N114 (2)H13A—C13—H13C109.5
O1—C1—C5123.4 (2)H13B—C13—H13C109.5
O1—C1—C2115.6 (3)C11—C14—H14A109.5
C5—C1—C2121.0 (3)C11—C14—H14B109.5
C3—C2—C1119.2 (3)H14A—C14—H14B109.5
C3—C2—H2A120.4C11—C14—H14C109.5
C1—C2—H2A120.4H14A—C14—H14C109.5
N1—C3—C2118.6 (3)H14B—C14—H14C109.5
N1—C3—C6117.2 (3)F3'—C15—F2'112.1 (4)
C2—C3—C6124.2 (3)F3'—C15—F1'113.4 (4)
N1—C4—C5119.1 (3)F2'—C15—F1'104.6 (4)
N1—C4—C7117.4 (3)F1—C15—F2103.8 (4)
C5—C4—C7123.4 (3)F1—C15—F3101.0 (4)
C4—C5—C1118.4 (3)F2—C15—F3102.9 (4)
C4—C5—H5A120.8F3'—C15—S1120.6 (3)
C1—C5—H5A120.8F1—C15—S1122.0 (3)
C3—C6—H6A109.5F2'—C15—S1102.7 (3)
C3—C6—H6B109.5F1'—C15—S1101.5 (3)
H6A—C6—H6B109.5F2—C15—S1121.0 (3)
C3—C6—H6C109.5F3—C15—S1102.5 (3)
H6A—C6—H6C109.5F6—C16—F5107.7 (3)
H6B—C6—H6C109.5F6—C16—F4107.9 (3)
C4—C7—H7A109.5F5—C16—F4107.7 (3)
C4—C7—H7B109.5F6—C16—S2111.2 (2)
H7A—C7—H7B109.5F5—C16—S2111.3 (2)
C4—C7—H7C109.5F4—C16—S2110.9 (3)
C8—O1—C1—C515.1 (4)O2'—S1—C15—F3'178.5 (8)
C8—O1—C1—C2165.8 (3)O2—S1—C15—F163.4 (9)
O1—C1—C2—C3180.0 (3)O3—S1—C15—F160.0 (4)
C5—C1—C2—C30.9 (4)O4—S1—C15—F1179.4 (4)
C4—N1—C3—C21.3 (4)O2'—S1—C15—F157.7 (9)
C4—N1—C3—C6178.2 (3)O2—S1—C15—F2'50.2 (9)
C1—C2—C3—N10.6 (4)O3—S1—C15—F2'173.7 (4)
C1—C2—C3—C6178.8 (3)O4—S1—C15—F2'67.0 (4)
C3—N1—C4—C52.1 (4)O2'—S1—C15—F2'55.9 (9)
C3—N1—C4—C7176.1 (3)O2—S1—C15—F1'57.8 (8)
N1—C4—C5—C12.2 (4)O3—S1—C15—F1'65.6 (3)
C7—C4—C5—C1175.8 (3)O4—S1—C15—F1'175.0 (3)
O1—C1—C5—C4179.3 (3)O2'—S1—C15—F1'52.2 (8)
C2—C1—C5—C41.6 (4)O2—S1—C15—F271.3 (9)
C1—O1—C8—C9121.9 (3)O3—S1—C15—F2165.3 (4)
C1—O1—C8—C1261.5 (3)O4—S1—C15—F245.9 (4)
C12—C8—C9—C101.9 (4)O2'—S1—C15—F276.9 (9)
O1—C8—C9—C10178.4 (2)O2—S1—C15—F3175.1 (8)
C11—N2—C10—C90.1 (4)O3—S1—C15—F351.7 (3)
C11—N2—C10—C13179.5 (3)O4—S1—C15—F367.7 (3)
C8—C9—C10—N20.7 (4)O2'—S1—C15—F3169.4 (8)
C8—C9—C10—C13178.6 (3)O5—S2—C16—F6178.0 (3)
C10—N2—C11—C120.3 (4)O6—S2—C16—F660.8 (3)
C10—N2—C11—C14178.4 (3)O7—S2—C16—F657.8 (3)
N2—C11—C12—C81.4 (4)O5—S2—C16—F557.9 (3)
C14—C11—C12—C8177.2 (3)O6—S2—C16—F5179.2 (3)
C9—C8—C12—C112.3 (4)O7—S2—C16—F562.3 (3)
O1—C8—C12—C11178.7 (2)O5—S2—C16—F462.0 (3)
O2—S1—C15—F3'175.9 (9)O6—S2—C16—F459.3 (3)
O3—S1—C15—F3'60.7 (4)O7—S2—C16—F4177.8 (2)
O4—S1—C15—F3'58.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.86 (2)1.93 (2)2.783 (3)171 (3)
N2—H2N···O70.87 (2)1.97 (2)2.826 (3)169 (3)
C2—H2A···O6i0.952.363.170 (4)142
C6—H6B···O6i0.982.503.383 (4)149
C7—H7B···O3ii0.982.473.421 (4)164
C9—H9A···O3iii0.952.443.293 (4)149
C12—H12A···O5iv0.952.263.168 (4)160
C14—H14A···O60.982.523.436 (4)155
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O40.86 (2)1.93 (2)2.783 (3)171 (3)
N2—H2N···O70.87 (2)1.97 (2)2.826 (3)169 (3)
C2—H2A···O6i0.952.363.170 (4)142.4
C6—H6B···O6i0.982.503.383 (4)149.1
C7—H7B···O3ii0.982.473.421 (4)163.8
C9—H9A···O3iii0.952.443.293 (4)148.8
C12—H12A···O5iv0.952.263.168 (4)160.1
C14—H14A···O60.982.523.436 (4)154.9
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y+1, z+1; (iv) x1/2, y+1/2, z1/2.
 

Acknowledgements

AWS thanks the Jean Dreyfus Boissevain Lectureship for Undergraduate Institutions, the UMass Dartmouth Office of Undergraduate Research Award, the Urban Massachusetts Louis Stokes Alliance for Minority Participation (UMLSAMP), the UMass Dartmouth Honors Program and the Northeast Section of the American Chemical Society Norris/Richards Summer Research Scholarship for funding. DRM gratefully acknowledges support from the UMass Dartmouth Chancellor's Research Fund, the Joseph P. Healey Endowment and the National Science Foundation (CHE-1229339).

References

First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationConstable, E. C., Cargill Thompson, A. M. W., Harveson, P., Macko, L. & Zehnder, M. (1995). Chem. Eur. J. 1, 360–367.  CrossRef CAS Web of Science Google Scholar
First citationDunne, S. J., von Nagy-Felsobuki, E. I. & Mackay, M. F. (1996). Acta Cryst. C52, 2040–2042.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHeijden, S. P. N. van der, Griffith, E. A. H., Chandler, W. D. & Robertson, B. E. (1975). Can. J. Chem. 53, 2084–2092.  Google Scholar
First citationMaas, G. (1985). J. Chem. Soc. Perkin Trans. 2, pp. 1985–1988.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1633-o1634
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds