organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Levulinic acid

aInstitute of Chemistry, University of Silesia, 14 Bankowa Street, 40-006 Katowice, Poland, and bInstitute of Physics, University of Silesia, 4 Uniwersytecka Street, 40-007 Katowice, Poland
*Correspondence e-mail: bhachula@o2.pl

(Received 19 July 2013; accepted 29 July 2013; online 10 August 2013)

The title compound (systematic name: 4-oxo­penta­noic acid), C5H8O3, is close to planar (r.m.s. deviation = 0.0762 Å). In the crystal, the mol­ecules inter­act via O—H⋯O hydrogen bonds in which the hy­droxy O atoms act as donors and the ketone O atoms in adjacent mol­ecules as acceptors, forming C(7) chains along [20-1].

Related literature

For uses of levulinic acid, see: Timokhin et al. (1999[Timokhin, B. V., Baransky, V. A. & Eliseeva, G. D. (1999). Russ. Chem. Rev. 68, 73-84.]). For density functional and Møller–Plesset perturbation theory calculations for levulinic acid, see: Reichert et al. (2010[Reichert, D., Montoya, A., Liang, X., Bockhorn, H. & Haynes, B. S. (2010). J. Phys. Chem. A, 114, 12323-12329.]); Kim et al. (2011[Kim, T., Assary, R. S., Curtiss, L. A., Marshall, C. L. & Stair, P. C. (2011). J. Raman Spectrosc. 42, 2069-2076.]). For typical bond lengths and angles, see: Allen et al. (1987[Allen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Borthwick (1980[Borthwick, P. W. (1980). Acta Cryst. B36, 628-632.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]). For background to the study, see: Flakus & Hachuła (2008[Flakus, H. & Hachuła, B. (2008). Chem. Phys. B345, 49-64.]); Flakus & Stachowska (2006[Flakus, H. & Stachowska, B. (2006). Chem. Phys. B330, 231-244.]).

[Scheme 1]

Experimental

Crystal data
  • C5H8O3

  • Mr = 116.11

  • Monoclinic, P 21 /c

  • a = 4.8761 (2) Å

  • b = 12.1025 (4) Å

  • c = 9.8220 (3) Å

  • β = 99.112 (3)°

  • V = 572.31 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.44 × 0.21 × 0.16 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire3 detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]) Tmin = 0.585, Tmax = 1.000

  • 7178 measured reflections

  • 1013 independent reflections

  • 902 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.114

  • S = 1.06

  • 1013 reflections

  • 77 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.83 (2) 1.87 (2) 2.6977 (13) 176 (2)
Symmetry code: (i) [x-1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Levulinic acid [systematic name: 4-oxopentanoic acid], (I), is a biogenic product of hexose acid hydrolysis at elevated temperatures that can be obtained from renewable resources. This functionalized carbon structure is widely used as chemical intermediate in the manufacture of fuel extenders, biodegradable polymers, herbicides, antibiotics, flavours and useful 5-carbon compounds (Timokhin et al., 1999; Reichert et al., 2010). Levulinic acid was investigated in a continuation of our studies of the IR spectra of hydrogen bonding in carboxylic acid derivatives (Flakus & Stachowska, 2006; Flakus & Hachuła, 2008). In order to study interactions occurring via hydrogen bonds and molecular packing in this compound, we have now determined the structure of (I) using diffraction data collected at 100 K.

The molecule of (I) is nearly planar (r.m.s. deviation of fitted all non-hydrogen atoms is equal to 0.0762 Å). The C—O (1.3373 (17) Å) and C=O (1.2044 (17) Å) bond distances differ slightly from the mean values given by Allen et al. (1987) for a variety of carboxylic acid groups (C—O 1.308 Å and C=O 1.214 Å). The bond-angle values at the central C atom in the carboxylic acid group of (I) (O2—C1—C2 124.51 (13) °; O1—C1—C2 112.48 (12)°) agree well with the mean values specified by Borthwick (1980) for a typical carboxylic acid group (O2—C1—C2 123 (2)°; O1—C1—C2 112 (2)°).

The monoclinic structure of (I) is composed of molecular sheets stacked along [101] direction. Atom O1 of the carboxylic group acts as a hydrogen-bond donor via H1 to carbonyl atom O3 belonging to the acetyl group of adjacent molecule. This interaction generates hydrogen-bonded chain with a graph-set motif of C(7) (Etter et al., 1990; Bernstein et al., 1995).

Related literature top

For uses of levulinic acid, see: Timokhin et al. (1999). For density functional and Møller–Plesset perturbation theory calculations for levulinic acid, see: Reichert et al. (2010); Kim et al. (2011). For typical bond lengths and angles, see: Allen et al. (1987); Borthwick (1980). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990). For background to the study, see: Flakus & Hachuła (2008); Flakus & Stachowska (2006).

Experimental top

Levulinic acid was purchased from Aldrich-Sigma. Crystals of title compound, suitable for X-ray diffraction, were selected directly from purchased sample.

Refinement top

The H atoms were introduced in geometrically idealized positions and allowed for with an appropriate riding model with C—H distances of 0.99 Å (CH2) and Uiso(H) values set at 1.2Ueq(C) or 0.98 Å (CH3) and with Uiso(H) values set at 1.5Ueq(C). The H atom which takes part in hydrogen bonding was located in a difference Fourier map and was refined with Uiso(H) value set at 1.5Ueq(O).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I), with the atom-numbering scheme, showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I), viewed along the a axis, showing the C(7) chains. The red lines indicate the hydrogen-bonding interactions. For the sake of clarity, all H atoms bonded to C atoms were omitted.
4-Oxopentanoic acid top
Crystal data top
C5H8O3F(000) = 248
Mr = 116.11Dx = 1.348 Mg m3
Monoclinic, P21/cMelting point = 303–306 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 4.8761 (2) ÅCell parameters from 6623 reflections
b = 12.1025 (4) Åθ = 3.4–34.5°
c = 9.8220 (3) ŵ = 0.11 mm1
β = 99.112 (3)°T = 100 K
V = 572.31 (3) Å3Polyhedron, colourless
Z = 40.44 × 0.21 × 0.16 mm
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
1013 independent reflections
Radiation source: fine-focus sealed tube902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
Detector resolution: 16.0328 pixels mm-1θmax = 25.1°, θmin = 3.4°
ω scanh = 54
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
k = 1414
Tmin = 0.585, Tmax = 1.000l = 1111
7178 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0797P)2 + 0.128P]
where P = (Fo2 + 2Fc2)/3
1013 reflections(Δ/σ)max < 0.001
77 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C5H8O3V = 572.31 (3) Å3
Mr = 116.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 4.8761 (2) ŵ = 0.11 mm1
b = 12.1025 (4) ÅT = 100 K
c = 9.8220 (3) Å0.44 × 0.21 × 0.16 mm
β = 99.112 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
1013 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
902 reflections with I > 2σ(I)
Tmin = 0.585, Tmax = 1.000Rint = 0.034
7178 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
1013 reflectionsΔρmin = 0.24 e Å3
77 parameters
Special details top

Experimental. CrysAlis RED (Oxford Diffraction, 2006). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4194 (2)0.16988 (8)1.05179 (10)0.0186 (3)
O20.3930 (2)0.35384 (9)1.06449 (12)0.0286 (4)
O31.0589 (2)0.31839 (8)0.73324 (10)0.0197 (3)
C10.4836 (3)0.27238 (11)1.01688 (14)0.0159 (4)
C20.6782 (3)0.27359 (12)0.91177 (14)0.0164 (4)
H2A0.59320.23230.82880.020*
H2B0.85370.23610.95050.020*
C30.7411 (3)0.39098 (12)0.87113 (14)0.0170 (4)
H3A0.56410.42760.83280.020*
H3B0.82210.43190.95520.020*
C40.9364 (3)0.39950 (11)0.76733 (13)0.0163 (4)
C50.9722 (3)0.51213 (13)0.70857 (16)0.0242 (4)
H5A1.13940.51300.66480.036*
H5B0.99090.56710.78270.036*
H5C0.80970.52990.63980.036*
H10.311 (4)0.1766 (16)1.108 (2)0.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0253 (6)0.0186 (6)0.0137 (5)0.0011 (4)0.0093 (4)0.0006 (4)
O20.0435 (7)0.0204 (6)0.0275 (7)0.0010 (5)0.0231 (5)0.0016 (5)
O30.0240 (6)0.0218 (6)0.0148 (5)0.0025 (4)0.0072 (4)0.0001 (4)
C10.0200 (7)0.0187 (7)0.0088 (7)0.0002 (6)0.0020 (5)0.0003 (5)
C20.0202 (7)0.0187 (8)0.0112 (7)0.0017 (5)0.0050 (5)0.0009 (5)
C30.0218 (7)0.0183 (8)0.0118 (7)0.0002 (5)0.0060 (6)0.0015 (5)
C40.0183 (7)0.0207 (8)0.0092 (7)0.0000 (5)0.0001 (5)0.0016 (6)
C50.0334 (8)0.0224 (8)0.0195 (8)0.0008 (6)0.0125 (6)0.0036 (6)
Geometric parameters (Å, º) top
O1—C11.3373 (17)C3—C41.5050 (19)
O1—H10.83 (2)C3—H3A0.9900
O2—C11.2044 (17)C3—H3B0.9900
O3—C41.2231 (17)C4—C51.501 (2)
C1—C21.5092 (19)C5—H5A0.9800
C2—C31.520 (2)C5—H5B0.9800
C2—H2A0.9900C5—H5C0.9800
C2—H2B0.9900
C1—O1—H1106.3 (14)C4—C3—H3B108.6
O2—C1—O1123.01 (13)C2—C3—H3B108.6
O2—C1—C2124.51 (13)H3A—C3—H3B107.6
O1—C1—C2112.48 (12)O3—C4—C5122.14 (13)
C1—C2—C3111.32 (12)O3—C4—C3121.30 (12)
C1—C2—H2A109.4C5—C4—C3116.57 (12)
C3—C2—H2A109.4C4—C5—H5A109.5
C1—C2—H2B109.4C4—C5—H5B109.5
C3—C2—H2B109.4H5A—C5—H5B109.5
H2A—C2—H2B108.0C4—C5—H5C109.5
C4—C3—C2114.68 (12)H5A—C5—H5C109.5
C4—C3—H3A108.6H5B—C5—H5C109.5
C2—C3—H3A108.6
O2—C1—C2—C31.2 (2)C2—C3—C4—O38.66 (18)
O1—C1—C2—C3178.42 (10)C2—C3—C4—C5171.36 (11)
C1—C2—C3—C4179.46 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)1.87 (2)2.6977 (13)176 (2)
Symmetry code: (i) x1, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3i0.83 (2)1.87 (2)2.6977 (13)176 (2)
Symmetry code: (i) x1, y+1/2, z+1/2.
 

References

First citationAllen, F. A., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationBernstein, J., Davies, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBorthwick, P. W. (1980). Acta Cryst. B36, 628–632.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlakus, H. & Hachuła, B. (2008). Chem. Phys. B345, 49–64.  Web of Science CrossRef Google Scholar
First citationFlakus, H. & Stachowska, B. (2006). Chem. Phys. B330, 231–244.  Web of Science CrossRef Google Scholar
First citationKim, T., Assary, R. S., Curtiss, L. A., Marshall, C. L. & Stair, P. C. (2011). J. Raman Spectrosc. 42, 2069–2076.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationReichert, D., Montoya, A., Liang, X., Bockhorn, H. & Haynes, B. S. (2010). J. Phys. Chem. A, 114, 12323–12329.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTimokhin, B. V., Baransky, V. A. & Eliseeva, G. D. (1999). Russ. Chem. Rev. 68, 73–84.  CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds