metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1488-m1489

Bis[μ-O-iso­propyl (4-eth­­oxy­phen­yl)di­thio­phospho­nato-κ2S:S′]bis­­{[O-iso­propyl (4-eth­­oxy­phen­yl)di­thio­phos­phonato-κ2S,S′]mercury(II)}

aSchool of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
*Correspondence e-mail: vanzylw@ukzn.ac.za

(Received 31 October 2012; accepted 12 November 2012; online 17 November 2012)

The title compound, [Hg2(C11H16O2PS2)4], is a dinuclear complex with a distorted tetra­hedral geometry around each HgII atom. Although the two HgII atoms are surrounded by the same ligand, two different coordination modes are observed: one is chelating and the other bridging. The Hg—S bonds form two distinct pairs of long and short bonds. One pair includes both chelating and bridging Hg—S bonds with approximately equal bond lengths of 2.4042 (8) and 2.3997 (7) Å, respectively. The other pair is significantly longer at 2.9361 (9) and 2.8105 (8) Å, respectively. This pattern forms a center of inversion through the mol­ecule with an equal and opposite effect occurring at the other HgII atom. The S—Hg—S angles vary widely from 76.26 (2) to 154.65 (3)°, indicative of a distorted tetra­hedral arrangement of the S atoms around the HgII atom. The P—S bond lengths are 1.9681 (10) and 2.0519 (11)°, clearly indicating partial double-bond character in the former. The mol­ecule contains an inversion center situated between the two HgII atoms.

Related literature

For information on dithio­phospho­nate compounds, see: Van Zyl & Fackler (2000[Van Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117-132.]); Van Zyl (2010[Van Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13-45.]). For examples of mercury(II) dithio­phospho­nate complexes, see: Gray et al. (2004a[Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004a). Dalton Trans. pp. 2477-2486.],b[Gray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004b). Z. Anorg. Allg. Chem. 630, 1851-1857.]); Devillanova et al. (2006[Devillanova, F., Aragoni, C., Arca, M., Hursthouse, M. B. & Huth, S. L. (2006). Univ. Southampt. Cryst. Struct. Rep. Arch. pp. 250-255.]).

[Scheme 1]

Experimental

Crystal data
  • [Hg2(C11H16O2PS2)4]

  • Mr = 1502.49

  • Triclinic, [P \overline 1]

  • a = 11.079 (3) Å

  • b = 11.985 (3) Å

  • c = 12.253 (3) Å

  • α = 62.908 (4)°

  • β = 84.418 (4)°

  • γ = 80.862 (4)°

  • V = 1429.5 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 5.81 mm−1

  • T = 173 K

  • 0.15 × 0.15 × 0.12 mm

Data collection
  • Bruker Kappa DUO APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS, University of Göttingen, Germany.]) Tmin = 0.476, Tmax = 0.542

  • 34157 measured reflections

  • 6382 independent reflections

  • 5622 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.049

  • S = 0.97

  • 6382 reflections

  • 304 parameters

  • H-atom parameters constrained

  • Δρmax = 0.87 e Å−3

  • Δρmin = −1.02 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The phosphor-1,1,-dithiolate class of compounds is the heavier and softer congener of the more popular phosphonate derivatives. It contains the S2P functionality as a common feature and several sub-categories are known which include the dithiophosphato [S2P(OR')2]¯, (R' = typically alkyl), dithiophosphinato [S2PR2]¯ (R = alkyl or aryl), and dithiophosphonato [S2PR(OR')]¯, (R = typically aryl or ferrocenyl, R' = alkyl) monoanionic ligands. The latter may be described as a hybrid of the former two, and are also much less developed.

All known Hg(II) complexes with this ligand type are structurally more or less similar, as shown in the Scheme. The complexes are all dinuclear, mercuric, neutral, and 4-coordinate around each metal atom.

General and convenient methods to prepare dithiophosphonate salt derivatives have been reported (Van Zyl & Fackler, 2000). The title complex was formed through the reaction between two Hg2+ cations and four [S2P(4—C6H4OEt)(OiPr)]¯ ligands, the formed complex feature an 8-membered Hg2P2S4 metallo-ring. Two of the ligands bind in a chelating manner and two ligands bind in a bridging manner, both types are anisobidentate, however, due to short and long pairings of the P—S bond and especially the Hg—S bonds.

Related literature top

For information on dithiophosphonate compounds, see: Van Zyl & Fackler (2000); Van Zyl (2010). For examples of mercury(II) dithiophosphonate complexes, see: Gray et al. (2004a,b); Devillanova et al. (2006).

Experimental top

A colorless methanol (40 ml) solution of NH4[S2P(OiPr)(4-C6H4OEt)] (1.322 g, 4.506 mmol) was prepared. A second colorless solution of Hg(NO3)2.H20 (0.772 g, 2.253 mmol) in deionized water (20 ml) was prepared, and added to the ligand solution with stirring over a period of 5 min. This resulted in a white precipitate indicating the formation of the title complex. The precipitate was collected by vacuum filtration, washed with water (3 x 10 ml) to remove NH4NO3 and allowed to dry under vacuum for a period of 3 hrs, yielding a dry, free-flowing white powder. Colourless crystals suitable for X-ray analysis were grown by the slow diffusion of hexane into a dichloromethane solution of the title complex. Yield: 76%. M.p. 117–118°C.

31P NMR (CDCl3): δ (p.p.m.): 100.73. 1H NMR (CDCl3): δ (p.p.m.): 7.93 (2H, dd, J(31P-1H) = 14.46 Hz, J(1H -1H) = 8.82 Hz, o-ArH), 6.91 (2H, dd, J(31P-1H) = 8.84 Hz, J(1H -1H) = 3.40 Hz, m-ArH), 5.23 (1H, d quart, J(31P-1H) = 20.82 Hz, J(1H -1H) = 6.19 Hz, CH), 4.05 (2H, quart, J(1H -1H) = 6.96 Hz, ArOCH2), 1.42 (6H, d, J(1H -1H) = 6.2 Hz, CH3), 1.39 (3H, t, J(1H -1H) = 6.96 Hz, ArOCH2CH3). 13C NMR (CDCl3): δ (p.p.m.): 162.27 (p-ArC), 132.15 (m-ArC), 130.40 (Ar—C1), 114.32 (o-ArC), 72.22 (CH), 64.03 (ArOCH2), 24.27 (CH3), 14.91 (ArOCH2CH3).

Refinement top

All hydrogen atoms were placed in idealized positions and refined with geometrical constraints and Ueq of 1.20–1.50 of parent C atom.. The structure was refined to R factor of 0.0227.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008.

Figures top
[Figure 1] Fig. 1. The ORTEP molecular structure of the title complex, shown with 50% probability.
Bis[µ-O-isopropyl (4-ethoxyphenyl)dithiophosphonato- κ2S:S']bis{[O-isopropyl (4-ethoxyphenyl)dithiophosphonato-κ2S,S']mercury(II)} top
Crystal data top
[Hg2(C11H16O2PS2)4]Z = 1
Mr = 1502.49F(000) = 740
Triclinic, P1Dx = 1.745 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.079 (3) ÅCell parameters from 34157 reflections
b = 11.985 (3) Åθ = 1.9–27.4°
c = 12.253 (3) ŵ = 5.81 mm1
α = 62.908 (4)°T = 173 K
β = 84.418 (4)°Block, colourless
γ = 80.862 (4)°0.15 × 0.15 × 0.12 mm
V = 1429.5 (6) Å3
Data collection top
Bruker Kappa DUO APEXII
diffractometer
6382 independent reflections
Radiation source: fine-focus sealed tube5622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
0.5° ϕ scans and ω scansθmax = 27.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.476, Tmax = 0.542k = 1515
34157 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.049H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.017P)2]
where P = (Fo2 + 2Fc2)/3
6382 reflections(Δ/σ)max = 0.002
304 parametersΔρmax = 0.87 e Å3
0 restraintsΔρmin = 1.02 e Å3
Crystal data top
[Hg2(C11H16O2PS2)4]γ = 80.862 (4)°
Mr = 1502.49V = 1429.5 (6) Å3
Triclinic, P1Z = 1
a = 11.079 (3) ÅMo Kα radiation
b = 11.985 (3) ŵ = 5.81 mm1
c = 12.253 (3) ÅT = 173 K
α = 62.908 (4)°0.15 × 0.15 × 0.12 mm
β = 84.418 (4)°
Data collection top
Bruker Kappa DUO APEXII
diffractometer
6382 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
5622 reflections with I > 2σ(I)
Tmin = 0.476, Tmax = 0.542Rint = 0.077
34157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.049H-atom parameters constrained
S = 0.97Δρmax = 0.87 e Å3
6382 reflectionsΔρmin = 1.02 e Å3
304 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.406211 (9)0.860930 (11)0.068281 (10)0.03450 (5)
S10.21870 (6)0.87000 (7)0.02079 (7)0.03184 (16)
S20.33676 (6)0.60580 (7)0.21177 (6)0.02963 (15)
S30.47011 (6)1.09499 (7)0.19071 (6)0.02882 (15)
S40.61332 (6)0.79500 (7)0.05226 (6)0.03264 (16)
P10.21046 (6)0.68074 (7)0.08684 (6)0.02416 (15)
P20.59057 (6)0.95292 (7)0.20573 (6)0.02505 (15)
O10.24135 (16)0.4936 (2)0.28729 (18)0.0369 (5)
O20.07486 (14)0.66471 (17)0.13934 (16)0.0283 (4)
O31.05424 (16)1.14120 (19)0.45478 (18)0.0370 (5)
O40.54046 (15)0.93611 (17)0.31346 (16)0.0286 (4)
C10.2184 (2)0.6092 (2)0.0143 (2)0.0243 (6)
C20.1144 (2)0.6060 (3)0.0679 (2)0.0339 (7)
H20.03580.63320.04340.041*
C30.1250 (2)0.5637 (3)0.1559 (3)0.0366 (7)
H30.05370.56070.19110.044*
C40.2396 (2)0.5255 (3)0.1936 (2)0.0280 (6)
C50.3435 (2)0.5230 (3)0.1371 (3)0.0284 (6)
H50.42190.49260.15900.034*
C60.3305 (2)0.5655 (3)0.0487 (3)0.0293 (6)
H60.40150.56450.01040.035*
C70.3573 (2)0.4493 (3)0.3265 (3)0.0349 (7)
H7A0.39470.37130.25810.042*
H7B0.41340.51410.35300.042*
C80.3361 (3)0.4232 (4)0.4312 (3)0.0503 (9)
H8A0.28280.35680.40330.075*
H8B0.41460.39520.46110.075*
H8C0.29720.50040.49750.075*
C90.0212 (2)0.7226 (3)0.2196 (3)0.0328 (7)
H90.07670.78070.21970.039*
C100.0988 (3)0.7978 (3)0.1647 (3)0.0507 (9)
H10A0.08370.86470.08240.076*
H10B0.13970.83590.21670.076*
H10C0.15110.74190.15950.076*
C110.0099 (3)0.6180 (3)0.3468 (3)0.0403 (7)
H11A0.04080.55840.34590.060*
H11B0.02830.65340.40170.060*
H11C0.09130.57370.37580.060*
C120.7306 (2)1.0142 (3)0.2752 (2)0.0267 (6)
C130.7268 (2)1.1228 (3)0.3845 (3)0.0338 (7)
H130.64971.16740.41710.041*
C140.8323 (2)1.1688 (3)0.4480 (3)0.0343 (7)
H140.82751.24320.52400.041*
C150.9455 (2)1.1049 (3)0.3994 (3)0.0307 (6)
C160.9506 (2)0.9983 (3)0.2874 (3)0.0347 (7)
H161.02760.95650.25250.042*
C170.8446 (2)0.9522 (3)0.2259 (3)0.0331 (6)
H170.84930.87800.14980.040*
C181.0515 (3)1.2395 (3)0.5783 (3)0.0378 (7)
H18A1.00371.31800.58150.045*
H18B1.01251.21420.63160.045*
C191.1816 (3)1.2612 (3)0.6217 (3)0.0503 (9)
H19A1.22001.28350.56690.075*
H19B1.18211.33030.70520.075*
H19C1.22711.18390.62130.075*
C200.4382 (2)0.8642 (3)0.2971 (3)0.0314 (7)
H200.41910.81460.20770.038*
C210.3287 (3)0.9560 (3)0.3587 (3)0.0468 (8)
H21A0.30691.01370.32130.070*
H21B0.25980.90970.34870.070*
H21C0.34791.00470.44620.070*
C220.4828 (3)0.7755 (3)0.3523 (3)0.0415 (8)
H22A0.51130.82380.43710.062*
H22B0.41590.73050.35120.062*
H22C0.55040.71440.30450.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.03746 (7)0.03923 (8)0.03315 (8)0.02021 (5)0.00380 (5)0.01779 (6)
S10.0325 (4)0.0254 (4)0.0331 (4)0.0065 (3)0.0045 (3)0.0077 (3)
S20.0288 (3)0.0303 (4)0.0288 (4)0.0053 (3)0.0040 (3)0.0112 (3)
S30.0272 (3)0.0276 (4)0.0345 (4)0.0068 (3)0.0003 (3)0.0155 (3)
S40.0339 (4)0.0301 (4)0.0283 (4)0.0051 (3)0.0038 (3)0.0090 (3)
P10.0220 (3)0.0250 (4)0.0266 (4)0.0065 (3)0.0011 (3)0.0119 (3)
P20.0260 (3)0.0271 (4)0.0240 (4)0.0085 (3)0.0018 (3)0.0120 (3)
O10.0292 (10)0.0557 (15)0.0360 (12)0.0048 (9)0.0007 (8)0.0298 (11)
O20.0236 (9)0.0348 (12)0.0328 (11)0.0098 (8)0.0067 (7)0.0200 (9)
O30.0271 (10)0.0425 (13)0.0369 (12)0.0111 (9)0.0067 (8)0.0133 (10)
O40.0341 (10)0.0324 (12)0.0245 (10)0.0160 (8)0.0035 (8)0.0142 (9)
C10.0239 (12)0.0243 (15)0.0235 (14)0.0060 (10)0.0003 (10)0.0089 (12)
C20.0224 (13)0.0484 (19)0.0350 (17)0.0050 (12)0.0019 (11)0.0225 (15)
C30.0250 (14)0.059 (2)0.0359 (17)0.0084 (13)0.0008 (11)0.0288 (16)
C40.0303 (14)0.0290 (16)0.0255 (15)0.0074 (12)0.0009 (11)0.0120 (13)
C50.0237 (13)0.0296 (16)0.0339 (16)0.0023 (11)0.0011 (11)0.0167 (13)
C60.0230 (13)0.0343 (17)0.0349 (16)0.0031 (11)0.0036 (11)0.0189 (14)
C70.0312 (14)0.0427 (19)0.0370 (17)0.0051 (13)0.0023 (12)0.0236 (15)
C80.0424 (18)0.078 (3)0.043 (2)0.0038 (17)0.0040 (14)0.041 (2)
C90.0346 (15)0.0348 (18)0.0380 (17)0.0109 (13)0.0089 (12)0.0238 (15)
C100.0457 (19)0.038 (2)0.053 (2)0.0070 (15)0.0093 (16)0.0137 (17)
C110.0387 (16)0.050 (2)0.0367 (18)0.0115 (14)0.0065 (13)0.0233 (16)
C120.0282 (13)0.0327 (17)0.0240 (14)0.0092 (11)0.0026 (11)0.0158 (13)
C130.0278 (14)0.0386 (18)0.0292 (16)0.0061 (12)0.0039 (11)0.0089 (14)
C140.0317 (14)0.0370 (18)0.0263 (16)0.0104 (12)0.0000 (11)0.0055 (14)
C150.0270 (14)0.0344 (17)0.0348 (17)0.0095 (12)0.0032 (11)0.0182 (14)
C160.0245 (14)0.0361 (18)0.0390 (18)0.0012 (12)0.0015 (12)0.0135 (15)
C170.0348 (15)0.0306 (17)0.0285 (16)0.0057 (12)0.0008 (12)0.0081 (13)
C180.0398 (16)0.0410 (19)0.0348 (17)0.0145 (14)0.0088 (13)0.0179 (15)
C190.0424 (18)0.056 (2)0.049 (2)0.0184 (16)0.0165 (15)0.0196 (18)
C200.0314 (14)0.0397 (18)0.0285 (16)0.0188 (13)0.0034 (11)0.0162 (14)
C210.0342 (16)0.061 (2)0.054 (2)0.0060 (15)0.0022 (14)0.0326 (19)
C220.0429 (17)0.043 (2)0.048 (2)0.0182 (15)0.0028 (14)0.0249 (17)
Geometric parameters (Å, º) top
Hg1—S3i2.3997 (7)C9—C111.499 (4)
Hg1—S12.4042 (8)C9—C101.509 (4)
Hg1—S42.8105 (8)C9—H91.0000
Hg1—S22.9361 (9)C10—H10A0.9800
S1—P12.0519 (11)C10—H10B0.9800
S2—P11.9681 (10)C10—H10C0.9800
S3—P22.0568 (10)C11—H11A0.9800
S3—Hg1i2.3998 (7)C11—H11B0.9800
S4—P21.9699 (11)C11—H11C0.9800
P1—O21.5807 (17)C12—C131.377 (4)
P1—C11.788 (3)C12—C171.398 (4)
P2—O41.5848 (18)C13—C141.382 (4)
P2—C121.791 (2)C13—H130.9500
O1—C41.363 (3)C14—C151.393 (4)
O1—C71.435 (3)C14—H140.9500
O2—C91.476 (3)C15—C161.383 (4)
O3—C151.357 (3)C16—C171.380 (4)
O3—C181.433 (3)C16—H160.9500
O4—C201.475 (3)C17—H170.9500
C1—C61.375 (3)C18—C191.507 (4)
C1—C21.395 (3)C18—H18A0.9900
C2—C31.374 (4)C18—H18B0.9900
C2—H20.9500C19—H19A0.9800
C3—C41.389 (4)C19—H19B0.9800
C3—H30.9500C19—H19C0.9800
C4—C51.389 (3)C20—C211.500 (4)
C5—C61.379 (4)C20—C221.501 (4)
C5—H50.9500C20—H201.0000
C6—H60.9500C21—H21A0.9800
C7—C81.498 (4)C21—H21B0.9800
C7—H7A0.9900C21—H21C0.9800
C7—H7B0.9900C22—H22A0.9800
C8—H8A0.9800C22—H22B0.9800
C8—H8B0.9800C22—H22C0.9800
C8—H8C0.9800
S3i—Hg1—S1154.65 (3)C10—C9—H9109.5
S3i—Hg1—S491.92 (3)C9—C10—H10A109.5
S1—Hg1—S4112.32 (3)C9—C10—H10B109.5
S3i—Hg1—S2109.11 (2)H10A—C10—H10B109.5
S1—Hg1—S276.26 (2)C9—C10—H10C109.5
S4—Hg1—S297.22 (2)H10A—C10—H10C109.5
P1—S1—Hg192.17 (3)H10B—C10—H10C109.5
P1—S2—Hg179.38 (3)C9—C11—H11A109.5
P2—S3—Hg1i97.48 (3)C9—C11—H11B109.5
P2—S4—Hg194.61 (4)H11A—C11—H11B109.5
O2—P1—C1100.56 (10)C9—C11—H11C109.5
O2—P1—S2114.83 (8)H11A—C11—H11C109.5
C1—P1—S2114.39 (9)H11B—C11—H11C109.5
O2—P1—S1107.71 (8)C13—C12—C17118.5 (2)
C1—P1—S1106.96 (9)C13—C12—P2119.0 (2)
S2—P1—S1111.53 (4)C17—C12—P2122.4 (2)
O4—P2—C12100.50 (10)C12—C13—C14121.8 (3)
O4—P2—S4113.62 (8)C12—C13—H13119.1
C12—P2—S4113.57 (10)C14—C13—H13119.1
O4—P2—S3104.78 (8)C13—C14—C15119.2 (3)
C12—P2—S3108.57 (10)C13—C14—H14120.4
S4—P2—S3114.56 (4)C15—C14—H14120.4
C4—O1—C7117.9 (2)O3—C15—C16116.5 (2)
C9—O2—P1120.41 (15)O3—C15—C14124.0 (3)
C15—O3—C18117.1 (2)C16—C15—C14119.6 (2)
C20—O4—P2123.35 (15)C17—C16—C15120.6 (3)
C6—C1—C2118.4 (2)C17—C16—H16119.7
C6—C1—P1119.55 (19)C15—C16—H16119.7
C2—C1—P1121.8 (2)C16—C17—C12120.3 (3)
C3—C2—C1120.4 (2)C16—C17—H17119.9
C3—C2—H2119.8C12—C17—H17119.9
C1—C2—H2119.8O3—C18—C19107.8 (2)
C2—C3—C4120.3 (2)O3—C18—H18A110.1
C2—C3—H3119.8C19—C18—H18A110.1
C4—C3—H3119.8O3—C18—H18B110.1
O1—C4—C5124.2 (2)C19—C18—H18B110.1
O1—C4—C3116.0 (2)H18A—C18—H18B108.5
C5—C4—C3119.8 (2)C18—C19—H19A109.5
C6—C5—C4118.7 (2)C18—C19—H19B109.5
C6—C5—H5120.6H19A—C19—H19B109.5
C4—C5—H5120.6C18—C19—H19C109.5
C1—C6—C5122.2 (2)H19A—C19—H19C109.5
C1—C6—H6118.9H19B—C19—H19C109.5
C5—C6—H6118.9O4—C20—C21108.4 (2)
O1—C7—C8108.0 (2)O4—C20—C22105.6 (2)
O1—C7—H7A110.1C21—C20—C22113.5 (3)
C8—C7—H7A110.1O4—C20—H20109.7
O1—C7—H7B110.1C21—C20—H20109.7
C8—C7—H7B110.1C22—C20—H20109.7
H7A—C7—H7B108.4C20—C21—H21A109.5
C7—C8—H8A109.5C20—C21—H21B109.5
C7—C8—H8B109.5H21A—C21—H21B109.5
H8A—C8—H8B109.5C20—C21—H21C109.5
C7—C8—H8C109.5H21A—C21—H21C109.5
H8A—C8—H8C109.5H21B—C21—H21C109.5
H8B—C8—H8C109.5C20—C22—H22A109.5
O2—C9—C11107.6 (2)C20—C22—H22B109.5
O2—C9—C10106.3 (2)H22A—C22—H22B109.5
C11—C9—C10114.4 (2)C20—C22—H22C109.5
O2—C9—H9109.5H22A—C22—H22C109.5
C11—C9—H9109.5H22B—C22—H22C109.5
S3i—Hg1—S1—P1110.80 (6)C1—C2—C3—C40.9 (5)
S4—Hg1—S1—P187.19 (4)C7—O1—C4—C52.9 (4)
S2—Hg1—S1—P15.07 (3)C7—O1—C4—C3177.9 (3)
S3i—Hg1—S2—P1159.53 (3)C2—C3—C4—O1175.5 (3)
S1—Hg1—S2—P15.38 (3)C2—C3—C4—C53.7 (4)
S4—Hg1—S2—P1105.91 (3)O1—C4—C5—C6175.7 (2)
S3i—Hg1—S4—P2104.88 (4)C3—C4—C5—C63.5 (4)
S1—Hg1—S4—P267.51 (4)C2—C1—C6—C52.3 (4)
S2—Hg1—S4—P2145.58 (3)P1—C1—C6—C5172.3 (2)
Hg1—S2—P1—O2129.47 (8)C4—C5—C6—C10.5 (4)
Hg1—S2—P1—C1114.96 (9)C4—O1—C7—C8178.8 (3)
Hg1—S2—P1—S16.59 (4)P1—O2—C9—C11108.9 (2)
Hg1—S1—P1—O2134.79 (7)P1—O2—C9—C10128.1 (2)
Hg1—S1—P1—C1117.84 (8)O4—P2—C12—C1356.8 (2)
Hg1—S1—P1—S27.92 (5)S4—P2—C12—C13178.5 (2)
Hg1—S4—P2—O4105.45 (8)S3—P2—C12—C1352.8 (2)
Hg1—S4—P2—C12140.49 (9)O4—P2—C12—C17119.7 (2)
Hg1—S4—P2—S314.94 (4)S4—P2—C12—C172.0 (3)
Hg1i—S3—P2—O4165.11 (7)S3—P2—C12—C17130.7 (2)
Hg1i—S3—P2—C1258.41 (10)C17—C12—C13—C142.3 (4)
Hg1i—S3—P2—S469.71 (4)P2—C12—C13—C14174.3 (2)
C1—P1—O2—C9173.8 (2)C12—C13—C14—C151.1 (4)
S2—P1—O2—C962.9 (2)C18—O3—C15—C16171.0 (3)
S1—P1—O2—C962.0 (2)C18—O3—C15—C149.7 (4)
C12—P2—O4—C20167.3 (2)C13—C14—C15—O3179.3 (3)
S4—P2—O4—C2045.6 (2)C13—C14—C15—C161.4 (4)
S3—P2—O4—C2080.2 (2)O3—C15—C16—C17178.1 (2)
O2—P1—C1—C6158.7 (2)C14—C15—C16—C172.5 (4)
S2—P1—C1—C635.1 (2)C15—C16—C17—C121.2 (4)
S1—P1—C1—C689.0 (2)C13—C12—C17—C161.2 (4)
O2—P1—C1—C226.9 (2)P2—C12—C17—C16175.3 (2)
S2—P1—C1—C2150.5 (2)C15—O3—C18—C19178.4 (2)
S1—P1—C1—C285.5 (2)P2—O4—C20—C21107.9 (2)
C6—C1—C2—C32.1 (4)P2—O4—C20—C22130.0 (2)
P1—C1—C2—C3172.4 (2)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formula[Hg2(C11H16O2PS2)4]
Mr1502.49
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.079 (3), 11.985 (3), 12.253 (3)
α, β, γ (°)62.908 (4), 84.418 (4), 80.862 (4)
V3)1429.5 (6)
Z1
Radiation typeMo Kα
µ (mm1)5.81
Crystal size (mm)0.15 × 0.15 × 0.12
Data collection
DiffractometerBruker Kappa DUO APEXII
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.476, 0.542
No. of measured, independent and
observed [I > 2σ(I)] reflections
34157, 6382, 5622
Rint0.077
(sin θ/λ)max1)0.646
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.049, 0.97
No. of reflections6382
No. of parameters304
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.87, 1.02

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008.

 

Acknowledgements

The authors thank the National Research Foundation (NRF) and UKZN for financial support.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, WI, USA.  Google Scholar
First citationDevillanova, F., Aragoni, C., Arca, M., Hursthouse, M. B. & Huth, S. L. (2006). Univ. Southampt. Cryst. Struct. Rep. Arch. pp. 250–255.  Google Scholar
First citationGray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004a). Dalton Trans. pp. 2477–2486.  Web of Science CSD CrossRef Google Scholar
First citationGray, I. P., Slawin, A. M. Z. & Woollins, J. D. (2004b). Z. Anorg. Allg. Chem. 630, 1851–1857.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS, University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVan Zyl, W. E. (2010). Comments Inorg. Chem. 31, 13–45.  Web of Science CrossRef CAS Google Scholar
First citationVan Zyl, W. E. & Fackler, J. P. (2000). Phosphorus Sulfur Silicon Relat. Elem. 167, 117–132.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 12| December 2012| Pages m1488-m1489
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds