organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-N-(3,3-Di­phenyl­allyl­­idene)-4-nitro­aniline

aCenter for Neuro-Medicine, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and bAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea
*Correspondence e-mail: j9601@kist.re.kr

(Received 17 September 2012; accepted 24 September 2012; online 29 September 2012)

In the title compound, C21H16N2O2, the dihedral angles between the mean planes of the 4-nitro­phenyl ring and the two phenyl rings are 57.3 (5) and 16.8 (6)°. The imine group displays a C—C—N—C torsion angle of −24.9 (3)°.

Related literature

For the structure of (E)-N-(3,3-diphenylallylidene)-3-nitroaniline, see: Cha et al. (2012[Cha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.]). For other related structures, see: Khalaji et al. (2008[Khalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x139-x140.]); Khalaji & Harrison (2008[Khalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3-x4.]).

[Scheme 1]

Experimental

Crystal data
  • C21H16N2O2

  • Mr = 328.37

  • Monoclinic, P 21 /c

  • a = 9.4399 (8) Å

  • b = 23.1526 (16) Å

  • c = 8.1388 (5) Å

  • β = 108.039 (2)°

  • V = 1691.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.20 × 0.05 × 0.02 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Rigaku, 1995[Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.810, Tmax = 0.998

  • 16477 measured reflections

  • 3864 independent reflections

  • 2060 reflections with F2 > 2σ(F2)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.113

  • S = 1.00

  • 3864 reflections

  • 234 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2006[Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: Il Milione (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure.

Supporting information


Comment top

For the title compound (Fig. 1), C21H16N2O2, similar structures were described previously by (Khalaji et al., 2008; Khalaji & Harrison, 2008). The dihedral angles between the mean planes of the central 4-nitrophenyl ring and the two benzene groups are (C10/C11/C12/C13/C14/C15) 57.33 (50)° and (C4/C5/C6/C7/C8/C9) 16.80 (55)°, respectively. The bond lengths and angles in the title molecule are unexceptional. The imine group displays a torsion angle [C17–C16–N1–C1 = -24.87 (23)°]. The plane of the nitro group is twisted by 1.86 (23)° out of the parent benzene ring plane.

Related literature top

For the structure of (E)-N-(3,3-diphenylallylidene)-3-nitroaniline, see: Cha et al. (2012). For other related structures, see: Khalaji et al. (2008); Khalaji & Harrison (2008).

Experimental top

To a solution of 4-nitroaniline (4.0 mmol) in ethanol (10 ml) was treated with equimolar quantities of substituted 2-phenylcinnamaldehydes. The mixture was refluxed for 5 h, and the progress of reaction was monitored by TLC. Upon completion,the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound in 74% yield. Recrystallization from ethanol gave crystals suitable for X-ray analysis.

Refinement top

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.99 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Structure description top

For the title compound (Fig. 1), C21H16N2O2, similar structures were described previously by (Khalaji et al., 2008; Khalaji & Harrison, 2008). The dihedral angles between the mean planes of the central 4-nitrophenyl ring and the two benzene groups are (C10/C11/C12/C13/C14/C15) 57.33 (50)° and (C4/C5/C6/C7/C8/C9) 16.80 (55)°, respectively. The bond lengths and angles in the title molecule are unexceptional. The imine group displays a torsion angle [C17–C16–N1–C1 = -24.87 (23)°]. The plane of the nitro group is twisted by 1.86 (23)° out of the parent benzene ring plane.

For the structure of (E)-N-(3,3-diphenylallylidene)-3-nitroaniline, see: Cha et al. (2012). For other related structures, see: Khalaji et al. (2008); Khalaji & Harrison (2008).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 1995); data reduction: RAPID-AUTO (Rigaku, 1995); program(s) used to solve structure: Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.
(E)-N-(3,3-Diphenylallylidene)-4-nitroaniline top
Crystal data top
C21H16N2O2F(000) = 688.00
Mr = 328.37Dx = 1.289 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 9450 reflections
a = 9.4399 (8) Åθ = 3.0–27.4°
b = 23.1526 (16) ŵ = 0.08 mm1
c = 8.1388 (5) ÅT = 296 K
β = 108.039 (2)°Platelet, colourless
V = 1691.4 (3) Å30.20 × 0.05 × 0.02 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
2060 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1Rint = 0.034
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
h = 1212
Tmin = 0.810, Tmax = 0.998k = 2930
16477 measured reflectionsl = 910
3864 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0576P)2]
where P = (Fo2 + 2Fc2)/3
3864 reflections(Δ/σ)max < 0.001
234 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.18 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H16N2O2V = 1691.4 (3) Å3
Mr = 328.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.4399 (8) ŵ = 0.08 mm1
b = 23.1526 (16) ÅT = 296 K
c = 8.1388 (5) Å0.20 × 0.05 × 0.02 mm
β = 108.039 (2)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3864 independent reflections
Absorption correction: multi-scan
(ABSCOR; Rigaku, 1995)
2060 reflections with F2 > 2σ(F2)
Tmin = 0.810, Tmax = 0.998Rint = 0.034
16477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.113H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.14 e Å3
3864 reflectionsΔρmin = 0.18 e Å3
234 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06733 (17)0.42186 (6)0.26289 (19)0.0940 (5)
O20.04148 (15)0.33937 (5)0.24984 (17)0.0825 (4)
N10.55099 (15)0.47570 (4)0.29682 (15)0.0525 (4)
N20.04088 (18)0.38989 (6)0.20661 (18)0.0655 (4)
C10.57956 (19)0.52982 (6)0.32064 (19)0.0497 (4)
C20.70646 (19)0.55014 (6)0.45689 (19)0.0517 (4)
C30.73343 (17)0.60637 (5)0.50580 (17)0.0446 (4)
C40.87658 (17)0.62390 (5)0.63168 (18)0.0466 (4)
C51.0066 (2)0.59193 (6)0.6530 (3)0.0612 (5)
C61.1393 (2)0.60752 (7)0.7732 (3)0.0743 (6)
C71.1473 (3)0.65514 (8)0.8747 (3)0.0739 (6)
C81.0219 (3)0.68818 (7)0.8554 (3)0.0711 (5)
C90.88849 (19)0.67281 (6)0.7344 (2)0.0587 (5)
C100.61651 (17)0.65090 (5)0.43491 (17)0.0443 (4)
C110.64989 (18)0.70200 (5)0.36279 (18)0.0506 (4)
C120.5392 (2)0.74154 (6)0.2873 (2)0.0585 (5)
C130.3953 (2)0.73211 (6)0.2866 (2)0.0622 (5)
C140.36038 (19)0.68283 (6)0.3623 (2)0.0605 (5)
C150.47054 (18)0.64259 (6)0.43519 (18)0.0508 (4)
C160.42297 (18)0.45804 (5)0.16448 (19)0.0485 (4)
C170.2962 (2)0.49148 (6)0.0971 (3)0.0621 (5)
C180.1729 (2)0.46956 (6)0.0263 (3)0.0635 (5)
C190.17478 (18)0.41347 (6)0.08041 (19)0.0519 (4)
C200.29728 (19)0.37881 (6)0.01558 (19)0.0543 (4)
C210.42090 (19)0.40124 (6)0.10584 (19)0.0529 (4)
H51.00340.55950.58470.0734*
H61.22430.58540.78530.0891*
H71.23690.66520.95650.0886*
H81.02690.72080.92360.0853*
H90.80480.69570.72140.0704*
H110.74740.70940.36570.0607*
H120.56220.77480.23670.0701*
H130.32130.75890.23530.0746*
H140.26350.67670.36410.0726*
H150.44650.60940.48530.0610*
H170.29450.52920.13580.0746*
H180.08920.49250.07260.0762*
H200.29680.34080.05300.0652*
H210.50470.37810.14970.0634*
H10.5198 (19)0.5588 (6)0.242 (2)0.061 (5)*
H20.7792 (18)0.5202 (7)0.518 (2)0.061 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0638 (11)0.1016 (10)0.1000 (11)0.0074 (8)0.0011 (9)0.0062 (8)
O20.0716 (10)0.0797 (8)0.0925 (10)0.0162 (7)0.0200 (8)0.0277 (7)
N10.0581 (10)0.0394 (6)0.0575 (8)0.0036 (6)0.0143 (7)0.0043 (6)
N20.0580 (11)0.0739 (10)0.0646 (9)0.0055 (8)0.0189 (8)0.0043 (8)
C10.0615 (11)0.0387 (7)0.0483 (9)0.0014 (7)0.0162 (8)0.0004 (7)
C20.0607 (12)0.0405 (8)0.0510 (9)0.0008 (7)0.0131 (9)0.0018 (7)
C30.0495 (10)0.0398 (7)0.0445 (8)0.0006 (7)0.0144 (8)0.0017 (6)
C40.0487 (10)0.0424 (7)0.0478 (8)0.0026 (7)0.0134 (8)0.0024 (7)
C50.0589 (13)0.0495 (8)0.0696 (11)0.0047 (8)0.0120 (9)0.0019 (8)
C60.0505 (13)0.0662 (11)0.0931 (14)0.0038 (9)0.0032 (11)0.0073 (10)
C70.0600 (14)0.0788 (12)0.0671 (12)0.0143 (10)0.0031 (10)0.0037 (10)
C80.0695 (14)0.0710 (11)0.0664 (11)0.0137 (10)0.0119 (10)0.0176 (9)
C90.0543 (12)0.0585 (9)0.0609 (10)0.0034 (8)0.0143 (9)0.0116 (8)
C100.0494 (10)0.0392 (7)0.0430 (8)0.0027 (6)0.0121 (7)0.0053 (6)
C110.0503 (11)0.0412 (7)0.0606 (9)0.0009 (7)0.0176 (8)0.0004 (7)
C120.0640 (13)0.0420 (8)0.0680 (11)0.0022 (8)0.0185 (9)0.0048 (7)
C130.0598 (13)0.0530 (9)0.0650 (10)0.0094 (8)0.0068 (9)0.0038 (8)
C140.0448 (11)0.0663 (10)0.0654 (10)0.0028 (8)0.0096 (8)0.0106 (9)
C150.0508 (11)0.0468 (8)0.0528 (9)0.0092 (7)0.0130 (8)0.0047 (7)
C160.0539 (11)0.0413 (7)0.0511 (9)0.0028 (7)0.0174 (8)0.0007 (7)
C170.0639 (13)0.0422 (8)0.0782 (12)0.0032 (8)0.0189 (10)0.0061 (8)
C180.0566 (12)0.0553 (9)0.0756 (11)0.0060 (8)0.0162 (10)0.0015 (9)
C190.0503 (11)0.0562 (9)0.0499 (9)0.0061 (8)0.0163 (8)0.0001 (7)
C200.0615 (12)0.0459 (8)0.0556 (9)0.0049 (8)0.0182 (9)0.0080 (7)
C210.0558 (11)0.0410 (7)0.0597 (10)0.0001 (7)0.0148 (9)0.0023 (7)
Geometric parameters (Å, º) top
O1—N21.229 (2)C16—C211.3971 (19)
O2—N21.2220 (19)C17—C181.377 (3)
N1—C11.2837 (17)C18—C191.373 (2)
N1—C161.4077 (18)C19—C201.372 (3)
N2—C191.465 (2)C20—C211.376 (2)
C1—C21.436 (2)C1—H10.978 (14)
C2—C31.3621 (19)C2—H20.994 (15)
C3—C41.4775 (19)C5—H50.930
C3—C101.4898 (19)C6—H60.930
C4—C51.397 (3)C7—H70.930
C4—C91.391 (2)C8—H80.930
C5—C61.378 (3)C9—H90.930
C6—C71.366 (3)C11—H110.930
C7—C81.377 (3)C12—H120.930
C8—C91.383 (3)C13—H130.930
C10—C111.3993 (19)C14—H140.930
C10—C151.392 (3)C15—H150.930
C11—C121.382 (2)C17—H170.930
C12—C131.374 (3)C18—H180.930
C13—C141.384 (3)C20—H200.930
C14—C151.385 (2)C21—H210.930
C16—C171.388 (3)
O1···C182.714 (2)C12···H9x3.0850
O1···C203.550 (2)C12···H20xi3.2069
O2···C183.5407 (19)C12···H20i3.3914
O2···C202.7292 (19)C12···H21xi3.2508
C1···C102.9401 (19)C13···H7v3.0602
C1···C153.056 (3)C13···H7xii3.3287
C1···C172.870 (3)C13···H12ix3.5143
C1···C213.541 (2)C13···H21xi3.5054
C2···C52.951 (3)C14···H7v3.1694
C2···C153.054 (3)C14···H12ix3.2070
C4···C72.799 (3)C14···H13ix3.4454
C4···C113.1206 (18)C15···H12ix3.0192
C5···C82.748 (3)C15···H21iii3.3480
C6···C92.744 (3)C16···H6vii3.3805
C9···C102.9858 (19)C16···H15iii3.1475
C9···C113.234 (2)C16···H1i3.533 (18)
C10···C132.791 (2)C17···H6v3.2504
C11···C142.767 (3)C17···H2iii3.428 (18)
C12···C152.757 (3)C18···H6v3.2005
C16···C192.763 (2)C18···H18ii2.9617
C17···C202.766 (2)C19···H1i3.577 (19)
C18···C212.753 (3)C20···H9iii3.3265
O1···C5i3.412 (3)C20···H11i3.4240
O1···C14ii3.577 (3)C20···H12vi3.2938
O1···C17ii3.510 (3)C20···H1i3.229 (18)
O2···C4i3.531 (3)C21···H6vii3.2035
O2···C5i3.547 (3)C21···H12vi3.1805
O2···C8iii3.501 (3)C21···H15iii3.1815
O2···C11i3.451 (3)C21···H1i3.186 (18)
N1···C15iii3.5459 (19)H5···O1iv3.5562
N2···C5i3.546 (3)H5···O1i2.8966
N2···C8iii3.583 (3)H5···O2i3.5184
C4···O2i3.531 (3)H5···N2i3.1974
C5···O1i3.412 (3)H5···H5vii3.0711
C5···O2i3.547 (3)H5···H18iv3.0720
C5···N2i3.546 (3)H5···H2vii3.0636
C6···C18iv3.556 (3)H6···N1vii2.7984
C8···O2iii3.501 (3)H6···C1vii3.5049
C8···N2iii3.583 (3)H6···C16vii3.3805
C9···C20iii3.496 (3)H6···C17iv3.2504
C11···O2i3.451 (3)H6···C18iv3.2005
C11···C20i3.551 (3)H6···C21vii3.2035
C14···O1ii3.577 (3)H6···H17iv3.0168
C15···N1iii3.5459 (19)H6···H18iv2.9159
C17···O1ii3.510 (3)H6···H21vii2.5881
C18···C6v3.556 (3)H6···H2vii3.4711
C20···C9iii3.496 (3)H7···C13iv3.0602
C20···C11i3.551 (3)H7···C13viii3.3287
O1···H182.4172H7···C14iv3.1694
O2···H202.4465H7···H13iv3.0603
N1···H172.6737H7···H13viii2.8029
N1···H212.5303H7···H14iv3.2592
N1···H22.560 (15)H7···H17iv3.4423
N2···H182.5958H7···H21vii3.0016
N2···H202.6112H8···O2xi3.0638
C1···H152.7947H8···O2iii3.2352
C1···H172.6454H8···H11ix3.0030
C2···H52.6798H8···H13iv3.2512
C2···H152.8825H8···H13viii3.5967
C3···H52.6597H8···H14viii3.3943
C3···H92.6611H9···C11ix3.1798
C3···H112.6654H9···C12ix3.0850
C3···H152.6624H9···C20iii3.3265
C3···H12.686 (14)H9···H11ix2.6245
C4···H63.2537H9···H12ix2.4291
C4···H83.2566H9···H20iii3.2436
C4···H112.9085H11···O2i2.7014
C4···H22.632 (15)H11···N2i3.5436
C5···H73.2220H11···C8x3.5317
C5···H93.2201H11···C9x3.3510
C5···H22.665 (15)H11···C20i3.4240
C6···H83.2111H11···H8x3.0030
C7···H53.2152H11···H9x2.6245
C7···H93.2237H11···H20xi3.4859
C8···H63.2106H11···H20i2.7103
C9···H53.2198H12···C9x3.3156
C9···H73.2303H12···C10x3.1679
C9···H113.0040H12···C11x3.4341
C10···H92.6659H12···C13x3.5143
C10···H123.2524H12···C14x3.2070
C10···H143.2566H12···C15x3.0192
C10···H12.639 (14)H12···C20xi3.2938
C10···H23.365 (15)H12···C21xi3.1805
C11···H92.8348H12···H9x2.4291
C11···H133.2307H12···H15x3.3446
C11···H153.2342H12···H20xi2.9354
C11···H13.567 (14)H12···H20i3.5216
C12···H143.2279H12···H21xi2.7100
C13···H113.2276H13···C6xii3.5979
C13···H153.2301H13···C7xii3.0178
C14···H123.2269H13···C8xii3.4871
C14···H13.519 (16)H13···C14x3.4454
C15···H93.5134H13···H7v3.0603
C15···H113.2347H13···H7xii2.8029
C15···H133.2339H13···H8v3.2512
C15···H12.629 (16)H13···H8xii3.5967
C16···H183.2440H13···H14x3.2598
C16···H203.2571H13···H21xi3.2012
C16···H12.513 (14)H14···O1ii2.8941
C17···H213.2283H14···O2ii2.7632
C17···H12.594 (15)H14···N2ii3.1621
C18···H203.2333H14···H7v3.2592
C19···H173.2126H14···H8xii3.3943
C19···H213.2039H14···H13ix3.2598
C20···H183.2316H15···O1ii3.5497
C21···H173.2311H15···N1iii2.6463
H5···H62.2948H15···C16iii3.1475
H5···H22.2107H15···C21iii3.1815
H6···H72.2940H15···H12ix3.3446
H7···H82.3093H15···H21iii2.8763
H8···H92.3029H17···O1ii2.8853
H9···H112.7942H17···C6v3.3861
H11···H122.3046H17···H6v3.0168
H12···H132.3006H17···H7v3.4423
H13···H142.3162H17···H18ii3.5327
H14···H152.3093H17···H2iii3.3055
H15···H173.3272H18···O1ii3.4312
H15···H12.5748H18···C5v3.1325
H17···H182.3059H18···C6v3.0420
H17···H12.1447H18···C18ii2.9617
H20···H212.3054H18···H5v3.0720
H1···H22.91 (2)H18···H6v2.9159
O1···H5v3.5562H18···H17ii3.5327
O1···H5i2.8966H18···H18ii2.3625
O1···H14ii2.8941H20···C9iii3.5624
O1···H15ii3.5497H20···C10i3.4559
O1···H17ii2.8853H20···C11vi3.5356
O1···H18ii3.4312H20···C11i2.8948
O1···H2v2.976 (15)H20···C12vi3.2069
O2···H5i3.5184H20···C12i3.3914
O2···H8vi3.0638H20···H9iii3.2436
O2···H8iii3.2352H20···H11vi3.4859
O2···H11i2.7014H20···H11i2.7103
O2···H14ii2.7632H20···H12vi2.9354
N1···H6vii2.7984H20···H12i3.5216
N1···H15iii2.6463H20···H1i3.5219
N2···H5i3.1974H21···C6vii3.2386
N2···H11i3.5436H21···C7vii3.4398
N2···H14ii3.1621H21···C12vi3.2508
C1···H6vii3.5049H21···C13vi3.5054
C5···H18iv3.1325H21···C15iii3.3480
C6···H13viii3.5979H21···H6vii2.5881
C6···H17iv3.3861H21···H7vii3.0016
C6···H18iv3.0420H21···H12vi2.7100
C6···H21vii3.2386H21···H13vi3.2012
C7···H13viii3.0178H21···H15iii2.8763
C7···H21vii3.4398H21···H1i3.4464
C8···H11ix3.5317H1···C16i3.533 (18)
C8···H13viii3.4871H1···C19i3.577 (19)
C9···H11ix3.3510H1···C20i3.229 (18)
C9···H12ix3.3156H1···C21i3.186 (18)
C9···H20iii3.5624H1···H20i3.5219
C10···H12ix3.1679H1···H21i3.4464
C10···H20i3.4559H2···O1iv2.976 (15)
C11···H9x3.1798H2···C17iii3.428 (18)
C11···H12ix3.4341H2···H5vii3.0636
C11···H20xi3.5356H2···H6vii3.4711
C11···H20i2.8948H2···H17iii3.3055
C1—N1—C16119.31 (11)C16—C21—C20121.30 (14)
O1—N2—O2123.12 (15)N1—C1—H1121.2 (9)
O1—N2—C19118.28 (14)C2—C1—H1117.1 (9)
O2—N2—C19118.59 (14)C1—C2—H2116.2 (9)
N1—C1—C2121.48 (13)C3—C2—H2118.7 (9)
C1—C2—C3125.06 (13)C4—C5—H5119.325
C2—C3—C4120.88 (12)C6—C5—H5119.324
C2—C3—C10119.95 (12)C5—C6—H6119.734
C4—C3—C10119.16 (11)C7—C6—H6119.722
C3—C4—C5121.35 (12)C6—C7—H7120.152
C3—C4—C9121.78 (14)C8—C7—H7120.151
C5—C4—C9116.88 (13)C7—C8—H8120.032
C4—C5—C6121.35 (15)C9—C8—H8120.026
C5—C6—C7120.54 (18)C4—C9—H9119.220
C6—C7—C8119.70 (16)C8—C9—H9119.214
C7—C8—C9119.94 (16)C10—C11—H11119.704
C4—C9—C8121.57 (16)C12—C11—H11119.705
C3—C10—C11120.76 (15)C11—C12—H12119.760
C3—C10—C15121.25 (13)C13—C12—H12119.762
C11—C10—C15117.98 (13)C12—C13—H13119.990
C10—C11—C12120.59 (16)C14—C13—H13119.985
C11—C12—C13120.48 (15)C13—C14—H14120.184
C12—C13—C14120.02 (15)C15—C14—H14120.177
C13—C14—C15119.64 (17)C10—C15—H15119.387
C10—C15—C14121.23 (14)C14—C15—H15119.387
N1—C16—C17124.83 (12)C16—C17—H17119.558
N1—C16—C21116.92 (13)C18—C17—H17119.570
C17—C16—C21118.10 (13)C17—C18—H18120.307
C16—C17—C18120.87 (14)C19—C18—H18120.326
C17—C18—C19119.37 (15)C19—C20—H20120.599
N2—C19—C18118.89 (14)C21—C20—H20120.595
N2—C19—C20119.55 (13)C16—C21—H21119.339
C18—C19—C20121.53 (14)C20—C21—H21119.357
C19—C20—C21118.81 (14)
C1—N1—C16—C1724.9 (3)C4—C5—C6—C70.3 (3)
C1—N1—C16—C21159.61 (15)C5—C6—C7—C80.7 (3)
C16—N1—C1—C2178.26 (15)C6—C7—C8—C90.5 (3)
O1—N2—C19—C181.9 (3)C7—C8—C9—C40.8 (3)
O1—N2—C19—C20179.91 (16)C3—C10—C11—C12175.88 (11)
O2—N2—C19—C18177.54 (15)C3—C10—C15—C14177.06 (11)
O2—N2—C19—C200.7 (3)C11—C10—C15—C141.7 (2)
N1—C1—C2—C3170.53 (16)C15—C10—C11—C122.90 (19)
C1—C2—C3—C4171.88 (16)C10—C11—C12—C132.0 (3)
C1—C2—C3—C109.4 (3)C11—C12—C13—C140.2 (3)
C2—C3—C4—C525.9 (3)C12—C13—C14—C151.4 (3)
C2—C3—C4—C9154.08 (15)C13—C14—C15—C100.4 (3)
C2—C3—C10—C11129.75 (15)N1—C16—C17—C18176.61 (15)
C2—C3—C10—C1549.0 (2)N1—C16—C21—C20176.00 (14)
C4—C3—C10—C1151.5 (2)C17—C16—C21—C200.2 (3)
C4—C3—C10—C15129.75 (14)C21—C16—C17—C181.1 (3)
C10—C3—C4—C5155.41 (13)C16—C17—C18—C191.4 (3)
C10—C3—C4—C924.6 (3)C17—C18—C19—N2177.57 (16)
C3—C4—C5—C6178.48 (14)C17—C18—C19—C200.6 (3)
C3—C4—C9—C8178.22 (13)N2—C19—C20—C21178.51 (14)
C5—C4—C9—C81.7 (3)C18—C19—C20—C210.3 (3)
C9—C4—C5—C61.5 (3)C19—C20—C21—C160.5 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1; (v) x1, y, z1; (vi) x+1, y1/2, z+1/2; (vii) x+2, y+1, z+1; (viii) x+1, y+3/2, z+1/2; (ix) x, y+3/2, z+1/2; (x) x, y+3/2, z1/2; (xi) x+1, y+1/2, z+1/2; (xii) x1, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC21H16N2O2
Mr328.37
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)9.4399 (8), 23.1526 (16), 8.1388 (5)
β (°) 108.039 (2)
V3)1691.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.05 × 0.02
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Rigaku, 1995)
Tmin, Tmax0.810, 0.998
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
16477, 3864, 2060
Rint0.034
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.113, 1.00
No. of reflections3864
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.18

Computer programs: RAPID-AUTO (Rigaku, 2006), RAPID-AUTO (Rigaku, 1995), Il Milione (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

References

First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCha, J. H., Kang, Y. K., Cho, Y. S., Lee, J. K. & Woo, J. C. (2012). Acta Cryst. E68, o3030.  CSD CrossRef IUCr Journals Google Scholar
First citationKhalaji, A. D. & Harrison, W. T. A. (2008). Anal. Sci. 24, x3–x4.  CAS Google Scholar
First citationKhalaji, A. D., Welter, R., Amirnasr, M. & Barry, A. H. (2008). Anal. Sci. 24, x139–x140.  CAS Google Scholar
First citationRigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds