organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-{(1S*,2S*)-2-[(E)-(2,4-Dihy­dr­oxy­benzyl­­idene)amino]­cyclo­hex­yl}isoindoline-1,3-dione

aCollege of Chemistry and Chemical Engineering, Research Institute of Applied Chemistry, Southwest University, The Key Laboratory of Applied Chemistry of Chongqing Municipality, Chongqing 400715, People's Republic of China
*Correspondence e-mail: fxk@swu.edu.cn

(Received 17 May 2011; accepted 25 May 2011; online 4 June 2011)

In the title mol­ecule, C21H20N2O4, the dihedral angle between the phenol ring and the isoindole-1,3-dione mean plane is 69.79 (6)°. The cyclo­hexane ring adopts a chair conformation. Weak inter­molecular O—H⋯O and O—H⋯N inter­actions feature as part of the crystal packing.

Related literature

For details of the synthesis, see: Berkessel et al. (2006[Berkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, Neudörfl, J. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319-4330.]); Ren & Fu (2009[Ren, W. & Fu, X. (2009). J. Mol. Catal. A, 312, 40-47.]). For background to the synthesis of salen-type Schiff base ligands, see: Campbell & Nguyen (2001[Campbell, J. E. & Nguyen, S. T. (2001). Tetrahedron Lett. 42, 1221-1225.]).

[Scheme 1]

Experimental

Crystal data
  • C21H20N2O4

  • Mr = 364.39

  • Orthorhombic, P 21 21 21

  • a = 9.0247 (3) Å

  • b = 11.7748 (4) Å

  • c = 17.8585 (6) Å

  • V = 1897.72 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.20 × 0.20 × 0.20 mm

Data collection
  • Bruker APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.982

  • 34622 measured reflections

  • 4727 independent reflections

  • 4317 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.132

  • S = 1.10

  • 4727 reflections

  • 251 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N2 0.93 (1) 1.69 (1) 2.5656 (16) 157 (2)
O4—H4B⋯O3i 0.90 (2) 1.66 (2) 2.5478 (15) 170 (2)
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Salen-type Schiff base ligands incorporating two different benzylidene moieties and a diamine backbone were synthesized in high yield under mild conditions via a stepwise approach. In the synthesis of salen-type Schiff base ligands (Campbell et al., 2001), the compound (I) was a significant intermediate product. Here we report its crystal structure.

Related literature top

For details of the synthesis, see: Berkessel et al. (2006); Ren & Fu (2009). For background to the synthesis of salen-type Schiff base ligands, see: Campbell & Nguyen (2001).

Experimental top

Compound (I) was synthesized according to the procedure of Berkessel et al. (2006); Ren et al. (2009). A crystal of (I) suitable for X-ray analysis was grown from a mixture solution of ethanol and acetonitrile (1:1) by slow evaporation at room temperature.

Refinement top

All the hydrogen atoms were placed at the geometrical positions with C—H = 0.93 Å(CH), 0.97Å (CH), 0.97Å (CH2), and refined as riding, with Uiso(H) = 1.2 Ueq(C) and Uiso(H) = 1~1.4 Ueq(O). A restrained refinement comment "DFIX" is used to restraint the distance of O3 and H3a.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure showing 30% probability displacement ellipsoids.
2-{(1S*,2S*)-2-[(E)-(2,4- Dihydroxybenzylidene)amino]cyclohexyl}isoindoline-1,3-dione top
Crystal data top
C21H20N2O4Dx = 1.275 Mg m3
Mr = 364.39Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 34622 reflections
a = 9.0247 (3) Åθ = 2.1–28.3°
b = 11.7748 (4) ŵ = 0.09 mm1
c = 17.8585 (6) ÅT = 296 K
V = 1897.72 (11) Å3Block, colourless
Z = 40.20 × 0.20 × 0.20 mm
F(000) = 768
Data collection top
Bruker APEX CCD area-detector
diffractometer
4727 independent reflections
Radiation source: fine-focus sealed tube4317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.982, Tmax = 0.982k = 1515
34622 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
4727 reflections(Δ/σ)max < 0.001
251 parametersΔρmax = 0.26 e Å3
1 restraintΔρmin = 0.32 e Å3
Crystal data top
C21H20N2O4V = 1897.72 (11) Å3
Mr = 364.39Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.0247 (3) ŵ = 0.09 mm1
b = 11.7748 (4) ÅT = 296 K
c = 17.8585 (6) Å0.20 × 0.20 × 0.20 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
4727 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
4317 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.982Rint = 0.023
34622 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0411 restraint
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 0.26 e Å3
4727 reflectionsΔρmin = 0.32 e Å3
251 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.30161 (15)0.36416 (11)0.06573 (7)0.0377 (3)
C20.42917 (15)0.34393 (11)0.02192 (7)0.0388 (3)
H2B0.44450.27210.00170.047*
C30.53102 (15)0.42835 (11)0.00866 (7)0.0405 (3)
C40.5076 (2)0.53951 (12)0.03634 (11)0.0576 (4)
H4A0.57590.59670.02620.069*
C50.3856 (2)0.56221 (12)0.07755 (10)0.0551 (4)
H5A0.37020.63580.09480.066*
C60.28074 (16)0.47702 (11)0.09522 (7)0.0400 (3)
C70.15624 (16)0.50289 (12)0.13977 (7)0.0442 (3)
H7A0.14380.57740.15590.053*
C80.07381 (16)0.45130 (14)0.20425 (7)0.0452 (3)
H8A0.08120.53300.21410.054*
C90.21031 (18)0.4117 (2)0.16090 (8)0.0604 (4)
H9A0.21900.45540.11510.072*
H9B0.19860.33240.14740.072*
C100.3512 (2)0.4259 (3)0.20717 (11)0.0762 (6)
H10A0.43520.39730.17900.091*
H10B0.36780.50600.21690.091*
C110.3396 (2)0.3625 (3)0.28091 (10)0.0809 (7)
H11A0.42870.37510.31020.097*
H11B0.33110.28170.27130.097*
C120.2046 (2)0.4032 (2)0.32491 (9)0.0683 (5)
H12A0.19690.36080.37130.082*
H12B0.21600.48290.33720.082*
C130.06454 (17)0.38642 (13)0.27883 (7)0.0458 (3)
H13A0.05880.30540.26650.055*
C140.1428 (2)0.33206 (13)0.36431 (9)0.0524 (4)
C150.27356 (18)0.38879 (13)0.39836 (8)0.0480 (3)
C160.3843 (2)0.34711 (16)0.44396 (10)0.0667 (5)
H16A0.38450.27160.45920.080*
C170.4951 (2)0.4208 (2)0.46639 (11)0.0683 (5)
H17A0.57100.39450.49710.082*
C180.4943 (2)0.53120 (17)0.44398 (10)0.0631 (5)
H18A0.57140.57870.45850.076*
C190.38096 (18)0.57462 (14)0.39993 (10)0.0549 (4)
H19A0.37920.65070.38610.066*
C200.27078 (16)0.50062 (12)0.37739 (7)0.0432 (3)
C210.13765 (16)0.52076 (11)0.33052 (7)0.0420 (3)
N10.06951 (15)0.41440 (10)0.32197 (6)0.0446 (3)
N20.05849 (14)0.42829 (11)0.15940 (6)0.0445 (3)
O10.1041 (2)0.23425 (11)0.36929 (9)0.0804 (5)
O20.09328 (16)0.60904 (9)0.30445 (7)0.0612 (3)
O30.20554 (13)0.28623 (9)0.07975 (7)0.0560 (3)
H3A0.141 (2)0.3207 (16)0.1129 (9)0.065*
O40.65643 (13)0.41288 (9)0.02971 (7)0.0526 (3)
H4B0.665 (3)0.340 (2)0.0447 (12)0.070 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (6)0.0376 (6)0.0423 (5)0.0025 (5)0.0030 (5)0.0034 (4)
C20.0352 (6)0.0353 (5)0.0459 (5)0.0004 (5)0.0008 (5)0.0045 (5)
C30.0371 (6)0.0386 (6)0.0459 (6)0.0001 (5)0.0037 (5)0.0001 (5)
C40.0567 (9)0.0350 (6)0.0812 (10)0.0097 (6)0.0230 (8)0.0054 (6)
C50.0574 (9)0.0341 (6)0.0737 (9)0.0044 (6)0.0188 (8)0.0091 (6)
C60.0361 (6)0.0399 (6)0.0439 (5)0.0015 (5)0.0010 (5)0.0044 (5)
C70.0423 (7)0.0450 (6)0.0452 (6)0.0012 (6)0.0027 (5)0.0045 (5)
C80.0337 (6)0.0610 (8)0.0408 (5)0.0011 (6)0.0023 (5)0.0061 (5)
C90.0374 (7)0.0999 (13)0.0439 (6)0.0054 (9)0.0031 (6)0.0076 (7)
C100.0341 (8)0.130 (2)0.0648 (9)0.0055 (11)0.0019 (7)0.0189 (11)
C110.0448 (9)0.141 (2)0.0570 (9)0.0316 (12)0.0100 (7)0.0177 (10)
C120.0469 (9)0.1134 (16)0.0445 (7)0.0239 (10)0.0069 (7)0.0135 (8)
C130.0407 (7)0.0544 (7)0.0423 (6)0.0122 (6)0.0009 (5)0.0059 (5)
C140.0586 (9)0.0461 (7)0.0524 (7)0.0066 (7)0.0056 (7)0.0016 (6)
C150.0469 (8)0.0470 (7)0.0502 (6)0.0010 (6)0.0045 (6)0.0030 (5)
C160.0713 (12)0.0577 (9)0.0712 (10)0.0147 (9)0.0154 (9)0.0034 (8)
C170.0510 (9)0.0877 (13)0.0661 (9)0.0242 (9)0.0171 (8)0.0182 (9)
C180.0387 (8)0.0766 (11)0.0741 (10)0.0040 (8)0.0097 (7)0.0236 (9)
C190.0422 (8)0.0529 (8)0.0695 (9)0.0048 (7)0.0075 (7)0.0107 (7)
C200.0391 (7)0.0449 (6)0.0456 (6)0.0002 (6)0.0024 (5)0.0063 (5)
C210.0405 (7)0.0408 (6)0.0445 (6)0.0048 (5)0.0035 (5)0.0025 (5)
N10.0430 (6)0.0445 (6)0.0462 (5)0.0079 (5)0.0059 (5)0.0017 (4)
N20.0368 (6)0.0543 (6)0.0425 (5)0.0017 (5)0.0042 (4)0.0061 (4)
O10.1011 (12)0.0451 (6)0.0951 (9)0.0188 (7)0.0246 (9)0.0109 (6)
O20.0689 (8)0.0429 (5)0.0719 (6)0.0015 (5)0.0229 (6)0.0039 (5)
O30.0460 (6)0.0466 (5)0.0756 (7)0.0154 (5)0.0170 (5)0.0165 (5)
O40.0426 (6)0.0449 (5)0.0703 (6)0.0043 (4)0.0187 (5)0.0051 (5)
Geometric parameters (Å, º) top
C1—O31.2869 (16)C11—H11A0.9700
C1—C21.4122 (18)C11—H11B0.9700
C1—C61.4418 (17)C12—C131.521 (2)
C2—C31.3744 (19)C12—H12A0.9700
C2—H2B0.9300C12—H12B0.9700
C3—O41.3355 (16)C13—N11.4716 (17)
C3—C41.4150 (19)C13—H13A0.9800
C4—C51.351 (2)C14—O11.207 (2)
C4—H4A0.9300C14—N11.396 (2)
C5—C61.415 (2)C14—C151.486 (2)
C5—H5A0.9300C15—C201.369 (2)
C6—C71.4101 (19)C15—C161.380 (2)
C7—N21.2933 (19)C16—C171.383 (3)
C7—H7A0.9300C16—H16A0.9300
C8—N21.4630 (17)C17—C181.361 (3)
C8—C91.528 (2)C17—H17A0.9300
C8—C131.5377 (19)C18—C191.388 (2)
C8—H8A0.9800C18—H18A0.9300
C9—C101.525 (2)C19—C201.382 (2)
C9—H9A0.9700C19—H19A0.9300
C9—H9B0.9700C20—C211.4833 (19)
C10—C111.518 (3)C21—O21.2073 (18)
C10—H10A0.9700C21—N11.4036 (18)
C10—H10B0.9700O3—H3A0.927 (9)
C11—C121.527 (2)O4—H4B0.90 (2)
O3—C1—C2122.46 (11)H11A—C11—H11B108.1
O3—C1—C6119.88 (12)C11—C12—C13110.13 (13)
C2—C1—C6117.66 (11)C11—C12—H12A109.6
C3—C2—C1121.25 (11)C13—C12—H12A109.6
C3—C2—H2B119.4C11—C12—H12B109.6
C1—C2—H2B119.4C13—C12—H12B109.6
O4—C3—C2123.82 (12)H12A—C12—H12B108.1
O4—C3—C4115.58 (12)N1—C13—C12111.77 (10)
C2—C3—C4120.60 (12)N1—C13—C8112.77 (11)
C5—C4—C3119.66 (13)C12—C13—C8111.04 (14)
C5—C4—H4A120.2N1—C13—H13A107.0
C3—C4—H4A120.2C12—C13—H13A107.0
C4—C5—C6121.77 (13)C8—C13—H13A107.0
C4—C5—H5A119.1O1—C14—N1124.41 (16)
C6—C5—H5A119.1O1—C14—C15128.97 (17)
C7—C6—C5120.39 (12)N1—C14—C15106.61 (12)
C7—C6—C1120.61 (12)C20—C15—C16121.12 (15)
C5—C6—C1118.98 (12)C20—C15—C14107.81 (13)
N2—C7—C6123.35 (13)C16—C15—C14131.07 (15)
N2—C7—H7A118.3C17—C16—C15118.15 (17)
C6—C7—H7A118.3C17—C16—H16A120.9
N2—C8—C9108.92 (11)C15—C16—H16A120.9
N2—C8—C13109.74 (12)C18—C17—C16120.68 (17)
C9—C8—C13109.34 (13)C18—C17—H17A119.7
N2—C8—H8A109.6C16—C17—H17A119.7
C9—C8—H8A109.6C17—C18—C19121.53 (17)
C13—C8—H8A109.6C17—C18—H18A119.2
C10—C9—C8111.36 (12)C19—C18—H18A119.2
C10—C9—H9A109.4C20—C19—C18117.58 (16)
C8—C9—H9A109.4C20—C19—H19A121.2
C10—C9—H9B109.4C18—C19—H19A121.2
C8—C9—H9B109.4C15—C20—C19120.90 (14)
H9A—C9—H9B108.0C15—C20—C21108.84 (13)
C9—C10—C11111.02 (17)C19—C20—C21130.27 (14)
C9—C10—H10A109.4O2—C21—N1125.52 (13)
C11—C10—H10A109.4O2—C21—C20128.60 (13)
C9—C10—H10B109.4N1—C21—C20105.88 (11)
C11—C10—H10B109.4C14—N1—C21110.67 (11)
H10A—C10—H10B108.0C14—N1—C13121.18 (12)
C12—C11—C10110.31 (18)C21—N1—C13128.09 (12)
C12—C11—H11A109.6C7—N2—C8125.40 (13)
C10—C11—H11A109.6C1—O3—H3A103.8 (13)
C12—C11—H11B109.6C3—O4—H4B110.7 (15)
C10—C11—H11B109.6
O3—C1—C2—C3179.12 (13)C20—C15—C16—C171.7 (3)
C6—C1—C2—C30.89 (18)C14—C15—C16—C17178.88 (18)
C1—C2—C3—O4177.16 (12)C15—C16—C17—C180.0 (3)
C1—C2—C3—C42.5 (2)C16—C17—C18—C191.9 (3)
O4—C3—C4—C5178.20 (16)C17—C18—C19—C202.1 (3)
C2—C3—C4—C51.5 (3)C16—C15—C20—C191.5 (2)
C3—C4—C5—C61.1 (3)C14—C15—C20—C19178.98 (14)
C4—C5—C6—C7178.57 (16)C16—C15—C20—C21178.48 (14)
C4—C5—C6—C12.7 (3)C14—C15—C20—C211.04 (17)
O3—C1—C6—C70.4 (2)C18—C19—C20—C150.4 (2)
C2—C1—C6—C7179.62 (11)C18—C19—C20—C21179.62 (14)
O3—C1—C6—C5178.38 (14)C15—C20—C21—O2176.27 (16)
C2—C1—C6—C51.6 (2)C19—C20—C21—O23.7 (3)
C5—C6—C7—N2178.23 (14)C15—C20—C21—N13.42 (16)
C1—C6—C7—N23.0 (2)C19—C20—C21—N1176.60 (15)
N2—C8—C9—C10176.03 (17)O1—C14—N1—C21177.16 (18)
C13—C8—C9—C1056.1 (2)C15—C14—N1—C214.00 (17)
C8—C9—C10—C1156.8 (2)O1—C14—N1—C130.2 (3)
C9—C10—C11—C1257.0 (3)C15—C14—N1—C13178.65 (12)
C10—C11—C12—C1357.9 (3)O2—C21—N1—C14175.12 (16)
C11—C12—C13—N1174.55 (17)C20—C21—N1—C144.58 (16)
C11—C12—C13—C858.6 (2)O2—C21—N1—C132.0 (2)
N2—C8—C13—N156.93 (16)C20—C21—N1—C13178.30 (12)
C9—C8—C13—N1176.34 (13)C12—C13—N1—C1489.91 (19)
N2—C8—C13—C12176.74 (13)C8—C13—N1—C14144.14 (14)
C9—C8—C13—C1257.33 (18)C12—C13—N1—C2186.94 (19)
O1—C14—C15—C20179.50 (19)C8—C13—N1—C2139.01 (19)
N1—C14—C15—C201.73 (18)C6—C7—N2—C8178.75 (12)
O1—C14—C15—C160.0 (3)C9—C8—N2—C7124.08 (16)
N1—C14—C15—C16178.81 (17)C13—C8—N2—C7116.25 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.93 (1)1.69 (1)2.5656 (16)157 (2)
O4—H4B···O3i0.90 (2)1.66 (2)2.5478 (15)170 (2)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC21H20N2O4
Mr364.39
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)9.0247 (3), 11.7748 (4), 17.8585 (6)
V3)1897.72 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.20 × 0.20
Data collection
DiffractometerBruker APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.982, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
34622, 4727, 4317
Rint0.023
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.132, 1.10
No. of reflections4727
No. of parameters251
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.32

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···N20.927 (9)1.686 (12)2.5656 (16)157.2 (19)
O4—H4B···O3i0.90 (2)1.66 (2)2.5478 (15)170 (2)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

The authors are grateful to Southwest University of China for financial support.

References

First citationBerkessel, A., Mukherjee, S., Müller, T. N., Cleemann, F., Roland, K., Brandenburg, Neudörfl, J. & Lex, J. (2006). Org. Biomol. Chem. 4, 4319-4330.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCampbell, J. E. & Nguyen, S. T. (2001). Tetrahedron Lett. 42, 1221–1225.  CrossRef CAS Google Scholar
First citationRen, W. & Fu, X. (2009). J. Mol. Catal. A, 312, 40–47.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds