organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Fluoro­phen­yl)-3-methyl­sulfinyl-5-phenyl-1-benzo­furan

aDepartment of Chemistry, Dongeui University, San 24 Kaya-dong Busanjin-gu, Busan 614-714, Republic of Korea, and bDepartment of Chemistry, Pukyong National University, 599-1 Daeyeon 3-dong, Nam-gu, Busan 608-737, Republic of Korea
*Correspondence e-mail: uklee@pknu.ac.kr

(Received 23 February 2010; accepted 20 April 2010; online 24 April 2010)

In the title mol­ecule, C21H15FO2S, the O atom and the methyl group of the methyl­sulfinyl substituent are situated on the opposite sides of the plane through the benzofuran fragment. The benzofuran ring plane makes dihedral angles of 28.63 (6) and 31.55 (5)° with the 4-fluoro­phenyl and phenyl rings, respectively. Weak C—H⋯F and C—H⋯O hydrogen bonds and inter­molecular C—H⋯π inter­actions are present in the crystal structure. The title crystal was refined as an inversion twin with a 0.39 (7):0.61 (7) domain ratio.

Related literature

For the crystal structures of similar 3-alkyl­sulfanyl-2-(4-fluoro­phen­yl)-5-phenyl-1-benzofuran derivatives, see: Choi et al. (2009[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.], 2010[Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.]). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006[Aslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214-4226.]); Galal et al. (2009[Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420-2428.]); Khan et al. (2005[Khan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796-4805.]). For natural products with benzofuran rings, see: Akgul & Anil (2003[Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939-943.]); Soekamto et al. (2003[Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831-834.]). For hydrogen bonding, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monographs on Crystallography, Vol. 9, p. 65. Oxford University Press.]).

[Scheme 1]

Experimental

Crystal data
  • C21H15FO2S

  • Mr = 350.39

  • Monoclinic, P 21

  • a = 10.148 (2) Å

  • b = 7.117 (1) Å

  • c = 11.991 (2) Å

  • β = 110.047 (2)°

  • V = 813.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.25 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.917, Tmax = 0.947

  • 4812 measured reflections

  • 3226 independent reflections

  • 3065 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.086

  • S = 1.06

  • 3226 reflections

  • 228 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1308 Friedel pairs

  • Flack parameter: 0.39 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C15–C20 (5-phen­yl) and the C9–14 (4-fluoro­phen­yl) rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.61 3.301 (3) 131
C21—H21A⋯O2ii 0.96 2.63 3.375 (3) 135
C21—H21B⋯Fiii 0.96 2.55 3.478 (3) 164
C10—H10⋯Cg1iv 0.93 2.86 3.450 (2) 122
C13—H13⋯Cg2iii 0.93 2.81 3.417 (2) 124
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+1]; (ii) [-x+1, y-{\script{1\over 2}}, -z+2]; (iii) [-x+2, y-{\script{1\over 2}}, -z+2]; (iv) [-x+1, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The compounds with the benzofuran skeleton show significant pharmacological activities such as fungicide (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009) and antimicrobial (Khan et al., 2005) properties. These compounds are common in Nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of the side chain substituents on the solid state structures of 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report the title crystal structure. The title molecule is depicted in Fig. 1.

The benzofuran ring is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. In the molecule, the benzofuran plane makes dihedral angles of 28.63 (6) and 31.55 (5)° with the 4-fluorophenyl ring and the phenyl ring, respectively. The molecular packing (Fig. 2) is stabilized by an intermolecular C—H···F hydrogen bond between the methyl H atom and the fluorine (Tab. 1). There are also C—H···O interactions (Tab. 1 and Fig. 2) with geometrical parameters that are on the limit of their acceptance as true weak C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The molecular packing (Fig. 3) is further stabilized by two intermolecular C—H···π-electron ring interactions: The first one between the 4-fluorophenyl H atom and the 5-phenyl ring, and the second one between the 4-fluorophenyl H atom and 4-fluorophenyl ring (Tab. 1).

Related literature top

For the crystal structures of similar 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For hydrogen bonding, see: Desiraju & Steiner (1999).

Experimental top

77% 3-chloroperoxybenzoic acid (224 mg, 1.0 mmol) was added in small portions to a stirred solution of 2-(4-fluorophenyl)-3-methylsulfanyl-5-phenyl-1-benzofuran (301 mg, 0.9 mmol) in dichloromethane (30 ml) at 273 K. After having been stirred at room temperature for 4h, the mixture was washed with saturated sodium hydrogencarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (silica gel, hexane–ethyl acetate, 1:1 v/v) to afford the title compound as a colourless solid [yield 80%, m.p. 506–507 K; Rf = 0.59 (hexane–ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature. The average crystal size was approximately 1.0 × 1.0 × 0.5 mm. (The measured crystal was cut from the larger one.) The crystals are colourless and soluble in polar solvents.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for the aryl H atoms and 0.96 Å for the methyl H atoms, and with Uiso(H) = 1.2Ueq(C) for the aryl H atoms and 1.5Ueq(C) for the methyl H atoms. 1308 Friedel pairs have been used in the refinement.

Structure description top

The compounds with the benzofuran skeleton show significant pharmacological activities such as fungicide (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009) and antimicrobial (Khan et al., 2005) properties. These compounds are common in Nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of the side chain substituents on the solid state structures of 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran analogues (Choi et al., 2009, 2010), we report the title crystal structure. The title molecule is depicted in Fig. 1.

The benzofuran ring is essentially planar, with a mean deviation of 0.006 (2) Å from the least-squares plane defined by the nine constituent atoms. In the molecule, the benzofuran plane makes dihedral angles of 28.63 (6) and 31.55 (5)° with the 4-fluorophenyl ring and the phenyl ring, respectively. The molecular packing (Fig. 2) is stabilized by an intermolecular C—H···F hydrogen bond between the methyl H atom and the fluorine (Tab. 1). There are also C—H···O interactions (Tab. 1 and Fig. 2) with geometrical parameters that are on the limit of their acceptance as true weak C—H···O hydrogen bonds (Desiraju & Steiner, 1999). The molecular packing (Fig. 3) is further stabilized by two intermolecular C—H···π-electron ring interactions: The first one between the 4-fluorophenyl H atom and the 5-phenyl ring, and the second one between the 4-fluorophenyl H atom and 4-fluorophenyl ring (Tab. 1).

For the crystal structures of similar 3-alkylsulfanyl-2-(4-fluorophenyl)-5-phenyl-1-benzofuran derivatives, see: Choi et al. (2009, 2010). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For hydrogen bonding, see: Desiraju & Steiner (1999).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The H atoms are depicted as small spheres of arbitrary radius.
[Figure 2] Fig. 2. C—H···F and C—H···O interactions (dotted lines) in the crystal structure of the title compound. [Symmetry codes: (i) -x, y-1/2, -z+1; (ii) -x+1, y-1/2, -z+2; (iii) -x+2, y-1/2, -z+2; (v) -x, y+1/2, -z+1; (vi) -x+1, y+1/2, -z+2; (vii) -x+2, y+1/2, -z+2.]
[Figure 3] Fig. 3. C—H···π-electron ring interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (iii) -x+2, y-1/2, -z+2; (iv) -x+1, y+1/2, -z+1; (viii) -x+1, y-1/2, -z+1; (ix) -x+2, y+1/2, -z+2.]
2-(4-Fluorophenyl)-3-methylsulfinyl-5-phenyl-1-benzofuran top
Crystal data top
C21H15FO2SF(000) = 364
Mr = 350.39Dx = 1.430 Mg m3
Monoclinic, P21Melting point = 506–507 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.148 (2) ÅCell parameters from 3710 reflections
b = 7.117 (1) Åθ = 2.3–28.3°
c = 11.991 (2) ŵ = 0.22 mm1
β = 110.047 (2)°T = 173 K
V = 813.6 (2) Å3Block, colourless
Z = 20.40 × 0.40 × 0.25 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
3226 independent reflections
Radiation source: rotating anode3065 reflections with I > 2σ(I)
Graphite multilayer monochromatorRint = 0.019
Detector resolution: 10.0 pixels mm-1θmax = 27.0°, θmin = 1.8°
φ and ω scansh = 812
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 98
Tmin = 0.917, Tmax = 0.947l = 1514
4812 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.1094P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3226 reflectionsΔρmax = 0.31 e Å3
228 parametersΔρmin = 0.21 e Å3
1 restraintAbsolute structure: Flack (1983), 1308 Friedel pairs
59 constraintsAbsolute structure parameter: 0.39 (7)
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H15FO2SV = 813.6 (2) Å3
Mr = 350.39Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.148 (2) ŵ = 0.22 mm1
b = 7.117 (1) ÅT = 173 K
c = 11.991 (2) Å0.40 × 0.40 × 0.25 mm
β = 110.047 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3226 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3065 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.947Rint = 0.019
4812 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.31 e Å3
S = 1.06Δρmin = 0.21 e Å3
3226 reflectionsAbsolute structure: Flack (1983), 1308 Friedel pairs
228 parametersAbsolute structure parameter: 0.39 (7)
1 restraint
Special details top

Experimental. The measured sample has been cut from the larger crystal. The crystals, both the grown ones as well as the cut one, have not been examined under the polarization microscope.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The diffractions 1 0 0 and 0 0 1 as well as their equivalents have been excluded from the refinement because their respective intensities significantly differed from the calculated ones.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S0.55747 (5)0.51643 (8)0.86742 (4)0.03009 (13)
F1.26845 (12)0.4440 (2)1.03910 (11)0.0425 (3)
O10.70363 (13)0.4548 (2)0.60162 (10)0.0280 (3)
O20.44274 (15)0.6590 (2)0.83904 (13)0.0398 (4)
C10.59124 (17)0.4753 (3)0.73449 (15)0.0251 (4)
C20.48587 (19)0.4671 (3)0.61728 (15)0.0257 (4)
C30.33954 (18)0.4703 (3)0.57251 (15)0.0256 (4)
H30.28830.48100.62340.031*
C40.27128 (18)0.4572 (3)0.44981 (15)0.0255 (4)
C50.35234 (19)0.4441 (3)0.37470 (16)0.0286 (4)
H50.30610.43520.29320.034*
C60.4975 (2)0.4439 (3)0.41758 (16)0.0317 (4)
H60.54950.43660.36720.038*
C70.56102 (19)0.4553 (3)0.53979 (16)0.0264 (4)
C80.71883 (19)0.4670 (3)0.72036 (15)0.0255 (4)
C90.86341 (18)0.4633 (3)0.80353 (15)0.0242 (4)
C100.97478 (18)0.5278 (3)0.76948 (16)0.0278 (4)
H100.95660.57450.69320.033*
C111.11179 (18)0.5224 (3)0.84845 (17)0.0317 (4)
H111.18570.56630.82650.038*
C121.13528 (19)0.4503 (3)0.96030 (17)0.0291 (4)
C131.0289 (2)0.3813 (3)0.99652 (17)0.0288 (4)
H131.04840.33141.07220.035*
C140.89299 (19)0.3886 (3)0.91741 (16)0.0268 (4)
H140.82010.34320.94020.032*
C150.11547 (19)0.4540 (3)0.39950 (15)0.0250 (4)
C160.0356 (2)0.3732 (3)0.46221 (16)0.0281 (4)
H160.08060.32310.53730.034*
C170.1097 (2)0.3669 (3)0.41369 (17)0.0313 (4)
H170.16100.31390.45680.038*
C180.1788 (2)0.4392 (3)0.30148 (18)0.0323 (4)
H180.27600.43260.26860.039*
C190.10197 (19)0.5216 (3)0.23840 (16)0.0315 (4)
H190.14780.57180.16350.038*
C200.04378 (18)0.5288 (3)0.28756 (15)0.0277 (4)
H200.09440.58480.24480.033*
C210.4775 (2)0.2943 (4)0.8756 (2)0.0421 (6)
H21A0.44900.29250.94410.063*
H21B0.54380.19520.88170.063*
H21C0.39700.27650.80530.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S0.0302 (2)0.0398 (3)0.02136 (19)0.0062 (2)0.01031 (15)0.0019 (2)
F0.0287 (6)0.0505 (8)0.0447 (7)0.0009 (6)0.0080 (5)0.0011 (6)
O10.0297 (7)0.0328 (7)0.0243 (6)0.0016 (6)0.0128 (5)0.0010 (6)
O20.0390 (8)0.0470 (10)0.0350 (8)0.0117 (7)0.0148 (7)0.0033 (7)
C10.0285 (9)0.0257 (11)0.0232 (8)0.0025 (7)0.0116 (7)0.0012 (7)
C20.0336 (9)0.0226 (10)0.0228 (8)0.0019 (7)0.0120 (7)0.0007 (7)
C30.0306 (9)0.0244 (11)0.0253 (8)0.0003 (7)0.0142 (7)0.0004 (7)
C40.0306 (9)0.0213 (9)0.0250 (8)0.0008 (8)0.0100 (7)0.0015 (8)
C50.0361 (10)0.0289 (10)0.0224 (8)0.0012 (8)0.0122 (7)0.0009 (8)
C60.0364 (10)0.0369 (11)0.0269 (9)0.0023 (9)0.0173 (8)0.0011 (9)
C70.0292 (9)0.0247 (9)0.0285 (9)0.0011 (8)0.0140 (7)0.0003 (8)
C80.0322 (9)0.0220 (10)0.0253 (8)0.0005 (7)0.0135 (7)0.0017 (7)
C90.0264 (9)0.0198 (9)0.0289 (8)0.0020 (7)0.0129 (7)0.0005 (8)
C100.0346 (9)0.0241 (9)0.0304 (8)0.0022 (9)0.0184 (7)0.0027 (9)
C110.0311 (9)0.0265 (10)0.0439 (10)0.0006 (9)0.0211 (8)0.0002 (10)
C120.0249 (9)0.0264 (10)0.0354 (9)0.0025 (8)0.0094 (7)0.0021 (9)
C130.0337 (11)0.0249 (10)0.0289 (9)0.0027 (8)0.0121 (8)0.0015 (8)
C140.0292 (10)0.0242 (10)0.0310 (9)0.0007 (7)0.0154 (8)0.0016 (8)
C150.0330 (9)0.0196 (9)0.0237 (8)0.0035 (8)0.0114 (7)0.0042 (8)
C160.0374 (11)0.0254 (10)0.0234 (8)0.0021 (8)0.0126 (8)0.0002 (8)
C170.0352 (10)0.0285 (11)0.0351 (10)0.0046 (8)0.0183 (8)0.0027 (9)
C180.0265 (9)0.0319 (11)0.0385 (10)0.0017 (8)0.0108 (8)0.0040 (9)
C190.0358 (9)0.0270 (10)0.0288 (8)0.0016 (9)0.0073 (7)0.0011 (9)
C200.0342 (9)0.0234 (9)0.0273 (8)0.0040 (9)0.0130 (7)0.0017 (9)
C210.0451 (13)0.0481 (15)0.0405 (12)0.0055 (11)0.0242 (10)0.0131 (11)
Geometric parameters (Å, º) top
S—O21.4931 (16)C10—H100.9300
S—C11.7660 (17)C11—C121.379 (3)
S—C211.795 (2)C11—H110.9300
F—C121.359 (2)C12—C131.385 (3)
O1—C81.381 (2)C13—C141.381 (3)
O1—C71.382 (2)C13—H130.9300
C1—C81.364 (2)C14—H140.9300
C1—C21.446 (2)C15—C201.395 (3)
C2—C71.392 (2)C15—C161.404 (3)
C2—C31.395 (2)C16—C171.388 (3)
C3—C41.398 (2)C16—H160.9300
C3—H30.9300C17—C181.386 (3)
C4—C51.416 (2)C17—H170.9300
C4—C151.487 (2)C18—C191.388 (3)
C5—C61.383 (3)C18—H180.9300
C5—H50.9300C19—C201.393 (2)
C6—C71.386 (3)C19—H190.9300
C6—H60.9300C20—H200.9300
C8—C91.464 (2)C21—H21A0.9600
C9—C141.399 (2)C21—H21B0.9600
C9—C101.404 (2)C21—H21C0.9600
C10—C111.389 (2)
O2—S—C1106.52 (9)C12—C11—H11120.9
O2—S—C21106.22 (10)C10—C11—H11120.9
C1—S—C2197.72 (10)F—C12—C11119.20 (16)
C8—O1—C7106.22 (13)F—C12—C13117.85 (18)
C8—C1—C2107.14 (15)C11—C12—C13122.95 (18)
C8—C1—S127.27 (14)C14—C13—C12118.27 (18)
C2—C1—S125.19 (13)C14—C13—H13120.9
C7—C2—C3119.90 (16)C12—C13—H13120.9
C7—C2—C1105.03 (15)C13—C14—C9120.97 (17)
C3—C2—C1135.07 (16)C13—C14—H14119.5
C2—C3—C4118.80 (15)C9—C14—H14119.5
C2—C3—H3120.6C20—C15—C16117.73 (17)
C4—C3—H3120.6C20—C15—C4121.06 (15)
C3—C4—C5119.18 (16)C16—C15—C4121.20 (16)
C3—C4—C15120.16 (15)C17—C16—C15120.94 (18)
C5—C4—C15120.66 (16)C17—C16—H16119.5
C6—C5—C4122.70 (17)C15—C16—H16119.5
C6—C5—H5118.7C18—C17—C16120.43 (18)
C4—C5—H5118.7C18—C17—H17119.8
C5—C6—C7116.31 (16)C16—C17—H17119.8
C5—C6—H6121.8C17—C18—C19119.61 (18)
C7—C6—H6121.8C17—C18—H18120.2
O1—C7—C6126.11 (16)C19—C18—H18120.2
O1—C7—C2110.78 (15)C18—C19—C20119.88 (17)
C6—C7—C2123.10 (17)C18—C19—H19120.1
C1—C8—O1110.83 (15)C20—C19—H19120.1
C1—C8—C9133.51 (16)C19—C20—C15121.40 (17)
O1—C8—C9115.64 (14)C19—C20—H20119.3
C14—C9—C10118.91 (16)C15—C20—H20119.3
C14—C9—C8120.10 (15)S—C21—H21A109.5
C10—C9—C8120.96 (16)S—C21—H21B109.5
C11—C10—C9120.69 (17)H21A—C21—H21B109.5
C11—C10—H10119.7S—C21—H21C109.5
C9—C10—H10119.7H21A—C21—H21C109.5
C12—C11—C10118.19 (16)H21B—C21—H21C109.5
O2—S—C1—C8133.81 (19)C7—O1—C8—C9178.29 (16)
C21—S—C1—C8116.67 (19)C1—C8—C9—C1427.8 (3)
O2—S—C1—C238.02 (19)O1—C8—C9—C14150.11 (18)
C21—S—C1—C271.50 (18)C1—C8—C9—C10154.5 (2)
C8—C1—C2—C70.3 (2)O1—C8—C9—C1027.6 (3)
S—C1—C2—C7172.91 (16)C14—C9—C10—C111.7 (3)
C8—C1—C2—C3179.7 (2)C8—C9—C10—C11179.48 (19)
S—C1—C2—C36.5 (3)C9—C10—C11—C120.7 (3)
C7—C2—C3—C41.4 (3)C10—C11—C12—F179.86 (19)
C1—C2—C3—C4179.3 (2)C10—C11—C12—C130.8 (3)
C2—C3—C4—C51.0 (3)F—C12—C13—C14179.42 (18)
C2—C3—C4—C15178.04 (17)C11—C12—C13—C141.2 (3)
C3—C4—C5—C60.1 (3)C12—C13—C14—C90.1 (3)
C15—C4—C5—C6179.11 (19)C10—C9—C14—C131.3 (3)
C4—C5—C6—C70.7 (3)C8—C9—C14—C13179.05 (18)
C8—O1—C7—C6179.6 (2)C3—C4—C15—C20149.0 (2)
C8—O1—C7—C20.1 (2)C5—C4—C15—C2032.0 (3)
C5—C6—C7—O1179.1 (2)C3—C4—C15—C1631.9 (3)
C5—C6—C7—C20.3 (3)C5—C4—C15—C16147.1 (2)
C3—C2—C7—O1179.75 (16)C20—C15—C16—C170.5 (3)
C1—C2—C7—O10.3 (2)C4—C15—C16—C17178.57 (19)
C3—C2—C7—C60.8 (3)C15—C16—C17—C180.6 (3)
C1—C2—C7—C6179.71 (19)C16—C17—C18—C191.3 (3)
C2—C1—C8—O10.2 (2)C17—C18—C19—C200.8 (3)
S—C1—C8—O1172.79 (14)C18—C19—C20—C150.3 (3)
C2—C1—C8—C9177.7 (2)C16—C15—C20—C191.0 (3)
S—C1—C8—C99.2 (3)C4—C15—C20—C19178.14 (19)
C7—O1—C8—C10.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 (5-phenyl) and the C9–14 (4-fluorophenyl) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.613.301 (3)131
C21—H21A···O2ii0.962.633.375 (3)135
C21—H21B···Fiii0.962.553.478 (3)164
C10—H10···Cg1iv0.932.863.450 (2)122
C13—H13···Cg2iii0.932.813.417 (2)124
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC21H15FO2S
Mr350.39
Crystal system, space groupMonoclinic, P21
Temperature (K)173
a, b, c (Å)10.148 (2), 7.117 (1), 11.991 (2)
β (°) 110.047 (2)
V3)813.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.40 × 0.40 × 0.25
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.917, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
4812, 3226, 3065
Rint0.019
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.086, 1.06
No. of reflections3226
No. of parameters228
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.21
Absolute structureFlack (1983), 1308 Friedel pairs
Absolute structure parameter0.39 (7)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C15–C20 (5-phenyl) and the C9–14 (4-fluorophenyl) rings, respectively.
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.932.613.301 (3)131.4
C21—H21A···O2ii0.962.633.375 (3)134.8
C21—H21B···Fiii0.962.553.478 (3)163.6
C10—H10···Cg1iv0.932.863.450 (2)122
C13—H13···Cg2iii0.932.813.417 (2)124
Symmetry codes: (i) x, y1/2, z+1; (ii) x+1, y1/2, z+2; (iii) x+2, y1/2, z+2; (iv) x+1, y+1/2, z+1.
 

References

First citationAkgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAslam, S. N., Stevenson, P. C., Phythian, S. J., Veitch, N. C. & Hall, D. R. (2006). Tetrahedron, 62, 4214–4226.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2009). Acta Cryst. E65, o2766.  Web of Science CrossRef IUCr Journals Google Scholar
First citationChoi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2010). Acta Cryst. E66, o336.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology. IUCr Monographs on Crystallography, Vol. 9, p. 65. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGalal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKhan, M. W., Alam, M. J., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds