organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

tert-But­oxy­tri­phenyl­silane

aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de

(Received 2 December 2009; accepted 21 January 2010; online 27 January 2010)

The title compound, C22H24OSi or Ph3SiOtBu, shows a distorted tetra­hedral coordination sphere around the Si atom. The C—O—Si angle is 135.97 (12)° and the O—Si distance is 1.6244 (13) Å. The mol­ecules are held together by weak inter­actions only. An H⋯H distance of 2.2924 (7) Å is found between aryl H atoms and is the shortest inter­molecular distance in the structure. With regard to the broad applicability of R3SiO structural motifs in all fields of chemistry, the mol­ecule demonstrates a common model system for silicon centers surrounded by sterically demanding substituents.

Related literature

For the synthesis of Ph3SiO-t-Bu, see: Gilman et al. (1953[Gilman, H., Brook, A. G. & Miller, L. S. (1953). J. Am. Chem. Soc. 75, 3757-3759.]). For the synthesis and structure of Ph3SiO-i-Pr, see: Wojtczak et al. (1996[Wojtczak, W. A., Hampden-Smith, M. J. & Duesler, E. N. (1996). Inorg. Chem. 35, 6638-6639.]). For selected transition-metal complexes containing Ph3SiO groups, see: Bindl et al. (2009[Bindl, M., Stade, R., Heilmann, E. K., Picot, A., Goddard, R. & Fürstner, A. (2009). J. Am. Chem. Soc. 131, 9468-9470.]); Johnson et al. (2000[Johnson, B. F. G., Klunduk, M. C., Martin, C. M., Sankar, G., Teate, S. J. & Thomas, J. M. (2000). J. Organomet. Chem. 596, 221-225.]); Ruiz et al. (2004[Ruiz, J., Vicente, C., Rodríguez, V., Cutillas, N., López, G. & Ramírez de Arellano, C. (2004). J. Organomet. Chem. 689, 1872-1875.]); Schweder et al. (1999[Schweder, B., Görls, H. & Walther, D. (1999). Inorg. Chim. Acta, 286, 14-23.]); Schweder et al. (2006[Schweder, B., Walther, D. & Imhof, W. (2006). Acta Cryst. E62, m465-m468.]); Wolff von Gudenberg et al. (1994[Wolff von Gudenberg, D., Kang, H.-C., Massa, W. & Dehnicke, K. (1994). Z. Anorg. Allg. Chem. 620, 1719-1724.]). For selected main-group compounds containing Ph3SiO units, see: Apblett & Barron (1993[Apblett, A. W. & Barron, A. R. (1993). J. Crystallogr. Spectrosc. Res. 23, 529-532.]); Chen et al. (2008[Chen, C., Luo, S. & Jordan, R. F. (2008). J. Am. Chem. Soc. 130, 12892-12893.]); Ferguson et al. (1996[Ferguson, G., Pollock, J. W., O'Leary, B. & Spalding, T. R. (1996). Acta Cryst. C52, 619-622.], 2005[Ferguson, G., O'Leary, B. J. & Spalding, T. R. (2005). Acta Cryst. E61, o906-o907.]). For applications of silyl ethers in protecting group chemistry, see: Scheidt et al. (2002[Scheidt, K. A., Bannister, T. D., Tasaka, A., Wendt, M. D., Savall, B. M., Fegley, G. J. & Roush, W. R. (2002). J. Am. Chem. Soc. 124, 6981-6990.]); Vintonyak & Maier (2007[Vintonyak, V. V. & Maier, M. E. (2007). Angew. Chem. Int. Ed. 46, 5209-5211.]). For comparative O—Si distances, see: Bowes et al. (2002[Bowes, K. F., Glidewell, C. & Low, J. N. (2002). Acta Cryst. C58, o409-o415.]); Wojtczak et al. (1996[Wojtczak, W. A., Hampden-Smith, M. J. & Duesler, E. N. (1996). Inorg. Chem. 35, 6638-6639.]) and for C—Si distances, see: Dilman et al. (2004[Dilman, A. D., Belyakov, P. A., Korlyukov, A. A. & Tartakovsky, V. A. (2004). Tetrahedron Lett. 45, 3741-3744.]); Lee et al. (2001[Lee, S. J., Han, B. H., Sung, C.-K., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o271-o272.]); Wojtczak et al. (1996[Wojtczak, W. A., Hampden-Smith, M. J. & Duesler, E. N. (1996). Inorg. Chem. 35, 6638-6639.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24OSi

  • Mr = 332.5

  • Monoclinic, P 21 /n

  • a = 9.8054 (12) Å

  • b = 20.201 (7) Å

  • c = 10.231 (2) Å

  • β = 111.311 (18)°

  • V = 1888.0 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 173 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur S diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]) Tmin = 0.962, Tmax = 0.975

  • 23180 measured reflections

  • 4203 independent reflections

  • 2597 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.100

  • S = 0.89

  • 4203 reflections

  • 220 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006[Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Siloxy groups are versatile structural subunits both in organic and inorganic chemistry, e.g. in the design of transition metal based catalysts (Bindl et al., 2009; Schweder et al., 1999) such as in the recently developed molybdenum triphenylsiloxide complex, which serves as a catalyst for alkyne metathesis (Bindl et al., 2009). In the light of the impressive attainment in natural product synthesis, silyl ethers in addition proved to be an essential structural element in their role as commonly used protecting groups as they are applied for alcohol functionalities (Scheidt et al., 2002; Vintonyak & Maier, 2007). Aside from several known x-ray structures of triphenylsiloxy substituted transition metal complexes (Bindl et al., 2009; Johnson et al., 2000; Ruiz et al., 2004; Schweder et al., 1999; Schweder et al., 2006; Wolff von Gudenberg et al., 1994), there have also been reported some corresponding main group compounds (Apblett & Barron, 1993; Ferguson et al., 1996; Ferguson et al., 2005; Wojtczak et al., 1996) as well as palladium allyl species that contain triphenylsilyl ether subunits (Chen et al., 2008).

The title compound, tert-butoxytriphenylsilane, was originally synthesized by Gilman et al. (1953) by refluxing chlorotriphenylsilane in tert-butyl alcohol in the presence of dimethylaniline. While the crystal structure of Ph3SiO-i-Pr was found to be already determined (Wojtczak et al., 1996), no structural data about the bulkier substituted Ph3SiO-t-Bu have been described yet.

The molecule of the title compound features a distorted tetrahedral coordination around the silicon center. Contrary to the virtually tetrahedral O—Si—C7 and O—Si—C1 bond angles of 111.34 (8)° and 112.63 (8)°, respectively, the O—Si—C13 angle with a value of 102.31 (8)° was found to be significantly smaller. The remarkable sterical hindrance between the bulky tert-butoxy substituent and the three phenyl groups is also reflected by the large C19—O—Si bond angle of 135.97 (12)° which is comparable to the C—O—Si angle in the structurally characterized silylenol ether isopropenyloxy[tris(pentafluorophenyl)]silane [138.9 (1)°] (Dilman et al., 2004). However, the value of this angle in both the latter and the title compound is noticeably larger than the respective angle in iso-propoxytriphenylsilane [124.8 (1)°] (Wojtczak et al., 1996). In the title structure, the three C—Si bond lengths have values of 1.8545 (19) Å (C7—Si), 1.8541 (18) Å (C13—Si) and 1.8623 (19) Å (C1—Si) and thus are comparable to the distances found in the related systems (Dilman et al., 2004; Lee et al., 2001; Wojtczak et al., 1996). It is also worth mentioning that the interatomic O—Si distance with 1.6244 (13) Å is slightly shorter than those in the reported tetrameric triphenylsilanol [values denoted from 1.6397 (19) Å to 1.646 (2) Å] (Bowes et al., 2002) and the aforementioned Ph3SiO-i-Pr [1.641 (2) Å] (Wojtczak et al., 1996). The distance between the aryl H4 atomes (H4—H4'; -x+1, -y, -z+2) equals to 2.2924 (7) Å and it was identified as the shortest intermolecular distance in the structure.

Related literature top

For the synthesis of Ph3SiO-t-Bu, see: Gilman et al. (1953). For the synthesis and structure of Ph3SiO-i-Pr, see: Wojtczak et al. (1996). For selected transition-metal complexes containing Ph3SiO groups, see: Bindl et al. (2009); Johnson et al. (2000); Ruiz et al. (2004); Schweder et al. (1999); Schweder et al. (2006); Wolff von Gudenberg et al. (1994). For selected main-group compounds containing Ph3SiO units, see: Apblett & Barron (1993); Chen et al. (2008); Ferguson et al. (1996); Ferguson et al. (2005). For applications of silyl ethers in protecting group chemistry, see: Scheidt et al. (2002); Vintonyak & Maier (2007). For comparative O—Si distances, see: Bowes et al. (2002); Wojtczak et al. (1996) and for C—Si distances, see: Dilman et al. (2004); Lee et al. (2001); Wojtczak et al. (1996).

Experimental top

Potassium-tert-butoxide (503 mg, 4.48 mmol), dissolved in absolute tetrahydrofuran (4 ml), was added dropwise at 0°C to a stirred solution of chlorotriphenylsilane (1.10 g, 3.73 mmol) in 7 ml of absolute tetrahydrofuran. The resulting reaction mixture was stirred for 4 h at room temperature. After saturated aqueous NH4Cl solution (10 ml) had been added, the organic layer was separated and the aqueous phase extracted with diethyl ether (2×10 ml and 2×5 ml). The combined ether extracts were washed with water (10 ml) and then dried over anhydrous Na2SO4. After filtration, all volatiles were removed under reduced pressure to yield 90% (1.11 g) of a white solid. The crude product was purified by Kugelrohr distillation (140°C, 0.8 mbar). Recrystallization of the title compound from diethyl ether resulted in the formation of small and transparent plates in the range of 0.30 × 0.20 × 0.20 mm, suitable for single-crystal x-ray studies.

1H-NMR (300.1 MHz, CDCl3): δ = 1.29 [s, 9H; C(CH3)3], 7.34–7.45 (m, 9H; Haromat.), 7.68–7.71 (m, 6H; Haromat.).

{1H}13C-NMR (75.5 MHz, CDCl3): δ = 32.1 (3 C) [C(CH3)3], 74.1 (1 C) [C(CH3)3], 127.6 (6 C) (Cmeta), 129.5 (3 C) (Cpara), 135.5 (6 C) (Cortho), 136.6 (3 C) (Cipso).

{1H}29Si-NMR (59.6 MHz, CDCl3): δ = -22.2 (1Si).

GC/EI—MS (70 eV): tR = 7.06 min; m/z (%) = 332 (11) [M+], 317 (62) [(M-Me)+], 259 (100) [(Ph3Si)+], 199 (79) [(Ph2SiHO)+], 105 (5) [(SiPh)+].

Analysis: C22H24OSi calculated: C 79.47%, H 7.28%; found: C 79.4%, H 7.3%.

Refinement top

All the H atoms could have been discerned in the difference electron density map. However, the H atoms were refined in their idealized geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and of Uiso(H) = 1.2Ueq(C) for the aryl H atoms. The applied C—H distance constraints: methyl 0.98 Å; aryl 0.95 Å.

Structure description top

Siloxy groups are versatile structural subunits both in organic and inorganic chemistry, e.g. in the design of transition metal based catalysts (Bindl et al., 2009; Schweder et al., 1999) such as in the recently developed molybdenum triphenylsiloxide complex, which serves as a catalyst for alkyne metathesis (Bindl et al., 2009). In the light of the impressive attainment in natural product synthesis, silyl ethers in addition proved to be an essential structural element in their role as commonly used protecting groups as they are applied for alcohol functionalities (Scheidt et al., 2002; Vintonyak & Maier, 2007). Aside from several known x-ray structures of triphenylsiloxy substituted transition metal complexes (Bindl et al., 2009; Johnson et al., 2000; Ruiz et al., 2004; Schweder et al., 1999; Schweder et al., 2006; Wolff von Gudenberg et al., 1994), there have also been reported some corresponding main group compounds (Apblett & Barron, 1993; Ferguson et al., 1996; Ferguson et al., 2005; Wojtczak et al., 1996) as well as palladium allyl species that contain triphenylsilyl ether subunits (Chen et al., 2008).

The title compound, tert-butoxytriphenylsilane, was originally synthesized by Gilman et al. (1953) by refluxing chlorotriphenylsilane in tert-butyl alcohol in the presence of dimethylaniline. While the crystal structure of Ph3SiO-i-Pr was found to be already determined (Wojtczak et al., 1996), no structural data about the bulkier substituted Ph3SiO-t-Bu have been described yet.

The molecule of the title compound features a distorted tetrahedral coordination around the silicon center. Contrary to the virtually tetrahedral O—Si—C7 and O—Si—C1 bond angles of 111.34 (8)° and 112.63 (8)°, respectively, the O—Si—C13 angle with a value of 102.31 (8)° was found to be significantly smaller. The remarkable sterical hindrance between the bulky tert-butoxy substituent and the three phenyl groups is also reflected by the large C19—O—Si bond angle of 135.97 (12)° which is comparable to the C—O—Si angle in the structurally characterized silylenol ether isopropenyloxy[tris(pentafluorophenyl)]silane [138.9 (1)°] (Dilman et al., 2004). However, the value of this angle in both the latter and the title compound is noticeably larger than the respective angle in iso-propoxytriphenylsilane [124.8 (1)°] (Wojtczak et al., 1996). In the title structure, the three C—Si bond lengths have values of 1.8545 (19) Å (C7—Si), 1.8541 (18) Å (C13—Si) and 1.8623 (19) Å (C1—Si) and thus are comparable to the distances found in the related systems (Dilman et al., 2004; Lee et al., 2001; Wojtczak et al., 1996). It is also worth mentioning that the interatomic O—Si distance with 1.6244 (13) Å is slightly shorter than those in the reported tetrameric triphenylsilanol [values denoted from 1.6397 (19) Å to 1.646 (2) Å] (Bowes et al., 2002) and the aforementioned Ph3SiO-i-Pr [1.641 (2) Å] (Wojtczak et al., 1996). The distance between the aryl H4 atomes (H4—H4'; -x+1, -y, -z+2) equals to 2.2924 (7) Å and it was identified as the shortest intermolecular distance in the structure.

For the synthesis of Ph3SiO-t-Bu, see: Gilman et al. (1953). For the synthesis and structure of Ph3SiO-i-Pr, see: Wojtczak et al. (1996). For selected transition-metal complexes containing Ph3SiO groups, see: Bindl et al. (2009); Johnson et al. (2000); Ruiz et al. (2004); Schweder et al. (1999); Schweder et al. (2006); Wolff von Gudenberg et al. (1994). For selected main-group compounds containing Ph3SiO units, see: Apblett & Barron (1993); Chen et al. (2008); Ferguson et al. (1996); Ferguson et al. (2005). For applications of silyl ethers in protecting group chemistry, see: Scheidt et al. (2002); Vintonyak & Maier (2007). For comparative O—Si distances, see: Bowes et al. (2002); Wojtczak et al. (1996) and for C—Si distances, see: Dilman et al. (2004); Lee et al. (2001); Wojtczak et al. (1996).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule tert-butoxytriphenylsilane with the displacement ellipsoids drawn at the 50% probability level.
tert-Butoxytriphenylsilane top
Crystal data top
C22H24OSiF(000) = 712
Mr = 332.5Dx = 1.170 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6858 reflections
a = 9.8054 (12) Åθ = 2.2–29.1°
b = 20.201 (7) ŵ = 0.13 mm1
c = 10.231 (2) ÅT = 173 K
β = 111.311 (18)°Block, colourless
V = 1888.0 (8) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4203 independent reflections
Radiation source: Enhance (Mo) X-ray Source2597 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ω scansθmax = 27.2°, θmin = 2.4°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
h = 1212
Tmin = 0.962, Tmax = 0.975k = 2625
23180 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.100H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0535P)2]
where P = (Fo2 + 2Fc2)/3
4203 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H24OSiV = 1888.0 (8) Å3
Mr = 332.5Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8054 (12) ŵ = 0.13 mm1
b = 20.201 (7) ÅT = 173 K
c = 10.231 (2) Å0.30 × 0.20 × 0.20 mm
β = 111.311 (18)°
Data collection top
Oxford Diffraction Xcalibur S
diffractometer
4203 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2006)
2597 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.975Rint = 0.045
23180 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.89Δρmax = 0.37 e Å3
4203 reflectionsΔρmin = 0.24 e Å3
220 parameters
Special details top

Experimental. empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.27284 (19)0.12279 (9)0.61661 (17)0.0278 (4)
C20.1958 (2)0.08722 (10)0.68339 (19)0.0403 (5)
H20.09350.08080.6370.048*
C30.2644 (3)0.06106 (11)0.8152 (2)0.0556 (6)
H30.20980.03630.85830.067*
C40.4122 (3)0.07079 (12)0.8846 (2)0.0615 (7)
H40.45930.05350.97640.074*
C50.4911 (3)0.10533 (11)0.8215 (2)0.0506 (6)
H50.59320.11190.86920.061*
C60.4227 (2)0.13062 (9)0.68881 (19)0.0358 (5)
H60.47890.1540.64540.043*
C70.27111 (17)0.23135 (8)0.41104 (17)0.0238 (4)
C80.27112 (18)0.24872 (9)0.27948 (18)0.0285 (4)
H80.2230.22070.20170.034*
C90.3389 (2)0.30526 (9)0.25882 (19)0.0331 (4)
H90.33680.31620.16780.04*
C100.40953 (19)0.34582 (9)0.3708 (2)0.0349 (4)
H100.45880.38430.35760.042*
C110.40926 (19)0.33105 (9)0.50166 (19)0.0337 (5)
H110.45620.35980.57840.04*
C120.34073 (19)0.27453 (9)0.52133 (18)0.0292 (4)
H120.34090.26470.61220.035*
C130.01766 (18)0.17492 (9)0.40683 (17)0.0262 (4)
C140.1271 (2)0.12846 (10)0.3473 (2)0.0400 (5)
H140.1010.08560.32610.048*
C150.2717 (2)0.14281 (12)0.3185 (2)0.0533 (6)
H150.34440.11010.27760.064*
C160.3119 (2)0.20462 (12)0.3486 (2)0.0504 (6)
H160.41210.21470.32880.061*
C170.2070 (2)0.25123 (10)0.4069 (2)0.0425 (5)
H170.23420.2940.42720.051*
C180.0612 (2)0.23652 (9)0.43663 (18)0.0315 (4)
H180.01080.26940.47840.038*
C190.2491 (2)0.04775 (9)0.29651 (19)0.0333 (4)
C200.2387 (2)0.01047 (10)0.3858 (2)0.0500 (6)
H20A0.28890.00040.48520.075*
H20B0.2850.04930.36210.075*
H20C0.13560.02010.36790.075*
C210.1796 (3)0.02943 (11)0.1418 (2)0.0527 (6)
H21A0.07640.0180.11960.079*
H21B0.23110.00860.12230.079*
H21C0.18640.06710.08420.079*
C220.4025 (2)0.06981 (12)0.3291 (3)0.0613 (7)
H22A0.4040.10620.26640.092*
H22B0.46070.03280.31590.092*
H22C0.44390.0850.42670.092*
O0.16116 (12)0.10112 (6)0.31536 (11)0.0266 (3)
Si0.17626 (5)0.15575 (2)0.43643 (5)0.02347 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0329 (10)0.0245 (10)0.0250 (9)0.0035 (8)0.0092 (8)0.0018 (8)
C20.0516 (13)0.0398 (12)0.0318 (11)0.0006 (10)0.0180 (10)0.0021 (9)
C30.094 (2)0.0419 (14)0.0394 (13)0.0094 (13)0.0348 (14)0.0088 (11)
C40.098 (2)0.0445 (15)0.0280 (12)0.0286 (14)0.0059 (13)0.0077 (11)
C50.0549 (14)0.0406 (13)0.0373 (12)0.0218 (11)0.0060 (11)0.0078 (10)
C60.0378 (11)0.0305 (11)0.0320 (11)0.0081 (9)0.0042 (9)0.0047 (9)
C70.0190 (8)0.0253 (9)0.0261 (10)0.0020 (7)0.0069 (7)0.0019 (8)
C80.0297 (10)0.0275 (10)0.0268 (10)0.0004 (8)0.0088 (8)0.0013 (8)
C90.0383 (11)0.0327 (11)0.0314 (11)0.0013 (9)0.0162 (9)0.0046 (9)
C100.0326 (10)0.0257 (10)0.0460 (12)0.0034 (9)0.0140 (9)0.0053 (9)
C110.0322 (10)0.0297 (11)0.0319 (11)0.0064 (8)0.0029 (8)0.0030 (8)
C120.0299 (10)0.0293 (10)0.0250 (9)0.0008 (8)0.0060 (8)0.0012 (8)
C130.0251 (9)0.0294 (10)0.0256 (9)0.0010 (8)0.0108 (7)0.0060 (8)
C140.0265 (10)0.0374 (12)0.0571 (13)0.0021 (9)0.0164 (9)0.0025 (10)
C150.0244 (10)0.0573 (16)0.0770 (16)0.0071 (11)0.0170 (11)0.0003 (13)
C160.0267 (11)0.0609 (16)0.0673 (15)0.0102 (11)0.0214 (11)0.0186 (13)
C170.0437 (12)0.0417 (13)0.0516 (13)0.0170 (11)0.0285 (10)0.0152 (10)
C180.0341 (10)0.0313 (11)0.0331 (11)0.0008 (9)0.0169 (8)0.0034 (9)
C190.0318 (10)0.0343 (11)0.0334 (11)0.0086 (9)0.0113 (8)0.0021 (9)
C200.0624 (15)0.0318 (12)0.0506 (13)0.0106 (11)0.0142 (11)0.0014 (10)
C210.0675 (16)0.0492 (14)0.0397 (13)0.0188 (12)0.0176 (11)0.0022 (11)
C220.0397 (13)0.0515 (15)0.0967 (19)0.0006 (12)0.0295 (13)0.0100 (13)
O0.0239 (6)0.0260 (7)0.0280 (7)0.0030 (5)0.0070 (5)0.0026 (5)
Si0.0205 (2)0.0252 (3)0.0237 (3)0.0009 (2)0.00684 (18)0.0001 (2)
Geometric parameters (Å, º) top
C1—C21.389 (2)C13—C141.388 (3)
C1—C61.393 (2)C13—Si1.8544 (17)
C1—Si1.8626 (18)C14—C151.371 (3)
C2—C31.375 (3)C14—H140.95
C2—H20.95C15—C161.378 (3)
C3—C41.376 (3)C15—H150.95
C3—H30.95C16—C171.362 (3)
C4—C51.366 (3)C16—H160.95
C4—H40.95C17—C181.382 (2)
C5—C61.375 (3)C17—H170.95
C5—H50.95C18—H180.95
C6—H60.95C19—O1.437 (2)
C7—C81.391 (2)C19—C221.485 (3)
C7—C121.393 (2)C19—C201.516 (3)
C7—Si1.8549 (18)C19—C211.524 (3)
C8—C91.376 (2)C20—H20A0.98
C8—H80.95C20—H20B0.98
C9—C101.374 (2)C20—H20C0.98
C9—H90.95C21—H21A0.98
C10—C111.373 (3)C21—H21B0.98
C10—H100.95C21—H21C0.98
C11—C121.376 (2)C22—H22A0.98
C11—H110.95C22—H22B0.98
C12—H120.95C22—H22C0.98
C13—C181.385 (2)O—Si1.6251 (12)
C2—C1—C6117.08 (17)C14—C15—H15120
C2—C1—Si120.00 (14)C16—C15—H15120
C6—C1—Si122.90 (14)C17—C16—C15119.53 (19)
C3—C2—C1121.4 (2)C17—C16—H16120.2
C3—C2—H2119.3C15—C16—H16120.2
C1—C2—H2119.3C16—C17—C18120.27 (19)
C2—C3—C4119.9 (2)C16—C17—H17119.9
C2—C3—H3120C18—C17—H17119.9
C4—C3—H3120C17—C18—C13121.47 (18)
C5—C4—C3120.0 (2)C17—C18—H18119.3
C5—C4—H4120C13—C18—H18119.3
C3—C4—H4120O—C19—C22110.67 (16)
C4—C5—C6120.0 (2)O—C19—C20109.03 (15)
C4—C5—H5120C22—C19—C20112.45 (17)
C6—C5—H5120O—C19—C21104.93 (14)
C5—C6—C1121.6 (2)C22—C19—C21109.93 (17)
C5—C6—H6119.2C20—C19—C21109.56 (17)
C1—C6—H6119.2C19—C20—H20A109.5
C8—C7—C12116.97 (16)C19—C20—H20B109.5
C8—C7—Si121.30 (13)H20A—C20—H20B109.5
C12—C7—Si121.69 (13)C19—C20—H20C109.5
C9—C8—C7121.87 (17)H20A—C20—H20C109.5
C9—C8—H8119.1H20B—C20—H20C109.5
C7—C8—H8119.1C19—C21—H21A109.5
C10—C9—C8119.50 (17)C19—C21—H21B109.5
C10—C9—H9120.3H21A—C21—H21B109.5
C8—C9—H9120.3C19—C21—H21C109.5
C11—C10—C9120.31 (17)H21A—C21—H21C109.5
C11—C10—H10119.8H21B—C21—H21C109.5
C9—C10—H10119.8C19—C22—H22A109.5
C10—C11—C12119.81 (17)C19—C22—H22B109.5
C10—C11—H11120.1H22A—C22—H22B109.5
C12—C11—H11120.1C19—C22—H22C109.5
C11—C12—C7121.52 (17)H22A—C22—H22C109.5
C11—C12—H12119.2H22B—C22—H22C109.5
C7—C12—H12119.2C19—O—Si135.97 (11)
C18—C13—C14116.93 (16)O—Si—C13102.32 (7)
C18—C13—Si122.11 (13)O—Si—C7111.33 (7)
C14—C13—Si120.89 (14)C13—Si—C7109.98 (8)
C15—C14—C13121.72 (19)O—Si—C1112.61 (7)
C15—C14—H14119.1C13—Si—C1111.02 (8)
C13—C14—H14119.1C7—Si—C1109.42 (8)
C14—C15—C16120.1 (2)

Experimental details

Crystal data
Chemical formulaC22H24OSi
Mr332.5
Crystal system, space groupMonoclinic, P21/n
Temperature (K)173
a, b, c (Å)9.8054 (12), 20.201 (7), 10.231 (2)
β (°) 111.311 (18)
V3)1888.0 (8)
Z4
Radiation typeMo Kα
µ (mm1)0.13
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur S
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2006)
Tmin, Tmax0.962, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
23180, 4203, 2597
Rint0.045
(sin θ/λ)max1)0.644
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.100, 0.89
No. of reflections4203
No. of parameters220
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.24

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. JOB thanks the Studienstiftung des deutschen Volkes (Max Weber-Programm) for a scholarship.

References

First citationApblett, A. W. & Barron, A. R. (1993). J. Crystallogr. Spectrosc. Res. 23, 529–532.  CSD CrossRef CAS Web of Science Google Scholar
First citationBindl, M., Stade, R., Heilmann, E. K., Picot, A., Goddard, R. & Fürstner, A. (2009). J. Am. Chem. Soc. 131, 9468–9470.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBowes, K. F., Glidewell, C. & Low, J. N. (2002). Acta Cryst. C58, o409–o415.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChen, C., Luo, S. & Jordan, R. F. (2008). J. Am. Chem. Soc. 130, 12892–12893.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDilman, A. D., Belyakov, P. A., Korlyukov, A. A. & Tartakovsky, V. A. (2004). Tetrahedron Lett. 45, 3741–3744.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFerguson, G., O'Leary, B. J. & Spalding, T. R. (2005). Acta Cryst. E61, o906–o907.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFerguson, G., Pollock, J. W., O'Leary, B. & Spalding, T. R. (1996). Acta Cryst. C52, 619–622.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGilman, H., Brook, A. G. & Miller, L. S. (1953). J. Am. Chem. Soc. 75, 3757–3759.  CrossRef CAS Web of Science Google Scholar
First citationJohnson, B. F. G., Klunduk, M. C., Martin, C. M., Sankar, G., Teate, S. J. & Thomas, J. M. (2000). J. Organomet. Chem. 596, 221–225.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, S. J., Han, B. H., Sung, C.-K., Kim, J.-G. & Suh, I.-H. (2001). Acta Cryst. E57, o271–o272.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationRuiz, J., Vicente, C., Rodríguez, V., Cutillas, N., López, G. & Ramírez de Arellano, C. (2004). J. Organomet. Chem. 689, 1872–1875.  Web of Science CSD CrossRef CAS Google Scholar
First citationScheidt, K. A., Bannister, T. D., Tasaka, A., Wendt, M. D., Savall, B. M., Fegley, G. J. & Roush, W. R. (2002). J. Am. Chem. Soc. 124, 6981–6990.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSchweder, B., Görls, H. & Walther, D. (1999). Inorg. Chim. Acta, 286, 14–23.  Web of Science CSD CrossRef CAS Google Scholar
First citationSchweder, B., Walther, D. & Imhof, W. (2006). Acta Cryst. E62, m465–m468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVintonyak, V. V. & Maier, M. E. (2007). Angew. Chem. Int. Ed. 46, 5209–5211.  Web of Science CrossRef CAS Google Scholar
First citationWojtczak, W. A., Hampden-Smith, M. J. & Duesler, E. N. (1996). Inorg. Chem. 35, 6638–6639.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationWolff von Gudenberg, D., Kang, H.-C., Massa, W. & Dehnicke, K. (1994). Z. Anorg. Allg. Chem. 620, 1719–1724.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds