organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,9-Di­methyl-6H,13H-5:12,7:14-di­methano­dibenzo[d,i][1,3,6,8]tetraazecine

aDepartamento de Química, Universidad Nacional de Colombia, Bogotá, AA 14490, Colombia, and bEd. CACTUS, Campus Sur, Unidade de Raios X, Universidad de Santiago de Compostela, 15782, Spain
*Correspondence e-mail: ariverau@unal.edu.co

(Received 12 August 2009; accepted 22 September 2009; online 26 September 2009)

In the title structure, C18H20N4, the aromatic rings are almost orthogonal [81.6 (2)°]. The mol­ecule has symmetry 2 since it is situated on a crystallographic twofold axis. There are only weak inter­molecular inter­actions present in the structure, notably C—H⋯π-electron ring inter­actions. The 1H and 13C NMR spectra are in accordance with the X-ray structure analysis.

Related literature

For the synthesis of the title compound, see: Volpp (1962[Volpp, G. (1962). Chem. Ber. 95, 1493-1494.]); Kuznetsov et al. (2007[Kuznetsov, A. I., Shukkur, A. H. & Kamara, K. (2007). Russ. Chem. Bull. Int. Ed. 56, 563-565.]). For related structures, see: Dickinson & Raymond (1923[Dickinson, R. C. & Raymond, A. L. (1923). J. Am. Chem. Soc. 45, 22-29.]); Murray-Rust (1974[Murray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136-1141.]); Murray-Rust & Ridell (1975[Murray-Rust, P. & Ridell, F. G. (1975). Can. J. Chem. 53, 1933-1935.]); Murray-Rust & Smith (1975[Murray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587-589.]); Glister et al. (2005[Glister, J. F., Vaughan, K., Biradha, K. & Zaworotko, M. J. (2005). J. Mol. Struct. 749, 78-83.]); Rivera et al. (2007[Rivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180-186.]); Volpp (1962[Volpp, G. (1962). Chem. Ber. 95, 1493-1494.]). For the chemical reactivity of cyclic aminals, see: Rivera et al. (2005[Rivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105-115.]); Rivera & Maldonado (2006[Rivera, A. & Maldonado, M. (2006). Tetrahedron Lett. 47, 7467-7471.]).

[Scheme 1]

Experimental

Crystal data
  • C18H20N4

  • Mr = 292.38

  • Orthorhombic, A b a 2

  • a = 9.9777 (3) Å

  • b = 18.8351 (4) Å

  • c = 7.6963 (2) Å

  • V = 1446.37 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 100 K

  • 0.16 × 0.15 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2006[Sheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.]) Tmin = 0.872, Tmax = 0.995

  • 10245 measured reflections

  • 807 independent reflections

  • 737 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 807 reflections

  • 102 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Geometry of C—H⋯ Cg interactions (Å,°)

Contact C–H C⋯Cg H⋯Cg C—H⋯Cg
C2–H2⋯Cgi 0.95 3.509 (2) 2.68 147
C10–H10BCgii 0.98 3.559 (2) 2.61 163
Symmetry codes: (i) [-x+{3\over2}, y, z+{1 \over 2}]; (ii) [-x+2, -y+{1\over2}, z-{1\over2}]. Cg denotes the centroid of the benzene ring C1–C6.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

For many years, cyclic aminals (gem-diamine) have attracted intense attention because of their intriguing molecular structures, many of which have been determined by the X-ray crystallography (Murray-Rust, 1974; Murray-Rust & Ridell, 1975; Murray-Rust & Smith, 1975; Glister et al., 2005) and/or by 1H- and 13C-NMR spectroscopy (Kuznetsov et al., 2007). In the course of the research of the reactivity of aminals we have synthesized crystals of the title compound that contains a cyclic aminal, i. e. 2,9-dimethyl-6H,13H-5:12,7:14-dimethanedibenzo [d,i][1,3,6,8]tetraazecine.

The title molecule is shown in Fig. 1. The planes through the symmetry-related aromatic rings are almost perpendicular: the interplanar angle through the atoms C1//C2//C3//C4//C5//C6 and its mentioned symmetry-related plane by (2-x,-y,z) is 81.6 (2)°.

There are only weak intermolecular interactions present in the structure, notably C-H···π-electron ring interactions (Tab. 1, Fig. 2).

Related literature top

For the synthesis of the title compound, see: Volpp (1962); Kuznetsov et al. (2007). For related structures, see: Dickinson & Raymond (1923); Murray-Rust (1974); Murray-Rust & Ridell (1975); Murray-Rust & Smith (1975); Glister et al. (2005); Rivera et al. (2007); Volpp (1962). For the chemical reactivity of cyclic aminals, see: Rivera et al. (2005); Rivera & Maldonado (2006).

Experimental top

A solution of 4-methyl-1,2-diaminebenzene (100 mg, 0.82 mmol) in water (8 ml) and methanol (2 ml) was added dropwise at 278 K to 5 ml of 37% aqueous formaldehyde while stirring it. The reaction mixture was removed from the cooling bath and allowed to warm to room temperature while still stirring it. After stirring at room temperature for 1 h the resultant precipitate was filtered off, washed with water, dried in vacuum and recrystallized from 2-propanol to give the title compound with 65% yield. The melting point of the title structure is 465 K. The melting point was determined visually using glass capillary tube with an Electrothermal melting point apparatus, model 9100, accuracy ±0.5 K, manufacturer: Electrothermal Thermo Scientific.

The NMR spectra were acquired at room temperature on a Bruker AMX 400 Advance spectrometer. 1H NMR (δ, 399.9 MHz, CDCl3): 2.33, 4.34, 6.92, 6.98. 13C NMR (δ, 100.0 MHz, CDCl3): 21.0, 68.6, 126.1, 126.7, 136.2, 150.3, 153.2. m/z (EI): 292.2 (M+).

Refinement top

All the H atoms were discernible in the difference electron density maps. However, the H atoms were constrained by the riding model approximation: C—Hmethyl=0.96 Å; C—Haryl=0.93 Å; UisoHmethyl=1.5UeqCmethyl; UisoHaryl=1.2UeqCaryl. In the absence of significant anomalous scattering effects 667 Friedel pairs have been merged.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title molecule with the displacement ellipsoids shown at the 50% probability level with the atomic labelling scheme. The symmetry-related atoms by a crystallographic two-fold axis are indicated by "i".
[Figure 2] Fig. 2. C—H···π-electron arene intermolecular weak contacts in the title structure. The ring centroids are also depicted as red circles. [Symmetry code: (i) 3/2-x,y,1/2+z; (ii) 2-x,1/2-y,-1/2+z.]
2,9-Dimethyl-6H,13H-5:12,7:14- dimethanodibenzo[d,i][1,3,6,8]tetraazecine top
Crystal data top
C18H20N4Dx = 1.343 Mg m3
Mr = 292.38Melting point: 465 K
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 3533 reflections
a = 9.9777 (3) Åθ = 3.0–26.1°
b = 18.8351 (4) ŵ = 0.08 mm1
c = 7.6963 (2) ÅT = 100 K
V = 1446.37 (7) Å3Prism, colourless
Z = 40.16 × 0.15 × 0.06 mm
F(000) = 624
Data collection top
Bruker APEXII CCD
diffractometer
737 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.041
ω and ϕ scansθmax = 26.4°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
h = 1212
Tmin = 0.872, Tmax = 0.995k = 2323
10245 measured reflectionsl = 99
807 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: difference Fourier map
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0593P)2 + 0.5089P]
where P = (Fo2 + 2Fc2)/3
807 reflections(Δ/σ)max < 0.001
102 parametersΔρmax = 0.18 e Å3
1 restraintΔρmin = 0.18 e Å3
47 constraints
Crystal data top
C18H20N4V = 1446.37 (7) Å3
Mr = 292.38Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 9.9777 (3) ŵ = 0.08 mm1
b = 18.8351 (4) ÅT = 100 K
c = 7.6963 (2) Å0.16 × 0.15 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
807 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2006)
737 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 0.995Rint = 0.041
10245 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
807 reflectionsΔρmin = 0.18 e Å3
102 parameters
Special details top

Experimental. The temperature was set with accuracy ±2 K.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.8848 (2)0.09201 (10)0.1159 (3)0.0154 (5)
C20.7950 (2)0.14289 (11)0.1743 (3)0.0179 (5)
H20.72730.13030.25550.021*
C30.8041 (2)0.21256 (11)0.1138 (3)0.0189 (5)
H30.74070.24690.15160.023*
C40.9044 (2)0.23234 (10)0.0007 (3)0.0179 (5)
C50.9937 (2)0.18036 (11)0.0609 (3)0.0183 (5)
H51.06280.19320.13980.022*
C60.9825 (2)0.11024 (11)0.0067 (3)0.0161 (5)
C71.00000.00000.1714 (4)0.0185 (7)
H7A0.93370.02350.24790.022*0.50
H7B1.06630.02350.24790.022*0.50
C80.8318 (2)0.03101 (10)0.0540 (3)0.0173 (5)
H8A0.79660.07280.11730.021*
H8B0.75560.00950.00930.021*
C91.00000.00000.2796 (4)0.0157 (7)
H9A0.97560.04020.35620.019*0.50
H9B1.02440.04020.35620.019*0.50
C100.9187 (2)0.30907 (11)0.0569 (3)0.0229 (5)
H10A0.83080.33220.05380.034*
H10B0.95450.31090.17540.034*
H10C0.98000.33370.02210.034*
N11.07122 (18)0.05643 (9)0.0750 (2)0.0177 (4)
N20.87874 (17)0.02065 (8)0.1833 (2)0.0155 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0184 (10)0.0147 (9)0.0131 (10)0.0011 (7)0.0031 (9)0.0001 (9)
C20.0181 (10)0.0192 (10)0.0163 (11)0.0007 (8)0.0019 (9)0.0009 (9)
C30.0212 (10)0.0174 (9)0.0179 (11)0.0028 (8)0.0042 (9)0.0003 (9)
C40.0235 (11)0.0157 (10)0.0146 (10)0.0019 (8)0.0050 (10)0.0007 (8)
C50.0228 (11)0.0176 (9)0.0145 (10)0.0032 (8)0.0006 (9)0.0008 (9)
C60.0177 (10)0.0171 (10)0.0136 (10)0.0003 (8)0.0008 (9)0.0003 (8)
C70.0250 (18)0.0191 (15)0.0115 (16)0.0031 (13)0.0000.000
C80.0171 (10)0.0164 (9)0.0185 (11)0.0012 (8)0.0021 (9)0.0029 (9)
C90.0235 (18)0.0126 (14)0.0110 (17)0.0001 (12)0.0000.000
C100.0295 (12)0.0169 (10)0.0223 (12)0.0004 (9)0.0031 (10)0.0023 (9)
N10.0213 (9)0.0153 (8)0.0166 (10)0.0011 (7)0.0018 (8)0.0010 (7)
N20.0192 (9)0.0127 (8)0.0147 (9)0.0002 (7)0.0005 (8)0.0001 (7)
Geometric parameters (Å, º) top
C1—C21.386 (3)C7—H7A0.9900
C1—C61.399 (3)C7—H7B0.9900
C1—N21.442 (3)C8—N1i1.467 (3)
C2—C31.395 (3)C8—N21.468 (3)
C2—H20.9500C8—H8A0.9900
C3—C41.385 (3)C8—H8B0.9900
C3—H30.9500C9—N21.471 (2)
C4—C51.403 (3)C9—N2i1.471 (2)
C4—C101.515 (3)C9—H9A0.9900
C5—C61.390 (3)C9—H9B0.9900
C5—H50.9500C10—H10A0.9800
C6—N11.445 (3)C10—H10B0.9800
C7—N1i1.478 (2)C10—H10C0.9800
C7—N11.478 (2)N1—C8i1.467 (3)
C2—C1—C6119.92 (19)N1i—C8—N2117.66 (16)
C2—C1—N2120.06 (19)N1i—C8—H8A107.9
C6—C1—N2120.01 (18)N2—C8—H8A107.9
C1—C2—C3120.0 (2)N1i—C8—H8B107.9
C1—C2—H2120.0N2—C8—H8B107.9
C3—C2—H2120.0H8A—C8—H8B107.2
C4—C3—C2120.8 (2)N2—C9—N2i119.5 (3)
C4—C3—H3119.6N2—C9—H9A107.4
C2—C3—H3119.6N2i—C9—H9A107.4
C3—C4—C5118.80 (19)N2—C9—H9B107.4
C3—C4—C10120.40 (19)N2i—C9—H9B107.4
C5—C4—C10120.8 (2)H9A—C9—H9B107.0
C6—C5—C4120.8 (2)C4—C10—H10A109.5
C6—C5—H5119.6C4—C10—H10B109.5
C4—C5—H5119.6H10A—C10—H10B109.5
C5—C6—C1119.49 (19)C4—C10—H10C109.5
C5—C6—N1120.5 (2)H10A—C10—H10C109.5
C1—C6—N1120.00 (18)H10B—C10—H10C109.5
N1i—C7—N1119.8 (3)C6—N1—C8i112.77 (17)
N1i—C7—H7A107.4C6—N1—C7113.10 (15)
N1—C7—H7A107.4C8i—N1—C7114.98 (15)
N1i—C7—H7B107.4C1—N2—C8112.79 (17)
N1—C7—H7B107.4C1—N2—C9113.17 (14)
H7A—C7—H7B106.9C8—N2—C9115.38 (15)
C6—C1—C2—C31.4 (3)C1—C6—N1—C8i70.2 (2)
N2—C1—C2—C3177.63 (19)C5—C6—N1—C7118.0 (2)
C1—C2—C3—C41.9 (3)C1—C6—N1—C762.4 (3)
C2—C3—C4—C52.7 (3)N1i—C7—N1—C677.89 (15)
C2—C3—C4—C10176.2 (2)N1i—C7—N1—C8i53.62 (14)
C3—C4—C5—C60.2 (3)C2—C1—N2—C8110.4 (2)
C10—C4—C5—C6178.7 (2)C6—C1—N2—C870.6 (2)
C4—C5—C6—C13.1 (3)C2—C1—N2—C9116.4 (2)
C4—C5—C6—N1177.34 (19)C6—C1—N2—C962.7 (3)
C2—C1—C6—C53.9 (3)N1i—C8—N2—C179.7 (2)
N2—C1—C6—C5175.2 (2)N1i—C8—N2—C952.5 (3)
C2—C1—C6—N1176.53 (19)N2i—C9—N2—C178.27 (15)
N2—C1—C6—N14.4 (3)N2i—C9—N2—C853.75 (14)
C5—C6—N1—C8i109.4 (2)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC18H20N4
Mr292.38
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)100
a, b, c (Å)9.9777 (3), 18.8351 (4), 7.6963 (2)
V3)1446.37 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.16 × 0.15 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2006)
Tmin, Tmax0.872, 0.995
No. of measured, independent and
observed [I > 2σ(I)] reflections
10245, 807, 737
Rint0.041
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06
No. of reflections807
No. of parameters102
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.18

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Geometry of C—H··· Cg interactions (Å,°). top
Cg denotes the centroid of the benzene ring (C1//C2//C3//C4//C5//C6).
ContactC–HC···CgH···CgC—H···Cg
C2–H2···Cgi0.953.509 (2)2.68147
C10–H10B···Cgii0.983.559 (2)2.61163
Symmetry codes: (i) 3/2-x,y,1/2+z; (ii) 2-x,1/2-y,-1/2+z.
 

Acknowledgements

Financial support of this research from the Division de Investigación sede Bogotá (DIB), and from the Departamento de Química, Universidad Nacional de Colombia, is gratefully acknowledged. DG-S thanks COLCIENCIAS for a fellowship.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDickinson, R. C. & Raymond, A. L. (1923). J. Am. Chem. Soc. 45, 22–29.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGlister, J. F., Vaughan, K., Biradha, K. & Zaworotko, M. J. (2005). J. Mol. Struct. 749, 78–83.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuznetsov, A. I., Shukkur, A. H. & Kamara, K. (2007). Russ. Chem. Bull. Int. Ed. 56, 563–565.  Web of Science CrossRef CAS Google Scholar
First citationMurray-Rust, P. (1974). J. Chem. Soc. Perkin Trans. 2, pp. 1136–1141.  Google Scholar
First citationMurray-Rust, P. & Ridell, F. G. (1975). Can. J. Chem. 53, 1933–1935.  CrossRef CAS Web of Science Google Scholar
First citationMurray-Rust, P. & Smith, I. (1975). Acta Cryst. B31, 587–589.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRivera, A. & Maldonado, M. (2006). Tetrahedron Lett. 47, 7467–7471.  Web of Science CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J., Hernández-Barragán, A. & Joseph-Nathan, P. (2007). J. Mol. Struct. 831, 180–186.  Web of Science CSD CrossRef CAS Google Scholar
First citationRivera, A., Ríos-Motta, J., Quevedo, R. & Joseph-Nathan, P. (2005). Rev. Colomb. Quim. 34, 105–115.  CAS Google Scholar
First citationSheldrick, G. M. (2006). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVolpp, G. (1962). Chem. Ber. 95, 1493–1494.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds