organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Amino­pyridinio)acetate

aChifeng University, Chifeng 024000, People's Republic of China
*Correspondence e-mail: liu_ge2008@163.com

(Received 24 February 2009; accepted 13 March 2009; online 25 March 2009)

In the title compound, C7H8N2O2, the dihedral angle between the pyridinium ring and the carboxyl­atomethyl group is 74.5 (1)°. Strong inter­molecular N—H⋯O hydrogen bonds between the amine and carboxyl­ate groups form a layered hydrogen-bonded network perpendicular to [010]. In addition, there are some weak C—H⋯O hydrogen bonds present in the structure.

Related literature

For the biological activity of pyridinium derivatives, see: Sliwa & Mianowska (1989[Sliwa, W. & Mianowska, B. (1989). Heterocycles, 29, 557-595.]). For hydrogen-bond definitions, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.]). For the analysis of bond order, see: Ludvík et al. (2007[Ludvík, J., Urban, J., Fábry, J. & Císařová, I. (2007). Acta Cryst. C63, o259-o262.]). For the Cambridge Structural Database (Version 5.30 and addenda up to 12th February 2009), see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8N2O2

  • Mr = 152.15

  • Monoclinic, P 21 /c

  • a = 8.9766 (18) Å

  • b = 9.0555 (18) Å

  • c = 8.9886 (18) Å

  • β = 106.57 (3)°

  • V = 700.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.16 × 0.14 × 0.12 mm

Data collection
  • Rigaku R-AXIS RAPID-S diffractometer

  • Absorption correction: none

  • 7228 measured reflections

  • 1599 independent reflections

  • 1123 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.117

  • S = 1.11

  • 1599 reflections

  • 106 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.859 (16) 2.095 (16) 2.946 (2) 170 (2)
N1—H1A⋯O1i 0.859 (16) 2.605 (19) 3.265 (2) 134.5 (18)
N1—H1B⋯O2ii 0.881 (15) 2.041 (17) 2.891 (2) 162 (2)
C3—H3⋯O1iii 0.93 2.42 3.334 (3) 166
C4—H4⋯O1iv 0.93 2.38 3.247 (3) 155
C6—H6A⋯O1iv 0.97 2.49 3.359 (3) 149
Symmetry codes: (i) [x+1, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) x+1, y, z; (iii) -x, -y, -z; (iv) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It is known that pyridinium derivatives have antibacterial and fungicidal activities (Sliwa & Mianowska, 1989). As 4-amino-pyridinium-N-acetate contains both amino and carboxylate groups, it may form interesting hydrogen-bonded network. Therefore the crystal structure analysis of the title compound has been undertaken. The molecular structure of the title structure is shown in Fig. 1. The dihedral angle between the planes of pyridinium ring and carboxymethylene fragment is 74.5°. Strong (Desiraju & Steiner, 1999) intermolecular N1—H1A···O2i and N1—H1B···O2ii (i: x + 1, -y + 1/2, z + 1/2; ii: x + 1, y, z) hydrogen bonds form the zig-zagged layer perpendicular to [010] (Fig. 2; Table 1), O2 is the acceptor of both amine hydrogens. In addition, weak hydrogen bonds between the pyridinium ring, methylene and the carboxylate groups, i.e. C4—H4···O1iv and C6—H6A···O1iv (iv: x, -y + 1/2, z + 1/2), are also involved in these layers. C3—H3···O1iii (iii: -x, -y, -z) hydrogen bonds between the pyridinium ring and the carboxylate groups interconnect the neighbouring layers (Table 1).

Related literature top

For the biological activity of pyridinium derivatives, see: Sliwa & Mianowska (1989). For hydrogen-bond definitions, see: Desiraju & Steiner (1999). For the analysis of bond order, see: Ludvík et al. (2007). For the Cambridge Structural Database (Version 5.30 and addenda up to 12th February 2009), see: Allen (2002). [Please check added text]

Experimental top

A solution of 4-aminopyridine (5.46 g, 0.058 mol), 1-chloroacetic acid (13.1 g, 0.139 mol) and Na2CO3 (16.6 g, 0.157 mol) in 110 ml of H2O was stirred for 3 h at 373 K. Then the solution was acidified by concentrated HCl to pH = 2. The solution was left overnight in a refrigerator, the precipitation was filtered, affording colourless block shaped (about 0.12 mm - 0.14 mm) crystals of 4-amino-pyridinium-N-acetate.

Refinement top

All the hydrogens were discernible in the difference electron density map. All the H atoms except the amine group were placed into the geometrically idealized positions and constrained to ride on their parent atoms with Cmethylene—H = 0.97 Å, Caryl—H = 0.93 Å. Uiso(H) = 1.2Ueq(Cparent). The distances N—H of the amine hydrogens were restrained to 0.86 (2) Å because this group is involved in the hydrogen bond pattern, the bond order of C1—N1 (1.331 (2) Å) is about 1.5 (Ludvík et al., 2007) and the result of the search in the Cambridge Crystallographic Structure Database (Allen, 2002; Version 5.30 and addenda up to 12th February 2009) gave the Namine—H···O about 160° as the most probable result. The displacement parameters of the amine hydrogens were constrained: Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of 4-amino-pyridinium-N-acetate with the displacement ellipsoids shown at the 30% probability level.
[Figure 2] Fig. 2. A depiction of the layer perpendicular to b axis with the N1—H1A···O2 and N1—H1B···O2 hydrogen bonds. Symmetry codes: (i) x + 1, -y + 1/2, z + 1/2; (ii) x + 1, y, z.
2-(4-Aminopyridinio)acetate top
Crystal data top
C7H8N2O2F(000) = 320
Mr = 152.15Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5894 reflections
a = 8.9766 (18) Åθ = 3.3–27.6°
b = 9.0555 (18) ŵ = 0.11 mm1
c = 8.9886 (18) ÅT = 293 K
β = 106.57 (3)°Prism, colourless
V = 700.3 (2) Å30.16 × 0.14 × 0.12 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1123 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 3.3°
ω scansh = 1111
7228 measured reflectionsk = 1111
1599 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: difference Fourier map
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2309P]
where P = (Fo2 + 2Fc2)/3
1599 reflections(Δ/σ)max < 0.001
106 parametersΔρmax = 0.17 e Å3
2 restraintsΔρmin = 0.20 e Å3
26 constraints
Crystal data top
C7H8N2O2V = 700.3 (2) Å3
Mr = 152.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9766 (18) ŵ = 0.11 mm1
b = 9.0555 (18) ÅT = 293 K
c = 8.9886 (18) Å0.16 × 0.14 × 0.12 mm
β = 106.57 (3)°
Data collection top
Rigaku R-AXIS RAPID-S
diffractometer
1123 reflections with I > 2σ(I)
7228 measured reflectionsRint = 0.052
1599 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0552 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 0.17 e Å3
1599 reflectionsΔρmin = 0.20 e Å3
106 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4649 (2)0.1375 (2)0.3639 (2)0.0269 (4)
C20.3811 (2)0.0336 (2)0.2546 (2)0.0281 (5)
H20.43070.01740.19240.034*
C30.2291 (2)0.0078 (2)0.2398 (2)0.0296 (5)
H30.17590.06100.16720.035*
C40.2291 (2)0.1803 (2)0.4331 (2)0.0338 (5)
H40.17600.23000.49290.041*
C50.3814 (2)0.2103 (2)0.4532 (2)0.0346 (5)
H50.43130.27970.52680.042*
C60.0153 (2)0.0564 (2)0.2986 (2)0.0321 (5)
H6A0.04650.09530.38580.039*
H6B0.03640.04880.29270.039*
C70.1133 (2)0.1297 (2)0.1497 (2)0.0269 (4)
N10.6143 (2)0.1661 (2)0.3810 (2)0.0361 (5)
H1A0.662 (2)0.228 (2)0.450 (2)0.043*
H1B0.658 (2)0.131 (2)0.312 (2)0.043*
N20.15247 (17)0.07944 (18)0.32765 (17)0.0273 (4)
O10.04740 (16)0.19659 (17)0.06662 (16)0.0407 (4)
O20.25727 (15)0.11367 (17)0.12513 (16)0.0393 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0265 (10)0.0294 (10)0.0235 (10)0.0018 (8)0.0052 (8)0.0062 (8)
C20.0303 (11)0.0285 (11)0.0263 (10)0.0032 (8)0.0093 (8)0.0020 (8)
C30.0312 (11)0.0311 (11)0.0243 (10)0.0003 (9)0.0045 (8)0.0023 (9)
C40.0335 (11)0.0383 (12)0.0298 (11)0.0031 (9)0.0093 (9)0.0080 (10)
C50.0327 (11)0.0377 (12)0.0320 (11)0.0034 (10)0.0070 (9)0.0123 (10)
C60.0258 (11)0.0387 (12)0.0316 (11)0.0001 (9)0.0078 (8)0.0063 (10)
C70.0268 (11)0.0277 (10)0.0250 (10)0.0013 (8)0.0053 (8)0.0013 (8)
N10.0273 (10)0.0454 (12)0.0349 (11)0.0065 (8)0.0079 (8)0.0043 (9)
N20.0216 (8)0.0353 (10)0.0233 (8)0.0026 (7)0.0035 (6)0.0012 (7)
O10.0358 (8)0.0505 (10)0.0352 (8)0.0031 (7)0.0089 (7)0.0149 (7)
O20.0214 (8)0.0584 (10)0.0354 (8)0.0015 (7)0.0038 (6)0.0053 (7)
Geometric parameters (Å, º) top
C1—N11.331 (2)C5—H50.9300
C1—C51.410 (3)C6—N21.468 (2)
C1—C21.412 (3)C6—C71.528 (3)
C2—C31.353 (3)C6—H6A0.9700
C2—H20.9300C6—H6B0.9700
C3—N21.351 (2)C7—O11.236 (2)
C3—H30.9300C7—O21.256 (2)
C4—C51.354 (3)N1—H1A0.859 (16)
C4—N21.354 (3)N1—H1B0.881 (15)
C4—H40.9300
N1—C1—C5121.68 (19)N2—C6—C7113.54 (16)
N1—C1—C2122.00 (18)N2—C6—H6A108.9
C5—C1—C2116.32 (17)C7—C6—H6A108.9
C3—C2—C1120.36 (18)N2—C6—H6B108.9
C3—C2—H2119.8C7—C6—H6B108.9
C1—C2—H2119.8H6A—C6—H6B107.7
N2—C3—C2121.80 (18)O1—C7—O2126.61 (18)
N2—C3—H3119.1O1—C7—C6119.14 (17)
C2—C3—H3119.1O2—C7—C6114.24 (17)
C5—C4—N2121.39 (19)C1—N1—H1A119.6 (15)
C5—C4—H4119.3C1—N1—H1B118.9 (15)
N2—C4—H4119.3H1A—N1—H1B121 (2)
C4—C5—C1120.72 (19)C3—N2—C4119.40 (17)
C4—C5—H5119.6C3—N2—C6119.69 (17)
C1—C5—H5119.6C4—N2—C6120.71 (16)
N1—C1—C2—C3179.64 (18)N2—C6—C7—O2178.50 (17)
C5—C1—C2—C30.2 (3)C2—C3—N2—C40.3 (3)
C1—C2—C3—N20.0 (3)C2—C3—N2—C6175.09 (17)
N2—C4—C5—C10.3 (3)C5—C4—N2—C30.5 (3)
N1—C1—C5—C4179.46 (19)C5—C4—N2—C6175.22 (18)
C2—C1—C5—C40.0 (3)C7—C6—N2—C372.5 (2)
N2—C6—C7—O11.6 (3)C7—C6—N2—C4102.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.86 (2)2.10 (2)2.946 (2)170 (2)
N1—H1A···O1i0.86 (2)2.61 (2)3.265 (2)135 (2)
N1—H1B···O2ii0.88 (2)2.04 (2)2.891 (2)162 (2)
C3—H3···O1iii0.932.423.334 (3)166
C4—H4···O1iv0.932.383.247 (3)155
C6—H6A···O1iv0.972.493.359 (3)149
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC7H8N2O2
Mr152.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.9766 (18), 9.0555 (18), 8.9886 (18)
β (°) 106.57 (3)
V3)700.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.16 × 0.14 × 0.12
Data collection
DiffractometerRigaku R-AXIS RAPID-S
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7228, 1599, 1123
Rint0.052
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.117, 1.11
No. of reflections1599
No. of parameters106
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and Mercury (Macrae et al., 2006), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.859 (16)2.095 (16)2.946 (2)170 (2)
N1—H1A···O1i0.859 (16)2.605 (19)3.265 (2)134.5 (18)
N1—H1B···O2ii0.881 (15)2.041 (17)2.891 (2)162 (2)
C3—H3···O1iii0.932.423.334 (3)166.0
C4—H4···O1iv0.932.383.247 (3)155.2
C6—H6A···O1iv0.972.493.359 (3)149.0
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z; (iii) x, y, z; (iv) x, y+1/2, z+1/2.
 

Acknowledgements

The author thanks Chifeng University for supporting this work.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDesiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond In Structural Chemistry and Biology, p. 13. New York: Oxford University Press Inc.  Google Scholar
First citationLudvík, J., Urban, J., Fábry, J. & Císařová, I. (2007). Acta Cryst. C63, o259–o262.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSliwa, W. & Mianowska, B. (1989). Heterocycles, 29, 557–595.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds