organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Diprop-2-ynyl-1H-imidazol-3-ium bromide

aInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: zhw@henu.edu.cn

(Received 2 April 2008; accepted 17 April 2008; online 23 April 2008)

In the title salt, C9H9N2+·Br, the ethynyl groups are nearly anti­parallel to each other [the angle between the two ethynyl groups is179.7 (2)°]. No classical hydrogen bonds or ππ inter­actions are observed. The mol­ecules are linked by C—H⋯Br hydrogen bonds. The bromide anions are involved in inter­actions with three H atoms.

Related literature

For related literature, see: Fei et al. (2004[Fei, Z., Zhao, D., Scopelliti, R. & Dyson, P. J. (2004). Organometallics, 23, 1622-1628.]); Rajesh et al. (2008[Rajesh, G. G., Mohan, M. B. & Mysore, S. S. (2008). CrystEngComm, 10, 288-296.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N2+·Br

  • Mr = 225.09

  • Monoclinic, P 21 /n

  • a = 8.3439 (8) Å

  • b = 12.1069 (11) Å

  • c = 10.0413 (9) Å

  • β = 112.263 (2)°

  • V = 938.74 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.32 mm−1

  • T = 273 (2) K

  • 0.18 × 0.16 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 4482 measured reflections

  • 1650 independent reflections

  • 1580 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.051

  • S = 1.08

  • 1650 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.48 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯Br1i 0.97 2.75 3.6748 (19) 159
C8—H8⋯Br1ii 0.93 2.81 3.7105 (19) 164
C6—H6B⋯Br1iii 0.97 2.81 3.7196 (18) 157
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z+1; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The constituing molecule of the title compound is shown in Fig. 1. Both ethynyls in the title molecule are nearly antiparallel to each other [the angle equals to 179.7 (2)°]. Except for each ethinyl, all the remaining non-H atoms are almost coplanar, with a mean deviation from the least-square plane to be 0.006 (1)Å. The angles between each ethinyl and this plane are about equal [26.8 (1) and 26.3 (1)°]. The bond lengths and angles are normal.

The molecules are linked by C—H···Br hydrogen bonds. Each Br atoms is involved in the C—H···Br interaction with three hydrogens. One of these hydrogens is the ethinyl hydrogen while the remaining two stem from the methylene groups (Fig. 2). There are intermolecular C—H···Br hydrogen bonds in the structure (Fig. 3). No conventional hydrogen bond or π-π electron interactions have been observed.

Related literature top

For related literature, see: Fei et al. (2004); Rajesh et al. (2008).

Experimental top

A mixture of imidazole (0.6808 g, 0.01 mol) and propargyl bromide (2.379 g, 0.02 mol) in toluene was refluxed and stirred at room temperature for one day. The resulting solid was filtered, washed with diethyl ether and dried under vacuum for two days. X-ray-quality block-like crystals were grown by slow diffusion of N,N-dimethylformamide into a methyl alcohol solution of the title compound. Average size of the crystals was about 0.15 mm in each direction.

Refinement top

All the H atoms could be detected in the difference electron density maps. Nevertheless, they were situated into the idealized positions and refined using a riding model. C—H = 0.97 Å for the methylene groups and C—H = 0.93 Å for the remaining H atoms. Uiso(H) = 1.2Ueq(C) for all the H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The title molecule with the atom-labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The crystal structure of the title compound. The C—H···Br hydrogen bonds are indicated by the dashed lines.
[Figure 3] Fig. 3. The molecular packing of the title compound viewed along the a axis. The hydrogen bonds are indicated by dashed lines.
1,3-Diprop-2-ynyl-1H-imidazol-3-ium bromide top
Crystal data top
C9H9N2+·BrF(000) = 448
Mr = 225.09Dx = 1.593 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4175 reflections
a = 8.3439 (8) Åθ = 2.7–28.3°
b = 12.1069 (11) ŵ = 4.32 mm1
c = 10.0413 (9) ÅT = 273 K
β = 112.263 (2)°Block, colourless
V = 938.74 (15) Å30.18 × 0.16 × 0.15 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1580 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.020
Graphite monochromatorθmax = 25.0°, θmin = 2.8°
ϕ and ω scansh = 97
4482 measured reflectionsk = 1414
1650 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.051H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0259P)2 + 0.4349P]
where P = (Fo2 + 2Fc2)/3
1650 reflections(Δ/σ)max = 0.002
109 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.37 e Å3
36 constraints
Crystal data top
C9H9N2+·BrV = 938.74 (15) Å3
Mr = 225.09Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3439 (8) ŵ = 4.32 mm1
b = 12.1069 (11) ÅT = 273 K
c = 10.0413 (9) Å0.18 × 0.16 × 0.15 mm
β = 112.263 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1580 reflections with I > 2σ(I)
4482 measured reflectionsRint = 0.020
1650 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
1650 reflectionsΔρmin = 0.37 e Å3
109 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.32729 (2)0.540752 (13)0.108115 (17)0.01767 (9)
N11.03714 (18)0.71725 (12)0.30495 (15)0.0155 (3)
C20.9295 (2)0.77650 (14)0.34460 (18)0.0161 (3)
H20.95820.83860.40340.019*
N30.77349 (18)0.73157 (12)0.28557 (15)0.0161 (3)
C40.7818 (2)0.64081 (14)0.20458 (18)0.0184 (4)
H40.69060.59480.15180.022*
C50.9476 (2)0.63230 (14)0.21711 (19)0.0173 (4)
H50.99320.57910.17450.021*
C61.2230 (2)0.73953 (14)0.34599 (19)0.0176 (4)
H6A1.25380.72920.26290.021*
H6B1.24680.81580.37680.021*
C71.3294 (2)0.66665 (14)0.46228 (19)0.0184 (4)
C81.4191 (2)0.60767 (15)0.55419 (19)0.0210 (4)
H81.48970.56130.62650.025*
C90.6171 (2)0.77060 (16)0.3052 (2)0.0208 (4)
H9A0.54930.70740.31230.025*
H9B0.65070.81160.39460.025*
C100.5102 (2)0.84122 (15)0.1865 (2)0.0215 (4)
C110.4197 (3)0.89966 (16)0.0955 (2)0.0300 (4)
H110.34820.94590.02350.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01860 (13)0.01479 (12)0.01818 (13)0.00031 (6)0.00534 (9)0.00054 (6)
N10.0148 (7)0.0148 (7)0.0148 (7)0.0009 (6)0.0032 (6)0.0016 (6)
C20.0166 (8)0.0155 (8)0.0138 (8)0.0005 (7)0.0030 (7)0.0007 (7)
N30.0145 (7)0.0164 (7)0.0162 (7)0.0005 (6)0.0044 (6)0.0005 (6)
C40.0208 (9)0.0144 (8)0.0168 (9)0.0019 (7)0.0034 (7)0.0011 (7)
C50.0211 (9)0.0121 (8)0.0178 (9)0.0013 (7)0.0062 (7)0.0002 (7)
C60.0133 (8)0.0182 (8)0.0202 (9)0.0006 (7)0.0051 (7)0.0006 (7)
C70.0160 (8)0.0179 (8)0.0206 (9)0.0014 (7)0.0063 (7)0.0050 (7)
C80.0201 (9)0.0193 (9)0.0196 (9)0.0025 (7)0.0030 (7)0.0028 (8)
C90.0162 (8)0.0241 (9)0.0227 (9)0.0005 (7)0.0080 (7)0.0025 (7)
C100.0173 (9)0.0196 (9)0.0272 (10)0.0023 (7)0.0078 (8)0.0081 (8)
C110.0279 (10)0.0232 (10)0.0318 (11)0.0052 (9)0.0033 (9)0.0038 (9)
Geometric parameters (Å, º) top
N1—C21.323 (2)C6—C71.464 (2)
N1—C51.376 (2)C6—H6A0.9700
N1—C61.471 (2)C6—H6B0.9700
C2—N31.326 (2)C7—C81.183 (3)
C2—H20.9300C8—H80.9300
N3—C41.384 (2)C9—C101.463 (3)
N3—C91.470 (2)C9—H9A0.9700
C4—C51.345 (3)C9—H9B0.9700
C4—H40.9300C10—C111.176 (3)
C5—H50.9300C11—H110.9300
C2—N1—C5109.43 (14)C7—C6—H6A109.3
C2—N1—C6125.46 (14)N1—C6—H6A109.3
C5—N1—C6125.09 (14)C7—C6—H6B109.3
N1—C2—N3107.86 (15)N1—C6—H6B109.3
N1—C2—H2126.1H6A—C6—H6B108.0
N3—C2—H2126.1C8—C7—C6177.89 (19)
C2—N3—C4109.20 (15)C7—C8—H8180.0
C2—N3—C9125.44 (15)C10—C9—N3112.18 (15)
C4—N3—C9125.35 (15)C10—C9—H9A109.2
C5—C4—N3106.54 (15)N3—C9—H9A109.2
C5—C4—H4126.7C10—C9—H9B109.2
N3—C4—H4126.7N3—C9—H9B109.2
C4—C5—N1106.97 (15)H9A—C9—H9B107.9
C4—C5—H5126.5C11—C10—C9176.6 (2)
N1—C5—H5126.5C10—C11—H11180.0
C7—C6—N1111.66 (14)
C5—N1—C2—N30.45 (18)C2—N1—C5—C40.31 (19)
C6—N1—C2—N3179.45 (15)C6—N1—C5—C4179.32 (15)
N1—C2—N3—C40.41 (19)C2—N1—C6—C7101.28 (18)
N1—C2—N3—C9178.53 (15)C5—N1—C6—C779.9 (2)
C2—N3—C4—C50.22 (19)C2—N3—C9—C1097.5 (2)
C9—N3—C4—C5178.72 (15)C4—N3—C9—C1083.8 (2)
N3—C4—C5—N10.06 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Br1i0.972.753.6748 (19)159
C8—H8···Br1ii0.932.813.7105 (19)164
C6—H6B···Br1iii0.972.813.7196 (18)157
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC9H9N2+·Br
Mr225.09
Crystal system, space groupMonoclinic, P21/n
Temperature (K)273
a, b, c (Å)8.3439 (8), 12.1069 (11), 10.0413 (9)
β (°) 112.263 (2)
V3)938.74 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.32
Crystal size (mm)0.18 × 0.16 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4482, 1650, 1580
Rint0.020
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.051, 1.08
No. of reflections1650
No. of parameters109
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.37

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···Br1i0.972.753.6748 (19)159.3
C8—H8···Br1ii0.932.813.7105 (19)164.3
C6—H6B···Br1iii0.972.813.7196 (18)156.5
Symmetry codes: (i) x+1/2, y+3/2, z+1/2; (ii) x+2, y+1, z+1; (iii) x+3/2, y+1/2, z+1/2.
 

Acknowledgements

The authors are grateful for financial support from the Henan Administration of Science and Technology (grant No. 0111030700).

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFei, Z., Zhao, D., Scopelliti, R. & Dyson, P. J. (2004). Organometallics, 23, 1622–1628.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajesh, G. G., Mohan, M. B. & Mysore, S. S. (2008). CrystEngComm, 10, 288–296.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds