Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C24H22N2, the bond distances and angles are typical. The central C atom exhibits a distorted tetra­hedral geometry; the angles range from 106.17 (8) to 113.01 (9)°. The torsion angles N-C-C(ipso)-C(ortho) involving the phenyl rings are very different, at 5.20 (14), 46.68 (12) and 69.65 (12)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024336/fb2051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024336/fb2051Isup2.hkl
Contains datablock I

CCDC reference: 651500

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.035
  • wR factor = 0.095
  • Data-to-parameter ratio = 15.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ?
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Water-soluble substituted pyrazoles constitute an important family of heterocyclic compounds that have found use in drug development and in catalysis (Elguero et al. 1996, Brown et al., 1993). In attempts to prepare water soluble palladium and platinum complexes with potential anti-cancer properties, we set out to prepare 4-alkylaminopyrazoles using a route reported by Esquius et al. (2000). The route involves protection of the position 1 of the 3,5-dimethylpyrazole, followed by aminoalkylation of the position 4. This offers a more efficient route to making water soluble 4-alkylaminopyrazoles (Esquius et al. 2000). When we used this route with a trityl group to protect the position 1 of the pyrazole, we could not alkylate position 4 of the pyrazole efficiently and isolated compound (I) instead.

Within (I) the bond distances and angles are typical. Carbon atom C6 exhibits a distorted tetrahedral geometry with the average X—C6—C angles being 109 (2)°. The six X—C6—C angles range from 106.17 (8)° to 113.01 (9)°. The torsion angles N—C—C(ipso)-C(ortho) involving the phenyl rings are very different at 5.20 (14), 46.68 (12), and 69.65 (12)°. A quality-restrictive search (R-factor <0.05, not disordered, no errors, and no powder structures) of the Cambridge Structural Database (Version 5.28, January 2007 update, Allen, 2002) for organic compounds with N-CPh3 fragments returned 34 hits and revealed that the N—C—C(ipso)-C(ortho) angles vary to a large extent but are usually different at 13 (9), 36 (10), and 73 (13)°. The trend is in agreement with that of the corresponding parameters in (I).

Related literature top

For related literature, see: Allen (2002); Brown & Kee (1993); Elguero (1996); Esquius et al. (2000).

Experimental top

A solution of triphenylchloromethane (2.9 g, 10.4 mmol) in toluene (20 ml) was added to a solution of 3,5-dimethylpyrazole (1.0 g, 10.4 mmol) in toluene (20 ml). Triethylammine (2 ml) was added and the solution stirred at 80° C for 15 h. The resultant Et3NH+Cl- salt was removed by filtration and the solution was evaporated to dryness. A brown solid was obtained. The product was purified by chromatography using silica gel and CH2Cl2:hexane (5:1) as eluent. Compound (I) crystallized upon slow evaporation of the solvent to give X-ray quality crystals. Yield = 2.57 g (73%). 1H NMR (CDCl3): δ 7.45, 7.14 (15 H, (C6H5)3); 6.03 (s, 1H, 4-pz); 2.23 (s, 3H, 5-Me); 1.46 (s, 3H, 3-Me). 13C{1H} NMR (CDCl3): δ 146.0 (C (5-pz)); 144.1 (phenyl); 142.0 (C(3-pz)); 128.0, 127.5 (phenyl); 127.3 (phenyl); 108.1 (C (4-pz)); 82.0 (C (C(Ph)3)); 15.2 (C(CH3, 5-pz)); 14.6 (C(CH3, 3-pz)). IR (Nujol): 1701 cm-1(υC=C,pz); 1571 cm-1 (υC=N).

Refinement top

Although all the hydrogen atoms were discernible in the difference Fourier map, they were placed in idealized locations and refined as riding with appropriate thermal displacement coefficients Uiso(H) = 1.2 or 1.5 (methyl H atoms) times Ueq of the parent atom. The C—H distances were set to 0.98 Å for the hydrogen atoms attached to methyl-carbon atoms C1 and C5 and 0.95 Å for all other hydrogen atoms.

Structure description top

Water-soluble substituted pyrazoles constitute an important family of heterocyclic compounds that have found use in drug development and in catalysis (Elguero et al. 1996, Brown et al., 1993). In attempts to prepare water soluble palladium and platinum complexes with potential anti-cancer properties, we set out to prepare 4-alkylaminopyrazoles using a route reported by Esquius et al. (2000). The route involves protection of the position 1 of the 3,5-dimethylpyrazole, followed by aminoalkylation of the position 4. This offers a more efficient route to making water soluble 4-alkylaminopyrazoles (Esquius et al. 2000). When we used this route with a trityl group to protect the position 1 of the pyrazole, we could not alkylate position 4 of the pyrazole efficiently and isolated compound (I) instead.

Within (I) the bond distances and angles are typical. Carbon atom C6 exhibits a distorted tetrahedral geometry with the average X—C6—C angles being 109 (2)°. The six X—C6—C angles range from 106.17 (8)° to 113.01 (9)°. The torsion angles N—C—C(ipso)-C(ortho) involving the phenyl rings are very different at 5.20 (14), 46.68 (12), and 69.65 (12)°. A quality-restrictive search (R-factor <0.05, not disordered, no errors, and no powder structures) of the Cambridge Structural Database (Version 5.28, January 2007 update, Allen, 2002) for organic compounds with N-CPh3 fragments returned 34 hits and revealed that the N—C—C(ipso)-C(ortho) angles vary to a large extent but are usually different at 13 (9), 36 (10), and 73 (13)°. The trend is in agreement with that of the corresponding parameters in (I).

For related literature, see: Allen (2002); Brown & Kee (1993); Elguero (1996); Esquius et al. (2000).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, publCIF (Westrip, 2007) and modiCIFer (Guzei, 1995).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). The thermal ellipsoids are shown at 50% probability level. All hydrogen atoms were omitted for clarity.
3,5-Dimethyl-1-(triphenylmethyl)-1H-pyrazole top
Crystal data top
C24H22N2F(000) = 720
Mr = 338.44Dx = 1.238 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7180 reflections
a = 9.5264 (5) Åθ = 2.1–26.4°
b = 8.6992 (4) ŵ = 0.07 mm1
c = 21.9714 (11) ÅT = 100 K
β = 93.961 (1)°Block, colorless
V = 1816.47 (16) Å30.41 × 0.27 × 0.19 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3708 independent reflections
Radiation source: fine-focus sealed tube3141 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
0.30° ω scansθmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.971, Tmax = 0.986k = 1010
14683 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: difference Fourier map
wR(F2) = 0.095H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.048P)2 + 0.4396P]
where P = (Fo2 + 2Fc2)/3
3708 reflections(Δ/σ)max = 0.001
237 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
86 constraints
Crystal data top
C24H22N2V = 1816.47 (16) Å3
Mr = 338.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5264 (5) ŵ = 0.07 mm1
b = 8.6992 (4) ÅT = 100 K
c = 21.9714 (11) Å0.41 × 0.27 × 0.19 mm
β = 93.961 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
3708 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3141 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.986Rint = 0.039
14683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.03Δρmax = 0.29 e Å3
3708 reflectionsΔρmin = 0.24 e Å3
237 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.19656 (9)0.32354 (10)0.32906 (4)0.0180 (2)
N20.31711 (9)0.23745 (11)0.33155 (4)0.0208 (2)
C10.01024 (13)0.42816 (15)0.25096 (5)0.0284 (3)
H1A0.00010.43330.20630.043*
H1B0.01640.53250.26770.043*
H1C0.07150.37560.26600.043*
C20.14076 (12)0.34152 (13)0.27048 (5)0.0217 (2)
C30.22915 (13)0.26332 (14)0.23435 (5)0.0252 (3)
H30.21970.25370.19120.030*
C40.33584 (12)0.20082 (13)0.27390 (5)0.0236 (3)
C50.45955 (14)0.10514 (16)0.25862 (7)0.0344 (3)
H5A0.42900.02800.22800.052*
H5B0.49920.05350.29550.052*
H5C0.53120.17140.24230.052*
C60.14571 (11)0.39237 (12)0.38588 (5)0.0171 (2)
C70.18242 (11)0.56500 (12)0.38913 (5)0.0179 (2)
C80.24280 (12)0.64229 (13)0.34215 (5)0.0224 (2)
H80.26110.58880.30580.027*
C90.27665 (12)0.79768 (14)0.34788 (6)0.0258 (3)
H90.31740.84910.31530.031*
C100.25182 (12)0.87807 (13)0.40039 (6)0.0242 (3)
H100.27430.98420.40390.029*
C110.19341 (12)0.80087 (13)0.44779 (6)0.0231 (3)
H110.17630.85440.48420.028*
C120.15986 (11)0.64602 (13)0.44236 (5)0.0202 (2)
H120.12090.59440.47540.024*
C130.01407 (11)0.36151 (12)0.38356 (5)0.0169 (2)
C140.11368 (11)0.47309 (13)0.39443 (5)0.0200 (2)
H140.08400.57460.40480.024*
C150.25684 (12)0.43740 (14)0.39027 (5)0.0238 (3)
H150.32360.51450.39840.029*
C160.30255 (12)0.29088 (14)0.37438 (5)0.0248 (3)
H160.40010.26720.37130.030*
C170.20363 (12)0.17872 (13)0.36297 (5)0.0233 (3)
H170.23380.07810.35150.028*
C180.06131 (12)0.21310 (13)0.36831 (5)0.0202 (2)
H180.00530.13470.36150.024*
C190.22179 (11)0.31466 (12)0.44228 (5)0.0177 (2)
C200.15200 (12)0.22381 (12)0.48246 (5)0.0197 (2)
H200.05400.20550.47500.024*
C210.22369 (13)0.15898 (13)0.53369 (5)0.0251 (3)
H210.17400.09800.56090.030*
C220.36624 (14)0.18284 (14)0.54502 (6)0.0291 (3)
H220.41560.13590.57920.035*
C230.43700 (13)0.27640 (15)0.50588 (6)0.0286 (3)
H230.53490.29480.51370.034*
C240.36525 (12)0.34268 (13)0.45559 (5)0.0230 (3)
H240.41420.40820.42970.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0187 (5)0.0169 (5)0.0186 (5)0.0002 (4)0.0037 (4)0.0016 (4)
N20.0178 (5)0.0179 (5)0.0275 (5)0.0001 (4)0.0063 (4)0.0023 (4)
C10.0327 (7)0.0326 (7)0.0194 (6)0.0023 (5)0.0014 (5)0.0034 (5)
C20.0268 (6)0.0193 (6)0.0192 (6)0.0044 (5)0.0033 (4)0.0002 (4)
C30.0315 (6)0.0239 (6)0.0210 (6)0.0073 (5)0.0075 (5)0.0030 (5)
C40.0240 (6)0.0201 (6)0.0281 (6)0.0047 (5)0.0103 (5)0.0044 (5)
C50.0331 (7)0.0316 (7)0.0407 (8)0.0005 (6)0.0171 (6)0.0078 (6)
C60.0181 (5)0.0168 (5)0.0168 (5)0.0001 (4)0.0038 (4)0.0012 (4)
C70.0143 (5)0.0174 (5)0.0220 (6)0.0007 (4)0.0000 (4)0.0002 (4)
C80.0234 (6)0.0217 (6)0.0225 (6)0.0015 (4)0.0049 (4)0.0006 (4)
C90.0254 (6)0.0229 (6)0.0296 (7)0.0036 (5)0.0053 (5)0.0046 (5)
C100.0207 (6)0.0157 (5)0.0358 (7)0.0008 (4)0.0007 (5)0.0003 (5)
C110.0217 (6)0.0204 (6)0.0270 (6)0.0007 (4)0.0009 (5)0.0051 (5)
C120.0190 (5)0.0207 (6)0.0211 (6)0.0003 (4)0.0026 (4)0.0001 (4)
C130.0181 (5)0.0190 (5)0.0134 (5)0.0005 (4)0.0008 (4)0.0018 (4)
C140.0214 (6)0.0198 (5)0.0187 (5)0.0002 (4)0.0014 (4)0.0008 (4)
C150.0203 (6)0.0277 (6)0.0237 (6)0.0043 (5)0.0023 (4)0.0011 (5)
C160.0176 (5)0.0313 (7)0.0254 (6)0.0030 (5)0.0003 (4)0.0015 (5)
C170.0242 (6)0.0217 (6)0.0234 (6)0.0047 (5)0.0015 (5)0.0016 (5)
C180.0217 (6)0.0189 (5)0.0199 (6)0.0012 (4)0.0009 (4)0.0017 (4)
C190.0197 (5)0.0153 (5)0.0180 (5)0.0027 (4)0.0012 (4)0.0031 (4)
C200.0220 (6)0.0165 (5)0.0208 (6)0.0004 (4)0.0021 (4)0.0029 (4)
C210.0340 (7)0.0193 (6)0.0219 (6)0.0012 (5)0.0011 (5)0.0005 (4)
C220.0355 (7)0.0264 (6)0.0241 (6)0.0073 (5)0.0070 (5)0.0009 (5)
C230.0220 (6)0.0305 (7)0.0323 (7)0.0029 (5)0.0050 (5)0.0041 (5)
C240.0213 (6)0.0227 (6)0.0252 (6)0.0004 (5)0.0020 (5)0.0011 (5)
Geometric parameters (Å, º) top
N1—C21.3673 (14)C11—C121.3876 (16)
N1—N21.3690 (13)C11—H110.9500
N1—C61.4950 (13)C12—H120.9500
N2—C41.3299 (15)C13—C141.3896 (15)
C1—C21.4914 (17)C13—C181.4003 (15)
C1—H1A0.9800C14—C151.3955 (16)
C1—H1B0.9800C14—H140.9500
C1—H1C0.9800C15—C161.3839 (17)
C2—C31.3762 (16)C15—H150.9500
C3—C41.4005 (18)C16—C171.3912 (17)
C3—H30.9500C16—H160.9500
C4—C51.4997 (17)C17—C181.3854 (16)
C5—H5A0.9800C17—H170.9500
C5—H5B0.9800C18—H180.9500
C5—H5C0.9800C19—C201.3882 (15)
C6—C71.5425 (15)C19—C241.3991 (15)
C6—C131.5430 (14)C20—C211.3948 (16)
C6—C191.5472 (15)C20—H200.9500
C7—C81.3894 (16)C21—C221.3792 (18)
C7—C121.3948 (16)C21—H210.9500
C8—C91.3934 (17)C22—C231.3916 (19)
C8—H80.9500C22—H220.9500
C9—C101.3834 (17)C23—C241.3842 (17)
C9—H90.9500C23—H230.9500
C10—C111.3876 (17)C24—H240.9500
C10—H100.9500
C2—N1—N2111.75 (9)C10—C11—C12120.48 (11)
C2—N1—C6127.80 (9)C10—C11—H11119.8
N2—N1—C6120.34 (9)C12—C11—H11119.8
C4—N2—N1105.10 (9)C11—C12—C7120.98 (11)
C2—C1—H1A109.5C11—C12—H12119.5
C2—C1—H1B109.5C7—C12—H12119.5
H1A—C1—H1B109.5C14—C13—C18118.24 (10)
C2—C1—H1C109.5C14—C13—C6123.82 (10)
H1A—C1—H1C109.5C18—C13—C6117.92 (9)
H1B—C1—H1C109.5C13—C14—C15120.61 (10)
N1—C2—C3105.83 (10)C13—C14—H14119.7
N1—C2—C1126.20 (10)C15—C14—H14119.7
C3—C2—C1127.97 (11)C16—C15—C14120.70 (11)
C2—C3—C4106.31 (10)C16—C15—H15119.7
C2—C3—H3126.8C14—C15—H15119.7
C4—C3—H3126.8C15—C16—C17119.09 (10)
N2—C4—C3111.00 (10)C15—C16—H16120.5
N2—C4—C5120.36 (11)C17—C16—H16120.5
C3—C4—C5128.64 (11)C18—C17—C16120.30 (11)
C4—C5—H5A109.5C18—C17—H17119.9
C4—C5—H5B109.5C16—C17—H17119.9
H5A—C5—H5B109.5C17—C18—C13121.04 (10)
C4—C5—H5C109.5C17—C18—H18119.5
H5A—C5—H5C109.5C13—C18—H18119.5
H5B—C5—H5C109.5C20—C19—C24118.04 (10)
N1—C6—C7110.07 (8)C20—C19—C6122.66 (10)
N1—C6—C13106.17 (8)C24—C19—C6119.22 (10)
C7—C6—C13113.01 (9)C19—C20—C21120.94 (11)
N1—C6—C19109.44 (8)C19—C20—H20119.5
C7—C6—C19107.23 (8)C21—C20—H20119.5
C13—C6—C19110.91 (8)C22—C21—C20120.39 (11)
C8—C7—C12118.30 (10)C22—C21—H21119.8
C8—C7—C6122.74 (10)C20—C21—H21119.8
C12—C7—C6118.89 (9)C21—C22—C23119.30 (11)
C7—C8—C9120.48 (11)C21—C22—H22120.4
C7—C8—H8119.8C23—C22—H22120.4
C9—C8—H8119.8C24—C23—C22120.23 (11)
C10—C9—C8120.93 (11)C24—C23—H23119.9
C10—C9—H9119.5C22—C23—H23119.9
C8—C9—H9119.5C23—C24—C19121.04 (11)
C9—C10—C11118.80 (11)C23—C24—H24119.5
C9—C10—H10120.6C19—C24—H24119.5
C11—C10—H10120.6
C2—N1—N2—C40.38 (12)C8—C7—C12—C111.63 (16)
C6—N1—N2—C4177.00 (9)C6—C7—C12—C11178.94 (10)
N2—N1—C2—C30.20 (12)N1—C6—C13—C14131.89 (10)
C6—N1—C2—C3176.51 (10)C7—C6—C13—C1411.14 (14)
N2—N1—C2—C1179.95 (11)C19—C6—C13—C14109.30 (11)
C6—N1—C2—C13.74 (18)N1—C6—C13—C1846.68 (12)
N1—C2—C3—C40.05 (12)C7—C6—C13—C18167.43 (9)
C1—C2—C3—C4179.69 (11)C19—C6—C13—C1872.12 (12)
N1—N2—C4—C30.41 (12)C18—C13—C14—C150.08 (16)
N1—N2—C4—C5179.94 (10)C6—C13—C14—C15178.65 (10)
C2—C3—C4—N20.30 (13)C13—C14—C15—C160.94 (17)
C2—C3—C4—C5179.92 (12)C14—C15—C16—C170.46 (17)
C2—N1—C6—C773.89 (13)C15—C16—C17—C180.88 (17)
N2—N1—C6—C7102.14 (10)C16—C17—C18—C131.77 (17)
C2—N1—C6—C1348.74 (13)C14—C13—C18—C171.27 (16)
N2—N1—C6—C13135.22 (9)C6—C13—C18—C17177.39 (10)
C2—N1—C6—C19168.51 (10)N1—C6—C19—C20113.81 (11)
N2—N1—C6—C1915.46 (13)C7—C6—C19—C20126.83 (10)
N1—C6—C7—C85.20 (14)C13—C6—C19—C203.00 (14)
C13—C6—C7—C8113.30 (11)N1—C6—C19—C2469.65 (12)
C19—C6—C7—C8124.17 (11)C7—C6—C19—C2449.72 (12)
N1—C6—C7—C12171.98 (9)C13—C6—C19—C24173.54 (9)
C13—C6—C7—C1269.51 (12)C24—C19—C20—C211.72 (16)
C19—C6—C7—C1253.02 (12)C6—C19—C20—C21178.31 (10)
C12—C7—C8—C91.45 (16)C19—C20—C21—C220.68 (17)
C6—C7—C8—C9178.65 (10)C20—C21—C22—C232.07 (18)
C7—C8—C9—C100.38 (18)C21—C22—C23—C241.02 (18)
C8—C9—C10—C110.54 (17)C22—C23—C24—C191.43 (18)
C9—C10—C11—C120.37 (17)C20—C19—C24—C232.78 (16)
C10—C11—C12—C70.73 (17)C6—C19—C24—C23179.48 (10)

Experimental details

Crystal data
Chemical formulaC24H22N2
Mr338.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.5264 (5), 8.6992 (4), 21.9714 (11)
β (°) 93.961 (1)
V3)1816.47 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.41 × 0.27 × 0.19
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.971, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
14683, 3708, 3141
Rint0.039
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.095, 1.03
No. of reflections3708
No. of parameters237
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.24

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXTL (Bruker, 2003), SHELXTL, publCIF (Westrip, 2007) and modiCIFer (Guzei, 1995).

Selected bond angles (º) top
N1—C6—C7110.07 (8)N1—C6—C19109.44 (8)
N1—C6—C13106.17 (8)C7—C6—C19107.23 (8)
C7—C6—C13113.01 (9)C13—C6—C19110.91 (8)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds