Download citation
Download citation
link to html
Two new solid-state uranium(IV) sulfate x-hydrate complexes (where x is the total number of coordinated plus solvent waters), namely catena-poly[[penta­aqua­uranium(IV)]-di-μ-sulfato-κ4O:O′] monohydrate], {[U(SO4)2(H2O)5]·H2O}n, and hexa­aqua­bis­(sulfato-κ2O,O′)uranium(IV) dihydrate, [U(SO4)2(H2O)6]·2H2O, have been synthesized, structurally characterized by single-crystal X-ray diffraction and analyzed by vibrational (IR and Raman) spectroscopy. By comparing these structures with those of four other known uranium(IV) sulfate x-hydrates, the effect of additional coordinated water mol­ecules on their structures has been elucidated. As the number of coordinated water mol­ecules increases, the sulfate bonds are displaced, thus changing the binding mode of the sulfate ligands to the uranium centre. As a result, uranium(IV) sulfate x-hydrate changes from being fully crosslinked in three dimensions in the anhydrous compound, through sheet and chain linking in the tetra- and hexa­hydrates, to fully unlinked mol­ecules in the octa- and nona­hydrates. It can be concluded that coordinated waters play an important role in determining the structure and connectivity of UIV sulfate complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229614013801/fa3344sup1.cif
Contains datablocks 1, 2, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013801/fa33441sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229614013801/fa33442sup3.hkl
Contains datablock 2

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229614013801/fa3344sup4.pdf
Supplementary material

CCDC references: 1008155; 1008156

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2013); cell refinement: SAINT (Bruker, 2013); data reduction: SAINT (Bruker, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2013); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

(1) catena-Poly[[pentaaquauranium(IV)]-di-µ-sulfato-κ4O:O'] monohydrate] top
Crystal data top
[U(SO4)2(H2O)5]·H2OF(000) = 992
Mr = 538.25Dx = 3.220 Mg m3
Monoclinic, I2/aMo Kα radiation, λ = 0.71073 Å
a = 7.5190 (2) ÅCell parameters from 9987 reflections
b = 13.2464 (3) Åθ = 2.4–30.1°
c = 11.5073 (4) ŵ = 15.07 mm1
β = 104.388 (1)°T = 296 K
V = 1110.18 (5) Å3Rod, purple-green
Z = 40.51 × 0.18 × 0.10 mm
Data collection top
Bruker X8 APEXII area-detector
diffractometer
1638 reflections with I > 2σ(I)
φ and ω scansRint = 0.032
Absorption correction: numerical
(SADABS; Bruker, 2012)
θmax = 30.1°, θmin = 2.4°
Tmin = 0.016, Tmax = 0.239h = 1010
19813 measured reflectionsk = 1818
1642 independent reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.011 w = 1/[σ2(Fo2) + (0.0142P)2 + 0.6936P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.028(Δ/σ)max = 0.002
S = 1.31Δρmax = 1.44 e Å3
1642 reflectionsΔρmin = 0.93 e Å3
104 parametersExtinction correction: SHELXL2012 (Sheldrick, 2012), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0168 (3)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3217 (2)0.17999 (12)0.64215 (16)0.0218 (3)
O20.3509 (2)0.12171 (10)0.84341 (13)0.0176 (3)
O30.6119 (2)0.19189 (11)0.78823 (19)0.0248 (4)
O40.4900 (2)0.02965 (12)0.70973 (14)0.0251 (3)
O50.5371 (2)0.22488 (13)0.48634 (15)0.0208 (3)
O60.25000.49828 (16)0.50000.0189 (4)
O70.0268 (2)0.37983 (11)0.36610 (14)0.0193 (3)
O80.25000.0559 (2)0.50000.0420 (7)
S10.44809 (6)0.13012 (3)0.74577 (4)0.01226 (8)
U10.25000.30685 (2)0.50000.00952 (5)
H5A0.574 (5)0.242 (3)0.429 (4)0.038 (9)*
H5B0.580 (7)0.168 (4)0.500 (4)0.055 (12)*
H60.210 (4)0.532 (2)0.539 (3)0.027 (8)*
H7A0.120 (5)0.352 (3)0.331 (4)0.041 (9)*
H7B0.001 (5)0.431 (3)0.313 (4)0.046 (10)*
H80.297 (6)0.020 (3)0.556 (4)0.065 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0254 (8)0.0211 (6)0.0163 (7)0.0024 (5)0.0003 (6)0.0080 (5)
O20.0229 (6)0.0183 (6)0.0149 (6)0.0025 (5)0.0107 (5)0.0010 (5)
O30.0154 (7)0.0343 (10)0.0253 (9)0.0047 (5)0.0065 (7)0.0001 (5)
O40.0380 (8)0.0194 (7)0.0215 (7)0.0117 (6)0.0145 (6)0.0009 (6)
O50.0200 (6)0.0240 (7)0.0198 (7)0.0070 (6)0.0076 (5)0.0023 (6)
O60.0255 (10)0.0143 (8)0.0200 (10)0.0000.0113 (8)0.000
O70.0170 (6)0.0172 (6)0.0201 (7)0.0022 (5)0.0023 (5)0.0044 (5)
O80.070 (2)0.0183 (11)0.0302 (14)0.0000.0025 (14)0.000
S10.01439 (18)0.01307 (18)0.01051 (18)0.00241 (13)0.00533 (14)0.00240 (13)
U10.01091 (6)0.01005 (6)0.00777 (6)0.0000.00263 (3)0.000
Geometric parameters (Å, º) top
O1—S11.4827 (16)O6—H60.74 (3)
O1—U12.3133 (15)O7—U12.4589 (14)
O2—S11.4888 (14)O7—H7A0.80 (4)
O2—U1i2.3234 (14)O7—H7B0.97 (4)
O3—S11.4583 (17)O8—H80.80 (4)
O4—S11.4517 (15)U1—O1ii2.3133 (15)
O5—U12.4563 (15)U1—O2i2.3234 (14)
O5—H5A0.80 (4)U1—O2iii2.3234 (14)
O5—H5B0.82 (5)U1—O5ii2.4563 (15)
O6—U12.536 (2)U1—O7ii2.4589 (14)
S1—O1—U1151.93 (11)O1ii—U1—O571.80 (6)
S1—O2—U1i150.57 (8)O2i—U1—O5133.74 (5)
U1—O5—H5A115 (3)O2iii—U1—O570.65 (5)
U1—O5—H5B135 (3)O5ii—U1—O5127.53 (8)
H5A—O5—H5B102 (4)O1—U1—O7137.81 (6)
U1—O6—H6127 (2)O1ii—U1—O780.23 (6)
U1—O7—H7A129 (3)O2i—U1—O786.40 (5)
U1—O7—H7B113 (2)O2iii—U1—O775.08 (5)
H7A—O7—H7B108 (4)O5ii—U1—O766.01 (5)
O4—S1—O3112.63 (10)O5—U1—O7138.95 (5)
O4—S1—O1108.67 (10)O1—U1—O7ii80.23 (6)
O3—S1—O1109.81 (10)O1ii—U1—O7ii137.81 (6)
O4—S1—O2109.22 (9)O2i—U1—O7ii75.08 (5)
O3—S1—O2108.73 (10)O2iii—U1—O7ii86.40 (5)
O1—S1—O2107.67 (10)O5ii—U1—O7ii138.95 (5)
O1—U1—O1ii86.83 (9)O5—U1—O7ii66.01 (5)
O1—U1—O2i79.11 (6)O7—U1—O7ii133.69 (7)
O1ii—U1—O2i141.32 (6)O1—U1—O6136.58 (4)
O1—U1—O2iii141.32 (6)O1ii—U1—O6136.58 (4)
O1ii—U1—O2iii79.11 (6)O2i—U1—O665.96 (3)
O2i—U1—O2iii131.93 (7)O2iii—U1—O665.96 (3)
O1—U1—O5ii71.80 (6)O5ii—U1—O6116.23 (4)
O1ii—U1—O5ii70.74 (6)O5—U1—O6116.23 (4)
O2i—U1—O5ii70.65 (5)O7—U1—O666.85 (3)
O2iii—U1—O5ii133.74 (5)O7ii—U1—O666.85 (3)
O1—U1—O570.74 (6)
U1—O1—S1—O4118.2 (2)U1i—O2—S1—O4163.24 (17)
U1—O1—S1—O35.4 (3)U1i—O2—S1—O340.0 (2)
U1—O1—S1—O2123.6 (2)U1i—O2—S1—O178.94 (19)
Symmetry codes: (i) x+1/2, y+1/2, z+3/2; (ii) x+1/2, y, z+1; (iii) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6···O7iv0.74 (3)2.29 (3)3.0140 (19)167 (3)
O5—H5A···S1iii0.80 (4)2.69 (4)3.2985 (17)134 (3)
O5—H5A···O3iii0.80 (4)1.93 (4)2.714 (3)165 (4)
O7—H7A···O3ii0.80 (4)2.54 (4)3.033 (2)121 (3)
O7—H7A···O3v0.80 (4)2.04 (4)2.806 (2)160 (4)
O5—H5B···O8vi0.82 (5)1.96 (5)2.733 (3)158 (5)
O7—H7B···S1vii0.97 (4)2.75 (4)3.5798 (14)144 (3)
O7—H7B···O4vii0.97 (4)1.76 (4)2.703 (2)165 (3)
O8—H8···S10.80 (4)2.97 (4)3.7678 (18)174 (4)
O8—H8···O40.80 (4)2.10 (4)2.864 (2)159 (4)
Symmetry codes: (ii) x+1/2, y, z+1; (iii) x, y+1/2, z1/2; (iv) x, y+1, z+1; (v) x1, y+1/2, z1/2; (vi) x+1, y, z+1; (vii) x1/2, y+1/2, z1/2.
(2) Hexaaquabis(sulfato-κ2O,O')uranium(IV) dihydrate top
Crystal data top
[U(SO4)2(H2O)6]·2H2OF(000) = 1072
Mr = 574.28Dx = 2.922 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.4071 (3) ÅCell parameters from 5137 reflections
b = 11.7144 (4) Åθ = 2.8–30.0°
c = 13.2659 (4) ŵ = 12.84 mm1
β = 92.510 (1)°T = 90 K
V = 1305.23 (8) Å3Prism, purple-green
Z = 40.09 × 0.07 × 0.07 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3029 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
φ and ω scansθmax = 30.0°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
h = 1111
Tmin = 0.408, Tmax = 0.463k = 167
14870 measured reflectionsl = 1818
3784 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.017Hydrogen site location: difference Fourier map
wR(F2) = 0.035H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0109P)2 + 2.232P]
where P = (Fo2 + 2Fc2)/3
3784 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.82 e Å3
0 restraintsΔρmin = 0.64 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7590 (2)0.11062 (17)0.17020 (14)0.0073 (4)
O20.7678 (2)0.10181 (17)0.34676 (14)0.0073 (4)
O30.9728 (2)0.00488 (17)0.25725 (15)0.0087 (4)
O40.9733 (2)0.21002 (17)0.26602 (14)0.0081 (4)
O50.4719 (2)0.23501 (17)0.10203 (14)0.0075 (4)
O60.2509 (2)0.12296 (16)0.13666 (14)0.0065 (4)
O70.2973 (2)0.16549 (18)0.03765 (14)0.0083 (4)
O80.2073 (2)0.31477 (17)0.07048 (14)0.0082 (4)
O90.4857 (3)0.11060 (18)0.43226 (15)0.0076 (4)
O100.6095 (2)0.29128 (19)0.29559 (16)0.0078 (4)
O110.2945 (2)0.24228 (18)0.30440 (16)0.0078 (4)
O120.2851 (2)0.01070 (18)0.29694 (16)0.0082 (4)
O130.4902 (3)0.02609 (19)0.11334 (15)0.0088 (4)
O140.5918 (3)0.08007 (19)0.30292 (17)0.0079 (4)
O150.1927 (3)0.0959 (2)0.03936 (17)0.0122 (4)
O160.8025 (3)0.1033 (2)0.46805 (17)0.0171 (5)
H16A0.86130.16070.45110.026*
H16B0.84510.04000.44800.026*
S10.87400 (7)0.10736 (6)0.26056 (5)0.00489 (12)
S20.30351 (8)0.21126 (6)0.06517 (5)0.00476 (12)
U10.49977 (2)0.10818 (2)0.25070 (2)0.00329 (3)
H9A0.555 (4)0.130 (3)0.468 (3)0.010 (9)*
H9B0.396 (6)0.107 (4)0.455 (3)0.044 (14)*
H10A0.666 (5)0.297 (3)0.341 (3)0.018 (10)*
H10B0.589 (5)0.353 (4)0.279 (3)0.029 (12)*
H11A0.304 (5)0.288 (4)0.354 (3)0.028 (11)*
H11B0.207 (5)0.232 (4)0.289 (3)0.028 (12)*
H12A0.202 (4)0.001 (3)0.282 (3)0.007 (9)*
H12B0.295 (5)0.066 (4)0.340 (3)0.041 (13)*
H13A0.412 (5)0.044 (4)0.088 (3)0.026 (12)*
H13B0.557 (5)0.066 (4)0.094 (3)0.027 (11)*
H14A0.569 (5)0.133 (4)0.285 (3)0.016 (11)*
H14B0.656 (5)0.084 (4)0.347 (3)0.033 (13)*
H15A0.163 (5)0.034 (4)0.052 (3)0.027 (12)*
H15B0.193 (6)0.106 (4)0.024 (4)0.046 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0058 (8)0.0105 (10)0.0056 (9)0.0006 (7)0.0009 (7)0.0011 (7)
O20.0062 (8)0.0094 (10)0.0062 (9)0.0001 (8)0.0001 (7)0.0007 (7)
O30.0052 (9)0.0043 (9)0.0165 (10)0.0028 (7)0.0007 (8)0.0019 (8)
O40.0056 (9)0.0038 (9)0.0150 (10)0.0005 (7)0.0023 (7)0.0028 (7)
O50.0070 (8)0.0083 (10)0.0070 (9)0.0006 (7)0.0011 (7)0.0015 (7)
O60.0068 (9)0.0058 (10)0.0068 (9)0.0004 (7)0.0002 (7)0.0016 (7)
O70.0111 (9)0.0095 (10)0.0043 (9)0.0035 (8)0.0003 (7)0.0013 (8)
O80.0115 (9)0.0070 (10)0.0058 (9)0.0044 (8)0.0021 (7)0.0010 (8)
O90.0064 (9)0.0112 (11)0.0051 (9)0.0019 (8)0.0017 (7)0.0012 (8)
O100.0087 (9)0.0052 (11)0.0092 (10)0.0009 (8)0.0029 (8)0.0009 (8)
O110.0051 (9)0.0085 (11)0.0097 (10)0.0011 (8)0.0005 (7)0.0029 (8)
O120.0048 (9)0.0090 (11)0.0105 (10)0.0006 (8)0.0016 (7)0.0038 (8)
O130.0065 (9)0.0109 (11)0.0088 (10)0.0035 (8)0.0008 (8)0.0049 (8)
O140.0097 (10)0.0028 (11)0.0107 (10)0.0004 (8)0.0038 (8)0.0005 (8)
O150.0176 (11)0.0102 (12)0.0089 (10)0.0010 (9)0.0007 (8)0.0005 (9)
O160.0164 (11)0.0196 (13)0.0156 (11)0.0091 (10)0.0028 (9)0.0015 (10)
S10.0033 (3)0.0044 (3)0.0070 (3)0.0003 (2)0.0001 (2)0.0002 (2)
S20.0057 (3)0.0049 (3)0.0036 (3)0.0011 (2)0.0006 (2)0.0004 (2)
U10.00331 (4)0.00331 (5)0.00323 (4)0.00007 (4)0.00004 (3)0.00004 (4)
Geometric parameters (Å, º) top
O1—S11.5073 (19)O7—S21.464 (2)
O1—U12.4686 (19)O8—S21.461 (2)
O2—S11.483 (2)O9—U12.417 (2)
O2—U12.5408 (19)O10—U12.400 (2)
O3—S11.462 (2)O11—U12.462 (2)
O4—S11.464 (2)O12—U12.381 (2)
O5—S21.5034 (19)O13—U12.406 (2)
O5—U12.4721 (19)O14—U12.428 (2)
O6—S21.484 (2)S1—U13.1432 (6)
O6—U12.5337 (19)S2—U13.1436 (6)
S1—O1—U1101.74 (9)O10—U1—O1167.95 (7)
S1—O2—U199.36 (9)O13—U1—O11129.47 (7)
S2—O5—U1101.73 (10)O9—U1—O1168.81 (7)
S2—O6—U199.65 (9)O14—U1—O11135.70 (7)
U1—O9—H9A123 (3)O12—U1—O1144.25 (7)
U1—O9—H9B117 (3)O10—U1—O176.11 (7)
H9A—O9—H9B118 (4)O13—U1—O171.38 (7)
U1—O10—H10A120 (3)O9—U1—O1120.91 (7)
U1—O10—H10B133 (3)O14—U1—O181.81 (7)
H10A—O10—H10B106 (4)O11—U1—O1139.56 (7)
U1—O11—H11A126 (3)O12—U1—O5120.70 (7)
U1—O11—H11B120 (3)O10—U1—O571.50 (7)
H11A—O11—H11B112 (4)O13—U1—O577.87 (7)
U1—O12—H12A123 (3)O9—U1—O5141.35 (7)
U1—O12—H12B124 (3)O14—U1—O5142.31 (7)
H12A—O12—H12B113 (4)O11—U1—O578.71 (7)
U1—O13—H13A121 (3)O1—U1—O572.69 (6)
U1—O13—H13B129 (3)O12—U1—O665.06 (7)
H13A—O13—H13B108 (4)O10—U1—O6112.68 (7)
U1—O14—H14A130 (3)O13—U1—O665.99 (7)
U1—O14—H14B118 (3)O9—U1—O6121.27 (7)
H14A—O14—H14B112 (4)O14—U1—O6118.49 (7)
H15A—O15—H15B111 (4)O11—U1—O663.78 (7)
H16A—O16—H16B109.5O1—U1—O6117.55 (6)
O3—S1—O4110.66 (11)O5—U1—O655.64 (6)
O3—S1—O2110.45 (12)O12—U1—O2121.28 (7)
O4—S1—O2111.04 (11)O10—U1—O265.09 (7)
O3—S1—O1110.04 (11)O13—U1—O2111.11 (7)
O4—S1—O1111.29 (12)O9—U1—O265.27 (7)
O2—S1—O1103.15 (11)O14—U1—O264.26 (7)
O3—S1—U1124.78 (8)O11—U1—O2119.42 (7)
O4—S1—U1124.54 (8)O1—U1—O255.74 (6)
O2—S1—U152.90 (7)O5—U1—O2117.95 (6)
O1—S1—U150.26 (7)O6—U1—O2173.00 (6)
O8—S2—O7110.57 (11)O12—U1—S1139.12 (5)
O8—S2—O6111.50 (11)O10—U1—S167.61 (5)
O7—S2—O6109.92 (12)O13—U1—S191.70 (5)
O8—S2—O5110.27 (12)O9—U1—S192.94 (5)
O7—S2—O5111.43 (11)O14—U1—S171.30 (5)
O6—S2—O5102.95 (11)O11—U1—S1134.67 (5)
O8—S2—U1123.63 (8)O1—U1—S128.00 (4)
O7—S2—U1125.79 (8)O5—U1—S195.44 (4)
O6—S2—U152.62 (7)O6—U1—S1145.49 (4)
O5—S2—U150.35 (7)O2—U1—S127.74 (4)
O12—U1—O10138.28 (7)O12—U1—S292.78 (5)
O12—U1—O1379.17 (7)O10—U1—S291.94 (5)
O10—U1—O13140.54 (7)O13—U1—S270.07 (5)
O12—U1—O971.30 (7)O9—U1—S2136.78 (5)
O10—U1—O977.13 (7)O14—U1—S2136.22 (6)
O13—U1—O9139.55 (7)O11—U1—S268.34 (5)
O12—U1—O1468.34 (7)O1—U1—S295.73 (5)
O10—U1—O14128.81 (8)O5—U1—S227.92 (4)
O13—U1—O1467.79 (7)O6—U1—S227.73 (4)
O9—U1—O1475.83 (7)O2—U1—S2145.84 (5)
O12—U1—O1175.51 (7)S1—U1—S2121.591 (17)
U1—O2—S1—O3118.77 (10)U1—O6—S2—O8116.63 (10)
U1—O2—S1—O4118.08 (10)U1—O6—S2—O7120.39 (10)
U1—O2—S1—O11.22 (12)U1—O6—S2—O51.57 (11)
U1—O1—S1—O3119.11 (10)U1—O5—S2—O8117.44 (10)
U1—O1—S1—O4117.86 (10)U1—O5—S2—O7119.38 (11)
U1—O1—S1—O21.26 (12)U1—O5—S2—O61.62 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O16—H16A···O5i0.872.012.864 (3)167
O16—H16B···O20.872.222.899 (3)135
O9—H9A···O8ii0.77 (4)1.94 (4)2.701 (3)172 (4)
O9—H9B···O16iii0.83 (5)1.99 (5)2.812 (3)171 (5)
O10—H10A···O7ii0.76 (4)1.95 (4)2.709 (3)171 (4)
O10—H10B···O3iv0.78 (5)1.91 (5)2.681 (3)176 (4)
O11—H11A···O15v0.85 (4)1.96 (4)2.807 (3)174 (4)
O11—H11B···O4vi0.77 (4)1.99 (4)2.752 (3)173 (4)
O12—H12A···O3vi0.73 (4)1.94 (4)2.661 (3)168 (4)
O12—H12A···S1vi0.73 (4)3.03 (4)3.734 (2)163 (3)
O12—H12B···O8vii0.87 (5)1.83 (5)2.696 (3)174 (4)
O12—H12B···S2vii0.87 (5)3.03 (5)3.825 (2)154 (4)
O13—H13A···O150.75 (4)2.02 (4)2.770 (3)172 (4)
O13—H13B···O7viii0.78 (4)1.87 (4)2.650 (3)174 (4)
O13—H13B···S2viii0.78 (4)2.99 (4)3.699 (2)151 (4)
O14—H14A···O4i0.69 (4)1.98 (4)2.672 (3)174 (4)
O14—H14B···O160.78 (5)2.00 (5)2.770 (3)174 (4)
O15—H15A···O60.78 (4)2.27 (4)2.903 (3)139 (4)
O15—H15B···O1viii0.86 (5)1.99 (5)2.832 (3)167 (5)
Symmetry codes: (i) x+3/2, y1/2, z+1/2; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+3/2, y+1/2, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) x1, y, z; (vii) x+1/2, y1/2, z+1/2; (viii) x+1, y, z.
Assay results for complexes (1) and (2). Values in parentheses are the theoretical stoichiometric values top
Complex (1)Complex (2)
Uranium (wt%)43.8 (44.2)41.5 (41.4)
Sulfate (wt%)35.0 (35.7)33.0 (33.5)
Water (wt%)20.1 (20.1)24.8 (25.1)
Implied solvent water molecules6.0 (6.0)7.9 (8.0)
Trace metalsBelow detection limitBelow detection limit
ICP–MS trace metal detection limit: <5 µg g-1 Ag, Al, As, Ba, Be, Cd, Co, Cr, Cs, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Rb, Se, Sr, Tl, V and Zn.
Comparison of the normalized cell volumes, intercell connectivities and sulfate binding modes of the known uranous sulfate hydrates top
ComplexNormalized cell volumeaIntercell connectivityCoordinated sulfatesSulfate binding modebReference
U(SO4)2142.393D8Tetradentate bridgingBetke & Wickleder (2012)
U(SO4)2(H2O)4231.4712D sheets4Bidentate bridgingKierkegaard (1956) and Plášil et al. (2011)
U(SO4)2(H2O)4·H2O228.802D sheets4Bidentate bridgingSchnaars & Wilson (2012)
U(SO4)2(H2O)5·H2O277.551D chains4Bidentate bridging
U(SO4)2(H2O)6·2H2O326.31None2Chelating terminalc
U(SO4)2(H2O)7·2H2O340.831None2Monodentate terminalSchnaars & Wilson (2012)
Notes: (a) normalized cell volume, i.e. cell volume divided by Z, the number of molecules per cell; (b) a review of known sulfate binding modes is presented by Papatriantafyllopoulou et al. (2009); (c) each of the two sulfates is is coordinated twice in a chelating fashion, giving a total of four bonds.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds