Download citation
Download citation
link to html
The mixed-valence supra­molecular product di-μ2-acetone-di-μ3-tri­fluoro­acetato-deca-μ2-tri­fluoro­acetato-octa­copper(I)dicopper(II), [Cu10(C2F3O2)12(C3H6O)2] or {[CuI4(O2CCF3)4]2–{μ2-OC(CH3)2}2–[CuII2(O2CCF3)4]}, was prepared by co-deposition of two building units, namely a bis-acetone adduct of [CuII2(O2CCF3)4] and a very electrophilic tetra­nuclear [CuI4(O2CCF3)4] complex. The asymmetric unit contains one mol­ecule of the compound with a total of ten independent Cu atoms. Acetone mol­ecules serve as bridges between the [CuII2(O2CCF3)4] and [CuI4(O2CCF3)4] units. Additionally, the tetra­copper(I) tri­fluoro­acetate units are involved in inter­molecular Cu...O inter­actions, forming a layered two-dimensional network in the extended structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025559/fa3322sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025559/fa3322Isup2.hkl
Contains datablock I

CCDC reference: 960993

Introduction top

The development of mixed-valence CuII/CuI complexes is important for a variety of chemical, biochemical and engineering processes due to their inter­esting magnetic (Chen et al., 2006; Goher et al., 2007), optical (Xu et al., 2006), catalytic (King, 1994; Simonovic et al., 2009) and conduction (Kim et al., 2011) properties. Mixed-valence copper systems are intrinsically diverse, as copper(II) and copper(I) centers are known to exhibit a range of different coordination environments (Liu et al., 2012). Despite the great demand for such systems, simple direct synthetic routes towards mixed-valence copper complexes are often unavailable and the target products are generally obtained by partial reduction/oxidation of starting materials. Reduction of CuII salts is commonly used for the preparation of metal–organic frameworks where CuII cations are reduced by amines or nitro­gen-containing heterocycles during a solvothermal synthesis (Wen et al., 2004; Wang & Wang, 2008; Zhu et al., 2011). It should be noted that CuII cations have a tendency to proceed beyond the CuI state to reach the undesired metallic Cu0 state under reducing conditions. In turn, CuI compounds are often unstable towards oxidation in solution and special care is needed to carry out these reactions. The accidental formation of a giant CuI,II cluster based on the oxidation of a CuSCN starting material has been reported recently (He et al., 2008).

It is clear that such oxidation/reduction methods are generally not very predi­cta­ble or reliable, and frequently lead to a mixture of products. As an alternative, we offer an original small-scale `solvent-free' approach that relies on co-deposition of complementary volatile donor and acceptor building units from the gas phase. This method allows the synthesis of novel and unique organometallic and supra­molecular products in a solvent-free environment (Petrukhina, 2007; Filatov & Petrukhina, 2010). This synthetic method excludes haza­rdous and toxic organic solvents from the chemical transformations and thus concomitantly addresses environmental concerns by saving resources and limiting waste. If needed, solvent molecules can be introduced in a controlled manner through the use of solvates or adducts (Dikarev et al., 2004). The products are deposited in the form of single crystals, and this ease of crystallization has allowed us to utilize X-ray diffraction methods for their structural characterization. As a result, we have proved this synthetic method to be effective for the preparation of new main group (Zabula et al., 2010) and transition metal complexes (Petrukhina et al., 2004; Sevryugina et al., 2007; Sevryugina & Petrukhina, 2008), for the investigation of the ligating properties of various weak donors (Petrukhina et al., 2005; Dikarev et al., 2008), for the entrapment of reactive inter­mediates formed in the gas phase (Petrukhina et al., 2003; Dikarev et al., 2003), and for utilizing weak inter­molecular metal–π and ππ aromatic inter­actions in supra­molecular assembly (Petrukhina et al., 2006; Filatov et al., 2006, 2010). Herein, we describe the use of this method for the straightforward preparation of the title mixed-valence supra­molecular product, {[CuI4(O2CCF3)4]2–{µ2-OC(CH3)2}2–[CuII2(O2CCF3)4]}, (I), comprised of copper(I) and copper(II) tri­fluoro­acetate units.

Experimental top

Synthesis and crystallization top

All manipulations were performed under an inert atmosphere employing standard Schlenk techniques. Sublimation–deposition procedures were carried out in small Pyrex glass ampoules (outside diameter 1.1 cm) of varied length (5–8 cm). The ampoules were evacuated to ca 10 -2 Torr (1 Torr = 133.322 Pa), sealed and placed in an electric furnace having a small (ca 5 K) temperature gradient along the length of the tube. [CuI4(O2CCF3)4] was synthesized following the previously reported procedure (Cotton et al., 2000). [CuII2(O2CCF3)4].2OC(CH3)2 was obtained from copper(II) tri­fluoro­acetate hydrate by recrystallization from acetone. IR spectra were recorded on a Perkin–Elmer FT–IR spectrometer (Spectrum 100) in the 4000–600 cm-1 range, using a universal ATR accessory.

For the synthesis of (I), a mixture of [CuI4(O2CCF3)4] (0.036 g, 0.051 mmol) and [CuII2(O2CCF3)4].2OC(CH3)2 (0.002 g, 0.003 mmol) was sealed in an evacuated Pyrex tube. The ampoule was placed in an electric furnace at 377 K. Blue–green [CIF states just green?] plates of (I) appeared in the cold zone of the ampoule in ca 6 d (yield 46%). IR (νmax, cm-1): 1710 (w), 1638 (s), 1630 (s), 1469 (m), 1447 (m), 1191 (s), 1140 (s), 857 (m), 794 (m), 783 (w), 729 (s).

Refinement top

H atoms, all belonging to methyl groups, were included at calculated positions, with C—H = 0.98 Å, and refined using a riding model with free rotation about the local C—C bond. For all H atoms, Uiso(H) = 1.5Ueq(C).

Results and discussion top

For the specific preparation of (I), we used a bis-acetone adduct of [CuII2(O2CCF3)4] and a very electrophilic tetra­nuclear [CuI4(O2CCF3)4] complex (Cotton et al., 2000) as pre-designed building blocks. Co-deposition was carried out as described in the Experimental section. The IR spectrum of (I) is dominated by strong absorptions of the tri­fluoro­acetate groups of the copper(I) and copper(II) units. Stretches at 1638 and 1447 cm-1 are attributed to the asymmetric and symmetric CO vibrations of the carb­oxy­lic acid groups of copper(II) tri­fluoro­acetate. Vibration peaks at 1630 and 1469 cm-1 can be assigned to the asymmetric and symmetric CO stretches of the carb­oxy­lic acid groups of copper(I) tri­fluoro­acetate. The CO vibration of the bridging acetone is observed at 1710 cm-1. In the previously characterized acetone adduct of a fully fluorinated carboxyl­ate, CuII perfluoro­octylate, the CO stretch was observed at 1714 cm-1 (Motreff et al., 2009). Thus, IR vibrational spectroscopy of (I) shows the co-crystallization of CuI and CuII tri­fluoro­acetates and acetone molecules. The particular coordination mode of the acetone was revealed by a single-crystal X-ray diffraction analysis.

Complex (I) (Fig. 1) crystallizes in the triclinic space group P1. The asymmetric unit contains one dinuclear CuII tri­fluoro­acetate paddlewheel complex, two tetra­mers of CuI tri­fluoro­acetate, and two acetone molecules connecting the metal units together (Fig. 1). The total number of independent Cu atoms in (I) is ten. It can be noted that CF3 groups generally have a strong tendency to be rotationally disordered but are found to be well-behaved in the title product.

For the copper(I) tri­fluoro­acetate fragment of (I), the arrangement of the four independent Cu atoms can be described as a rhombus, with the CuCu distances ranging from 2.7443 (8) to 2.8258 (9) Å (Table 2). The short CuCu diagonals in the two independent tetra­copper units are 2.9257 (9) and 2.9333 (9) Å. It is inter­esting to note that the CuCu contacts are elongated compared with unligated [CuI4(O2CCF3)4], where distances as short as 2.719 (1) Å were observed (Cotton et al., 2000). The tri­fluoro­acetate ligands bridge the four pairs of adjacent Cu atoms around the tetra­mer in an alternating fashion above and below the Cu4 plane. The inter­nal Cu—O distances range from 1.876 (3) to 1.922 (3) Å (Table 2).

The central [CuII2(O2CCF3)4] complex represents a standard tetra­bridged paddlewheel structure, with the intra­molecular Cu—O distances spanning the range 1.964 (3) to 1.994 (3) Å. Again, an elongation of these bonds is observed compared with the unligated complex. The Cu···Cu contact inside the dimer is 2.7171 (8) Å. While the structure of the bis-acetone adduct of [CuII2(O2CCF3)4] is not available and thus a direct structural comparison with (I) cannot be made, a similar shortening of the Cu···Cu distances (2.73-2.77 Å) has been observed in other O- (Zhang et al., 2005) or N-donor (Karpova et al., 1998) adducts. This is substanti­ally shorter than that in the unligated [CuII2(O2CCF3)4] complex [3.086 (2) Å], thus showing the effect of the coordinated acetone on the paddlewheel structure.

The C10O9 and C13O10 bond distances in the µ2-bridged acetone molecules are 1.225 (6) and 1.235 (6) Å, respectively. The planar configuration of both acetone molecules is preserved in (I). Overall, the coordinated acetone molecules are not significantly affected by complexation and their geometric parameters are similar to those in the mixed-metal {[CuI4(O2CCF3)4]–{µ2-OC(CH3)2}2–[RhII2(O2CCF3)4]} complex, in which CuII tri­fluoro­acetate is replaced by RhII tri­fluoro­acetate (Dikarev et al., 2004). The acetone molecules bridge the copper units in an asymmetric fashion: the CuII1···O9 distance is 2.167 (3) Å, while CuI7···O9 = 2.627 (3) Å. Similarly, CuII2···O10 = 2.153 (3) Å, while the CuI8···O10 distance of 2.736 (3) Å is much longer. Additional contacts, CuI7···O17 and CuI8···O16, are observed between the dicopper(II) and tetra­copper(I) units [2.539 (3) and 2.509 (3) Å, respectively].

The {[CuI4(O2CCF3)4]2–{µ2-OC(CH3)2}2–[CuII2(O2CCF3)4]} molecules are involved in a number of inter­molecular CuI···O inter­actions with contacts shorter than 3.32 Å, which is the sum of the van der Waals radii of Cu and O [1.40 Å for an O atom (Bondi, 1964) and 1.92 Å for a Cu atom (Batsanov, 2011)]. All three open ends of the electrophilic copper(I) tetra­mer bind to O atoms of the tri­fluoro­acetate groups of neighboring copper(I) units (Fig. 2).

Two Cu atoms, Cu5 and Cu6, exhibit one contact each with atoms O22B and O23A of 2.761 (3) and 2.670 (3) Å, respectively [symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 2, -y + 1, -z + 1]. Atom Cu3 makes two inter­molecular contacts with atoms O20A and O25B of 2.550 (3) and 2.734 (3) Å, respectively. Both tetra­copper(I) units are involved in such Cu···O inter­molecular inter­actions, resulting in a two-dimensional layered network in the structure of (I) (Fig. 3).

In summary, a new product, {[CuI4(O2CCF3)4]2–{µ2-OC(CH3)2}2–[CuII2(O2CCF3)4]}, has been prepared by co-deposition of two complementary volatile building blocks. This complex is of inter­est from the viewpoint of gas-phase supra­molecular synthesis and also because of its rare acetone bridging mode. These results illustrate that the deposition method allows for additional possibilities in supra­molecular design, by utilizing inter­molecular inter­actions and coordination bonds in ways that conventional solution chemistry cannot provide.

Related literature top

For related literature, see: Batsanov (2011); Bondi (1964); Chen et al. (2006); Cotton et al. (2000); Dikarev et al. (2003, 2004, 2008); Filatov & Petrukhina (2010); Filatov et al. (2006); Filatov, Scott & Petrukhina (2010); Goher et al. (2007); He et al. (2008); Karpova et al. (1998); Kim et al. (2011); King (1994); Liu et al. (2012); Motreff et al. (2009); Petrukhina (2007); Petrukhina et al. (2003, 2004, 2005, 2006); Sevryugina & Petrukhina (2008); Sevryugina et al. (2007); Simonovic et al. (2009); Wang & Wang (2008); Wen et al. (2004); Xu et al. (2006); Zabula et al. (2010); Zhang et al. (2005); Zhu et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The crystallographically independent unit of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Intermolecular Cu···O interactions are represented as dashed lines.
[Figure 2] Fig. 2. A fragment of (I), showing the intermolecular CuI···O interactions (dashed lines) between CuI carboxylate units. The CF3 groups of the trifluoroacetate ligands have been omitted for clarity. [Symmetry codes: (A) -x + 1, -y + 1, -z + 1; (B) -x + 2, -y + 1, -z + 1.]
[Figure 3] Fig. 3. A fragment of a two-dimensional layer in the structure of (I). {[CuI4(O2CCF3)4]2–{µ2-OC(CH3)2}2–[CuII2(O2CCF3)4]} units are overlaid with black empty ovals and intermolecular interactions involved in the formation of the two-dimensional layer are shown with smaller grey filled ovals.
Di-µ2-acetone-di-µ3-trifluoroacetato-deca-µ2-trifluoroacetato-octacopper(I)dicopper(II) top
Crystal data top
[Cu10(C2F3O2)12(C3H6O)2]Z = 2
Mr = 2107.80F(000) = 2028
Triclinic, P1Dx = 2.414 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.4999 (12) ÅCell parameters from 9710 reflections
b = 11.1689 (15) Åθ = 2.2–28.3°
c = 32.202 (4) ŵ = 3.78 mm1
α = 94.586 (2)°T = 100 K
β = 90.880 (2)°Plate, blue–green
γ = 107.708 (2)°0.28 × 0.12 × 0.08 mm
V = 2900.4 (7) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
12733 independent reflections
Radiation source: fine-focus sealed tube9129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
0.30° ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1111
Tmin = 0.417, Tmax = 0.752k = 1414
24771 measured reflectionsl = 4240
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0582P)2 + 1.4275P]
where P = (Fo2 + 2Fc2)/3
12733 reflections(Δ/σ)max = 0.001
923 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.69 e Å3
Crystal data top
[Cu10(C2F3O2)12(C3H6O)2]γ = 107.708 (2)°
Mr = 2107.80V = 2900.4 (7) Å3
Triclinic, P1Z = 2
a = 8.4999 (12) ÅMo Kα radiation
b = 11.1689 (15) ŵ = 3.78 mm1
c = 32.202 (4) ÅT = 100 K
α = 94.586 (2)°0.28 × 0.12 × 0.08 mm
β = 90.880 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
12733 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
9129 reflections with I > 2σ(I)
Tmin = 0.417, Tmax = 0.752Rint = 0.028
24771 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.126H-atom parameters constrained
S = 1.02Δρmax = 1.11 e Å3
12733 reflectionsΔρmin = 0.69 e Å3
923 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.84624 (7)0.85609 (5)0.229302 (17)0.01998 (13)
Cu20.70886 (7)0.64445 (5)0.268447 (17)0.02041 (13)
Cu30.76510 (7)0.49615 (5)0.513826 (17)0.02304 (13)
Cu40.71979 (7)0.99617 (5)0.014572 (17)0.02316 (14)
Cu50.93249 (7)0.63998 (5)0.453168 (17)0.02274 (14)
Cu60.58627 (7)0.48554 (5)0.440841 (18)0.02338 (14)
Cu70.76356 (7)0.89698 (6)0.123212 (18)0.02648 (14)
Cu80.75390 (7)0.61214 (6)0.377191 (18)0.02812 (15)
Cu90.57146 (7)0.85419 (5)0.047960 (17)0.02267 (14)
Cu100.91852 (7)1.01153 (5)0.055059 (18)0.02308 (14)
O10.6598 (4)1.1336 (3)0.01274 (9)0.0214 (7)
O20.8471 (4)1.1544 (3)0.06578 (10)0.0261 (7)
O31.0224 (4)0.8816 (3)0.05148 (10)0.0226 (7)
O40.9040 (4)0.7999 (3)0.10962 (10)0.0289 (8)
O50.6108 (4)0.9826 (3)0.13949 (10)0.0288 (8)
O60.4586 (4)0.9541 (3)0.07910 (9)0.0235 (7)
O70.6480 (4)0.7318 (3)0.01734 (10)0.0236 (7)
O80.7809 (4)0.8516 (3)0.03294 (9)0.0226 (7)
O90.9316 (4)1.0139 (3)0.19159 (10)0.0236 (7)
O100.6021 (4)0.4861 (3)0.30392 (10)0.0234 (7)
O110.6620 (4)0.9111 (3)0.25095 (10)0.0272 (7)
O120.5391 (4)0.7290 (3)0.28038 (10)0.0251 (7)
O131.0119 (4)0.7724 (3)0.21357 (10)0.0244 (7)
O140.9059 (4)0.6001 (3)0.24933 (10)0.0260 (7)
O150.9640 (4)0.9178 (3)0.28379 (10)0.0282 (8)
O160.8431 (4)0.7461 (3)0.31773 (9)0.0238 (7)
O170.6956 (4)0.7554 (3)0.18256 (9)0.0236 (7)
O180.5983 (4)0.5741 (3)0.21397 (10)0.0277 (7)
O190.6141 (4)0.7110 (3)0.38992 (10)0.0302 (8)
O200.4801 (4)0.6143 (3)0.44399 (10)0.0239 (7)
O210.6617 (4)0.3439 (3)0.43056 (10)0.0263 (7)
O220.8289 (4)0.3600 (3)0.48767 (10)0.0242 (7)
O230.7054 (4)0.6421 (3)0.53096 (10)0.0237 (7)
O240.8543 (4)0.7620 (3)0.48308 (10)0.0233 (7)
O251.0448 (4)0.5393 (3)0.42186 (9)0.0238 (7)
O260.8976 (4)0.5187 (3)0.36097 (10)0.0300 (8)
C10.7404 (5)1.1859 (4)0.04596 (14)0.0196 (9)
C20.6977 (5)1.3024 (4)0.06557 (14)0.0220 (10)
C30.9968 (5)0.8051 (4)0.07949 (14)0.0205 (9)
C41.0942 (5)0.7092 (4)0.07952 (14)0.0210 (9)
C50.4933 (5)0.9907 (4)0.11698 (15)0.0221 (10)
C60.3786 (6)1.0541 (5)0.14109 (15)0.0287 (11)
C70.7283 (5)0.7503 (4)0.01496 (14)0.0203 (9)
C80.7728 (6)0.6345 (4)0.03497 (14)0.0239 (10)
C91.0117 (7)1.2173 (5)0.16634 (17)0.0389 (13)
H9A0.96191.17080.13990.058*
H9B1.12671.26610.16240.058*
H9C0.94971.27470.17580.058*
C101.0066 (6)1.1266 (5)0.19818 (15)0.0283 (11)
C111.1045 (11)1.1817 (6)0.2387 (2)0.082 (3)
H11A1.03421.21100.25830.123*
H11B1.20041.25290.23320.123*
H11C1.14221.11690.25080.123*
C120.6474 (9)0.3163 (6)0.26017 (19)0.0567 (18)
H12A0.66120.37350.23800.085*
H12B0.56710.23480.25060.085*
H12C0.75380.30410.26710.085*
C130.5860 (6)0.3723 (5)0.29823 (15)0.0261 (10)
C140.5072 (7)0.2838 (5)0.33002 (16)0.0360 (12)
H14A0.47770.33150.35390.054*
H14B0.58520.24150.33940.054*
H14C0.40740.22060.31750.054*
C150.5508 (5)0.8379 (5)0.27070 (14)0.0229 (10)
C160.4176 (6)0.8951 (5)0.28763 (14)0.0232 (10)
C171.0075 (5)0.6683 (4)0.22605 (13)0.0209 (9)
C181.1415 (6)0.6105 (5)0.20936 (15)0.0256 (10)
C190.9352 (5)0.8573 (4)0.31549 (14)0.0203 (9)
C201.0185 (6)0.9308 (5)0.35669 (15)0.0269 (11)
C210.6132 (5)0.6409 (4)0.18387 (14)0.0213 (10)
C220.5235 (6)0.5723 (5)0.14248 (14)0.0253 (10)
C230.5106 (5)0.6956 (4)0.41775 (14)0.0197 (9)
C240.4074 (6)0.7881 (4)0.41728 (15)0.0241 (10)
C250.7595 (5)0.3092 (4)0.45290 (14)0.0222 (10)
C260.8073 (6)0.1932 (4)0.43481 (15)0.0237 (10)
C270.7648 (5)0.7430 (4)0.51428 (14)0.0213 (9)
C280.7204 (6)0.8590 (5)0.53341 (14)0.0245 (10)
C291.0101 (5)0.5047 (5)0.38344 (14)0.0231 (10)
C301.1205 (6)0.4372 (5)0.35985 (15)0.0288 (11)
F10.7134 (4)1.3896 (3)0.03851 (9)0.0368 (7)
F20.5393 (3)1.2669 (3)0.07708 (10)0.0357 (7)
F30.7930 (3)1.3561 (3)0.09948 (9)0.0306 (6)
F41.1843 (3)0.7082 (3)0.04576 (8)0.0280 (6)
F51.1991 (3)0.7381 (3)0.11314 (9)0.0326 (7)
F60.9934 (3)0.5929 (3)0.08168 (10)0.0366 (7)
F70.2597 (3)1.0702 (3)0.11597 (9)0.0361 (7)
F80.4628 (4)1.1667 (3)0.15956 (10)0.0442 (8)
F90.3027 (4)0.9824 (3)0.17063 (9)0.0429 (8)
F100.8125 (4)0.6467 (3)0.07487 (8)0.0333 (7)
F110.6483 (4)0.5285 (3)0.03379 (10)0.0377 (7)
F120.9043 (4)0.6222 (3)0.01409 (9)0.0379 (7)
F130.3829 (3)0.9722 (3)0.26179 (9)0.0361 (7)
F140.2756 (3)0.8052 (3)0.29408 (9)0.0310 (7)
F150.4735 (4)0.9621 (3)0.32429 (9)0.0353 (7)
F161.2824 (3)0.7002 (3)0.20204 (8)0.0296 (6)
F171.0826 (3)0.5406 (3)0.17324 (9)0.0327 (7)
F181.1784 (4)0.5356 (3)0.23572 (9)0.0374 (7)
F191.1681 (4)1.0072 (4)0.35118 (10)0.0571 (10)
F200.9260 (5)0.9973 (4)0.37208 (11)0.0615 (11)
F211.0329 (4)0.8542 (3)0.38529 (10)0.0458 (8)
F220.4695 (4)0.6491 (3)0.12032 (9)0.0399 (8)
F230.6283 (4)0.5324 (3)0.11910 (9)0.0446 (9)
F240.3938 (4)0.4746 (3)0.14878 (10)0.0489 (9)
F250.3043 (3)0.7555 (3)0.38337 (9)0.0334 (7)
F260.5038 (4)0.9062 (3)0.41525 (10)0.0363 (7)
F270.3155 (3)0.7864 (3)0.45076 (8)0.0282 (6)
F280.7210 (3)0.1405 (3)0.39969 (9)0.0295 (6)
F290.9688 (3)0.2293 (3)0.42642 (9)0.0323 (7)
F300.7830 (4)0.1065 (3)0.46225 (9)0.0368 (7)
F310.5879 (4)0.8697 (3)0.51253 (9)0.0380 (7)
F320.8440 (4)0.9666 (3)0.53168 (9)0.0364 (7)
F330.6812 (4)0.8486 (3)0.57340 (9)0.0344 (7)
F341.1994 (4)0.5057 (3)0.33025 (10)0.0462 (9)
F351.0281 (4)0.3251 (3)0.34163 (10)0.0451 (8)
F361.2341 (4)0.4150 (3)0.38484 (9)0.0396 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0212 (3)0.0220 (3)0.0169 (3)0.0065 (2)0.0022 (2)0.0031 (2)
Cu20.0215 (3)0.0226 (3)0.0178 (3)0.0070 (2)0.0026 (2)0.0041 (2)
Cu30.0275 (3)0.0253 (3)0.0195 (3)0.0121 (2)0.0056 (2)0.0039 (2)
Cu40.0270 (3)0.0255 (3)0.0209 (3)0.0130 (2)0.0046 (2)0.0040 (2)
Cu50.0233 (3)0.0258 (3)0.0202 (3)0.0085 (2)0.0065 (2)0.0028 (2)
Cu60.0236 (3)0.0253 (3)0.0242 (3)0.0112 (2)0.0031 (2)0.0046 (2)
Cu70.0279 (3)0.0373 (4)0.0205 (3)0.0181 (3)0.0060 (2)0.0065 (3)
Cu80.0298 (3)0.0413 (4)0.0205 (3)0.0198 (3)0.0079 (2)0.0087 (3)
Cu90.0235 (3)0.0266 (3)0.0193 (3)0.0093 (2)0.0059 (2)0.0025 (2)
Cu100.0234 (3)0.0251 (3)0.0242 (3)0.0118 (2)0.0015 (2)0.0049 (2)
O10.0243 (16)0.0239 (17)0.0192 (16)0.0112 (13)0.0019 (13)0.0056 (13)
O20.0254 (17)0.0232 (18)0.033 (2)0.0122 (14)0.0001 (14)0.0008 (15)
O30.0240 (16)0.0234 (17)0.0228 (17)0.0098 (13)0.0048 (13)0.0050 (14)
O40.0327 (19)0.042 (2)0.0214 (17)0.0225 (16)0.0099 (14)0.0110 (15)
O50.0272 (18)0.040 (2)0.0250 (18)0.0190 (16)0.0020 (14)0.0001 (15)
O60.0259 (17)0.0284 (18)0.0172 (16)0.0104 (14)0.0033 (13)0.0004 (14)
O70.0266 (17)0.0234 (18)0.0216 (17)0.0087 (14)0.0060 (13)0.0010 (14)
O80.0277 (17)0.0256 (18)0.0173 (16)0.0116 (14)0.0040 (13)0.0031 (13)
O90.0230 (16)0.0254 (18)0.0238 (17)0.0090 (14)0.0012 (13)0.0050 (14)
O100.0222 (16)0.0227 (18)0.0261 (18)0.0071 (13)0.0016 (13)0.0058 (14)
O110.0297 (18)0.0292 (19)0.0247 (18)0.0109 (15)0.0067 (14)0.0049 (15)
O120.0213 (16)0.0286 (19)0.0269 (18)0.0098 (14)0.0022 (13)0.0030 (15)
O130.0232 (16)0.0294 (19)0.0247 (18)0.0130 (14)0.0044 (13)0.0061 (14)
O140.0279 (17)0.0284 (19)0.0239 (18)0.0100 (14)0.0075 (14)0.0080 (14)
O150.0291 (18)0.032 (2)0.0219 (18)0.0066 (15)0.0009 (14)0.0020 (15)
O160.0266 (17)0.0291 (19)0.0158 (16)0.0083 (14)0.0015 (13)0.0025 (14)
O170.0260 (17)0.0273 (18)0.0176 (16)0.0081 (14)0.0018 (13)0.0022 (14)
O180.0320 (19)0.0251 (18)0.0246 (18)0.0064 (15)0.0012 (14)0.0044 (15)
O190.0329 (19)0.040 (2)0.0259 (18)0.0198 (16)0.0127 (15)0.0136 (16)
O200.0218 (16)0.0253 (18)0.0257 (18)0.0070 (13)0.0056 (13)0.0092 (14)
O210.0265 (17)0.0260 (18)0.0287 (19)0.0105 (14)0.0039 (14)0.0061 (15)
O220.0288 (17)0.0269 (18)0.0193 (17)0.0114 (14)0.0051 (13)0.0038 (14)
O230.0282 (17)0.0265 (18)0.0193 (17)0.0124 (14)0.0062 (13)0.0024 (14)
O240.0231 (16)0.0239 (18)0.0236 (17)0.0080 (13)0.0055 (13)0.0022 (14)
O250.0236 (17)0.0291 (18)0.0182 (17)0.0076 (14)0.0024 (13)0.0015 (14)
O260.0314 (19)0.045 (2)0.0189 (17)0.0193 (17)0.0062 (14)0.0041 (15)
C10.020 (2)0.018 (2)0.020 (2)0.0047 (17)0.0044 (17)0.0052 (18)
C20.023 (2)0.019 (2)0.026 (2)0.0076 (18)0.0012 (18)0.0058 (19)
C30.018 (2)0.022 (2)0.021 (2)0.0049 (18)0.0008 (17)0.0017 (19)
C40.023 (2)0.023 (2)0.019 (2)0.0100 (19)0.0065 (18)0.0051 (19)
C50.021 (2)0.019 (2)0.025 (3)0.0030 (18)0.0075 (18)0.0030 (19)
C60.032 (3)0.040 (3)0.018 (2)0.018 (2)0.003 (2)0.002 (2)
C70.018 (2)0.026 (3)0.018 (2)0.0094 (18)0.0019 (17)0.0013 (19)
C80.025 (2)0.025 (3)0.021 (2)0.0066 (19)0.0022 (19)0.002 (2)
C90.052 (3)0.024 (3)0.039 (3)0.007 (2)0.005 (3)0.008 (2)
C100.031 (3)0.030 (3)0.024 (3)0.008 (2)0.002 (2)0.000 (2)
C110.135 (7)0.043 (4)0.041 (4)0.012 (4)0.030 (4)0.009 (3)
C120.088 (5)0.034 (3)0.047 (4)0.014 (3)0.027 (4)0.005 (3)
C130.028 (3)0.026 (3)0.022 (2)0.005 (2)0.0013 (19)0.003 (2)
C140.046 (3)0.029 (3)0.030 (3)0.007 (2)0.001 (2)0.004 (2)
C150.024 (2)0.029 (3)0.016 (2)0.009 (2)0.0019 (18)0.0015 (19)
C160.024 (2)0.027 (3)0.020 (2)0.010 (2)0.0020 (18)0.004 (2)
C170.021 (2)0.025 (3)0.016 (2)0.0068 (19)0.0010 (17)0.0004 (19)
C180.024 (2)0.031 (3)0.026 (3)0.012 (2)0.0043 (19)0.005 (2)
C190.021 (2)0.025 (2)0.017 (2)0.0100 (19)0.0006 (17)0.0017 (19)
C200.027 (3)0.031 (3)0.025 (3)0.013 (2)0.001 (2)0.003 (2)
C210.015 (2)0.029 (3)0.022 (2)0.0115 (19)0.0006 (17)0.001 (2)
C220.025 (2)0.034 (3)0.018 (2)0.012 (2)0.0023 (18)0.002 (2)
C230.021 (2)0.018 (2)0.021 (2)0.0061 (18)0.0001 (17)0.0021 (18)
C240.024 (2)0.025 (3)0.024 (2)0.0064 (19)0.0066 (19)0.007 (2)
C250.021 (2)0.021 (2)0.024 (2)0.0060 (18)0.0081 (18)0.0032 (19)
C260.023 (2)0.025 (3)0.025 (3)0.0102 (19)0.0027 (19)0.002 (2)
C270.019 (2)0.028 (3)0.020 (2)0.0104 (19)0.0002 (17)0.0050 (19)
C280.029 (3)0.027 (3)0.018 (2)0.009 (2)0.0000 (19)0.0006 (19)
C290.023 (2)0.031 (3)0.018 (2)0.010 (2)0.0082 (18)0.010 (2)
C300.031 (3)0.040 (3)0.019 (2)0.015 (2)0.006 (2)0.004 (2)
F10.057 (2)0.0279 (17)0.0312 (17)0.0205 (15)0.0036 (14)0.0073 (13)
F20.0227 (14)0.0320 (17)0.0495 (19)0.0068 (12)0.0091 (13)0.0080 (14)
F30.0330 (16)0.0303 (16)0.0298 (16)0.0138 (13)0.0076 (12)0.0048 (13)
F40.0292 (15)0.0316 (16)0.0279 (15)0.0147 (12)0.0093 (12)0.0077 (12)
F50.0301 (15)0.0433 (18)0.0294 (16)0.0166 (13)0.0018 (12)0.0115 (13)
F60.0338 (16)0.0201 (15)0.055 (2)0.0055 (12)0.0134 (14)0.0063 (14)
F70.0343 (16)0.056 (2)0.0271 (16)0.0290 (15)0.0009 (12)0.0027 (14)
F80.0444 (19)0.043 (2)0.045 (2)0.0185 (16)0.0042 (15)0.0170 (16)
F90.0435 (18)0.063 (2)0.0331 (17)0.0281 (17)0.0245 (14)0.0195 (16)
F100.0467 (18)0.0350 (17)0.0205 (15)0.0159 (14)0.0102 (13)0.0006 (12)
F110.0388 (17)0.0254 (16)0.0442 (19)0.0038 (13)0.0123 (14)0.0019 (14)
F120.0413 (17)0.0420 (19)0.0391 (18)0.0291 (15)0.0088 (14)0.0077 (14)
F130.0374 (17)0.0441 (19)0.0367 (18)0.0239 (14)0.0098 (13)0.0162 (14)
F140.0249 (14)0.0367 (17)0.0326 (16)0.0102 (12)0.0067 (12)0.0061 (13)
F150.0359 (16)0.0412 (18)0.0293 (16)0.0149 (14)0.0044 (13)0.0072 (14)
F160.0216 (14)0.0378 (17)0.0305 (16)0.0100 (12)0.0065 (11)0.0045 (13)
F170.0394 (17)0.0326 (17)0.0255 (16)0.0123 (13)0.0034 (12)0.0063 (13)
F180.0398 (17)0.0478 (19)0.0378 (18)0.0288 (15)0.0120 (14)0.0192 (15)
F190.0399 (19)0.070 (3)0.036 (2)0.0170 (17)0.0002 (15)0.0126 (17)
F200.070 (2)0.084 (3)0.048 (2)0.060 (2)0.0198 (18)0.036 (2)
F210.059 (2)0.047 (2)0.0281 (17)0.0115 (17)0.0147 (15)0.0018 (15)
F220.0509 (19)0.045 (2)0.0291 (17)0.0263 (16)0.0169 (14)0.0063 (14)
F230.0379 (18)0.064 (2)0.0361 (18)0.0283 (17)0.0039 (14)0.0242 (16)
F240.0439 (19)0.050 (2)0.0345 (19)0.0109 (16)0.0059 (15)0.0010 (15)
F250.0333 (16)0.0443 (19)0.0280 (16)0.0186 (14)0.0003 (12)0.0086 (14)
F260.0381 (17)0.0210 (15)0.050 (2)0.0073 (13)0.0139 (14)0.0103 (14)
F270.0302 (15)0.0288 (16)0.0293 (16)0.0128 (12)0.0089 (12)0.0079 (12)
F280.0305 (15)0.0269 (15)0.0318 (16)0.0112 (12)0.0051 (12)0.0022 (12)
F290.0230 (14)0.0360 (17)0.0387 (17)0.0123 (12)0.0056 (12)0.0054 (13)
F300.0508 (19)0.0277 (16)0.0366 (18)0.0167 (14)0.0047 (14)0.0120 (14)
F310.0399 (17)0.0417 (19)0.0391 (18)0.0254 (15)0.0096 (14)0.0064 (14)
F320.0393 (17)0.0238 (16)0.0425 (19)0.0050 (13)0.0090 (14)0.0015 (13)
F330.0472 (18)0.0335 (17)0.0239 (15)0.0149 (14)0.0111 (13)0.0003 (13)
F340.050 (2)0.064 (2)0.0343 (18)0.0277 (18)0.0264 (15)0.0149 (16)
F350.050 (2)0.045 (2)0.0406 (19)0.0199 (16)0.0041 (15)0.0169 (16)
F360.0356 (17)0.068 (2)0.0272 (16)0.0353 (16)0.0009 (13)0.0045 (15)
Geometric parameters (Å, º) top
Cu1—O131.965 (3)O26—C291.245 (5)
Cu1—O111.966 (3)C1—C21.545 (6)
Cu1—O151.972 (3)C2—F31.335 (5)
Cu1—O171.991 (3)C2—F11.336 (5)
Cu1—O92.167 (3)C2—F21.350 (5)
Cu1—Cu22.7171 (8)C3—C41.540 (6)
Cu2—O181.964 (3)C4—F61.329 (5)
Cu2—O121.977 (3)C4—F41.340 (5)
Cu2—O141.979 (3)C4—F51.345 (5)
Cu2—O161.994 (3)C5—C61.553 (6)
Cu2—O102.153 (3)C6—F81.329 (6)
Cu3—O231.895 (3)C6—F91.338 (6)
Cu3—O221.904 (3)C6—F71.348 (5)
Cu3—Cu62.7540 (9)C7—C81.550 (6)
Cu3—Cu52.7599 (8)C8—F111.331 (5)
Cu4—O81.896 (3)C8—F101.340 (5)
Cu4—O11.914 (3)C8—F121.344 (5)
Cu4—Cu92.7443 (8)C9—C101.490 (7)
Cu4—Cu102.7489 (8)C9—H9A0.9800
Cu5—O241.895 (3)C9—H9B0.9800
Cu5—O251.922 (3)C9—H9C0.9800
Cu5—Cu82.8043 (9)C10—C111.517 (8)
Cu5—Cu62.9257 (9)C11—H11A0.9800
Cu6—O211.888 (3)C11—H11B0.9800
Cu6—O201.914 (3)C11—H11C0.9800
Cu6—Cu82.7492 (8)C12—C131.503 (7)
Cu7—O41.876 (3)C12—H12A0.9800
Cu7—O51.889 (3)C12—H12B0.9800
Cu7—O92.627 (3)C12—H12C0.9800
Cu7—O172.539 (3)C13—C141.501 (6)
Cu7—Cu102.7750 (8)C14—H14A0.9800
Cu7—Cu92.8258 (9)C14—H14B0.9800
Cu8—O191.882 (3)C14—H14C0.9800
Cu8—O102.736 (3)C15—C161.547 (6)
Cu8—O162.508 (3)C16—F131.336 (5)
Cu8—O261.887 (3)C16—F151.344 (5)
Cu9—O71.899 (3)C16—F141.346 (5)
Cu9—O61.917 (3)C17—C181.553 (6)
Cu9—Cu102.9333 (9)C18—F181.336 (5)
Cu10—O21.882 (3)C18—F161.345 (5)
Cu10—O31.912 (3)C18—F171.347 (5)
O1—C11.261 (5)C19—C201.542 (6)
O2—C11.252 (5)C20—F201.313 (5)
O3—C31.268 (5)C20—F191.322 (6)
O4—C31.254 (5)C20—F211.334 (6)
O5—C51.255 (5)C21—C221.548 (6)
O6—C51.256 (5)C22—F241.326 (5)
O7—C71.249 (5)C22—F231.330 (5)
O8—C71.273 (5)C22—F221.336 (5)
O9—C101.225 (6)C23—C241.547 (6)
O10—C131.235 (6)C24—F261.332 (5)
O11—C151.264 (5)C24—F271.339 (5)
O12—C151.254 (5)C24—F251.344 (5)
O13—C171.250 (5)C25—C261.546 (6)
O14—C171.265 (5)C26—F281.330 (5)
O15—C191.256 (5)C26—F301.335 (5)
O16—C191.259 (5)C26—F291.347 (5)
O17—C211.262 (5)C27—C281.541 (6)
O18—C211.255 (5)C28—F321.340 (5)
O19—C231.250 (5)C28—F331.340 (5)
O20—C231.261 (5)C28—F311.344 (5)
O21—C251.258 (5)C29—C301.546 (6)
O22—C251.264 (5)C30—F341.329 (5)
O23—C271.254 (5)C30—F361.339 (5)
O24—C271.262 (5)C30—F351.341 (6)
O25—C291.269 (5)
O13—Cu1—O11168.91 (13)O4—C3—O3127.7 (4)
O13—Cu1—O1590.07 (14)O4—C3—C4113.2 (4)
O11—Cu1—O1588.13 (14)O3—C3—C4119.0 (4)
O13—Cu1—O1790.10 (13)F6—C4—F4107.9 (4)
O11—Cu1—O1788.79 (13)F6—C4—F5107.8 (4)
O15—Cu1—O17164.81 (14)F4—C4—F5107.4 (3)
O13—Cu1—O997.37 (12)F6—C4—C3111.0 (4)
O11—Cu1—O993.67 (13)F4—C4—C3113.3 (4)
O15—Cu1—O9104.34 (13)F5—C4—C3109.2 (4)
O17—Cu1—O990.70 (12)O5—C5—O6128.9 (4)
O13—Cu1—Cu283.87 (9)O5—C5—C6112.8 (4)
O11—Cu1—Cu285.05 (10)O6—C5—C6118.3 (4)
O15—Cu1—Cu283.01 (10)F8—C6—F9107.8 (4)
O17—Cu1—Cu281.90 (9)F8—C6—F7107.5 (4)
O9—Cu1—Cu2172.50 (9)F9—C6—F7107.1 (4)
O18—Cu2—O1290.19 (14)F8—C6—C5111.7 (4)
O18—Cu2—O1488.78 (14)F9—C6—C5110.3 (4)
O12—Cu2—O14165.11 (13)F7—C6—C5112.2 (4)
O18—Cu2—O16168.51 (14)O7—C7—O8128.8 (4)
O12—Cu2—O1688.84 (13)O7—C7—C8115.1 (4)
O14—Cu2—O1689.22 (13)O8—C7—C8116.1 (4)
O18—Cu2—O1099.09 (13)F11—C8—F10107.8 (4)
O12—Cu2—O1095.91 (13)F11—C8—F12108.3 (4)
O14—Cu2—O1098.93 (12)F10—C8—F12107.4 (4)
O16—Cu2—O1092.40 (13)F11—C8—C7111.6 (4)
O18—Cu2—Cu184.88 (10)F10—C8—C7112.1 (4)
O12—Cu2—Cu181.96 (10)F12—C8—C7109.4 (4)
O14—Cu2—Cu183.15 (9)C10—C9—H9A109.5
O16—Cu2—Cu183.65 (9)C10—C9—H9B109.5
O10—Cu2—Cu1175.53 (9)H9A—C9—H9B109.5
O23—Cu3—O22170.41 (13)C10—C9—H9C109.5
O23—Cu3—Cu686.44 (10)H9A—C9—H9C109.5
O22—Cu3—Cu686.08 (10)H9B—C9—H9C109.5
O23—Cu3—Cu584.31 (10)O9—C10—C9122.0 (5)
O22—Cu3—Cu587.02 (10)O9—C10—C11122.1 (5)
Cu6—Cu3—Cu564.09 (2)C9—C10—C11115.8 (5)
O8—Cu4—O1170.82 (13)C10—C11—H11A109.5
O8—Cu4—Cu984.46 (9)C10—C11—H11B109.5
O1—Cu4—Cu987.60 (9)H11A—C11—H11B109.5
O8—Cu4—Cu1085.91 (9)C10—C11—H11C109.5
O1—Cu4—Cu1086.53 (9)H11A—C11—H11C109.5
Cu9—Cu4—Cu1064.55 (2)H11B—C11—H11C109.5
O24—Cu5—O25170.39 (14)C13—C12—H12A109.5
O24—Cu5—Cu380.59 (10)C13—C12—H12B109.5
O25—Cu5—Cu3106.94 (10)H12A—C12—H12B109.5
O24—Cu5—Cu899.93 (10)C13—C12—H12C109.5
O25—Cu5—Cu882.48 (10)H12A—C12—H12C109.5
Cu3—Cu5—Cu8114.99 (3)H12B—C12—H12C109.5
O24—Cu5—Cu686.79 (10)O10—C13—C14120.9 (4)
O25—Cu5—Cu6102.21 (10)O10—C13—C12122.2 (4)
Cu3—Cu5—Cu657.85 (2)C14—C13—C12116.9 (5)
Cu8—Cu5—Cu657.30 (2)C13—C14—H14A109.5
O21—Cu6—O20169.94 (14)C13—C14—H14B109.5
O21—Cu6—Cu894.74 (10)H14A—C14—H14B109.5
O20—Cu6—Cu884.56 (9)C13—C14—H14C109.5
O21—Cu6—Cu378.88 (10)H14A—C14—H14C109.5
O20—Cu6—Cu3110.40 (10)H14B—C14—H14C109.5
Cu8—Cu6—Cu3117.01 (3)O12—C15—O11129.2 (4)
O21—Cu6—Cu587.78 (10)O12—C15—C16116.0 (4)
O20—Cu6—Cu5100.36 (10)O11—C15—C16114.7 (4)
Cu8—Cu6—Cu559.13 (2)F13—C16—F15108.0 (4)
Cu3—Cu6—Cu558.05 (2)F13—C16—F14107.9 (4)
O4—Cu7—O5174.83 (15)F15—C16—F14108.0 (4)
O4—Cu7—Cu1078.72 (10)F13—C16—C15112.1 (4)
O5—Cu7—Cu10106.12 (11)F15—C16—C15108.9 (4)
O4—Cu7—Cu9100.09 (11)F14—C16—C15111.8 (4)
O5—Cu7—Cu980.85 (10)O13—C17—O14129.5 (4)
Cu10—Cu7—Cu963.16 (2)O13—C17—C18116.0 (4)
O19—Cu8—O26175.98 (14)O14—C17—C18114.5 (4)
O19—Cu8—Cu680.54 (10)F18—C18—F16107.9 (4)
O26—Cu8—Cu6103.38 (11)F18—C18—F17108.0 (4)
O19—Cu8—Cu5101.44 (11)F16—C18—F17108.4 (4)
O26—Cu8—Cu581.29 (10)F18—C18—C17112.3 (4)
Cu6—Cu8—Cu563.57 (2)F16—C18—C17111.9 (4)
O7—Cu9—O6169.93 (14)F17—C18—C17108.2 (4)
O7—Cu9—Cu481.25 (10)O15—C19—O16127.8 (4)
O6—Cu9—Cu4105.67 (10)O15—C19—C20115.4 (4)
O7—Cu9—Cu7101.76 (10)O16—C19—C20116.7 (4)
O6—Cu9—Cu782.18 (10)F20—C20—F19109.2 (4)
Cu4—Cu9—Cu7114.86 (3)F20—C20—F21107.2 (4)
O7—Cu9—Cu1086.13 (10)F19—C20—F21107.5 (4)
O6—Cu9—Cu10103.71 (10)F20—C20—C19108.6 (4)
Cu4—Cu9—Cu1057.80 (2)F19—C20—C19111.9 (4)
Cu7—Cu9—Cu1057.58 (2)F21—C20—C19112.2 (4)
O2—Cu10—O3169.64 (14)O18—C21—O17128.6 (4)
O2—Cu10—Cu478.35 (10)O18—C21—C22115.6 (4)
O3—Cu10—Cu4111.40 (10)O17—C21—C22115.8 (4)
O2—Cu10—Cu793.28 (10)F24—C22—F23109.1 (4)
O3—Cu10—Cu785.53 (9)F24—C22—F22107.3 (4)
Cu4—Cu10—Cu7116.39 (3)F23—C22—F22107.0 (4)
O2—Cu10—Cu988.90 (10)F24—C22—C21112.1 (4)
O3—Cu10—Cu999.27 (10)F23—C22—C21109.5 (4)
Cu4—Cu10—Cu957.65 (2)F22—C22—C21111.8 (4)
Cu7—Cu10—Cu959.27 (2)O19—C23—O20128.3 (4)
C1—O1—Cu4116.7 (3)O19—C23—C24112.7 (4)
C1—O2—Cu10128.6 (3)O20—C23—C24118.9 (4)
C3—O3—Cu10118.6 (3)F26—C24—F27107.8 (4)
C3—O4—Cu7129.1 (3)F26—C24—F25108.2 (4)
C5—O5—Cu7125.4 (3)F27—C24—F25107.7 (4)
C5—O6—Cu9122.3 (3)F26—C24—C23111.2 (4)
C7—O7—Cu9124.8 (3)F27—C24—C23113.2 (4)
C7—O8—Cu4120.5 (3)F25—C24—C23108.5 (4)
C10—O9—Cu1135.9 (3)O21—C25—O22128.2 (4)
C13—O10—Cu2133.5 (3)O21—C25—C26116.1 (4)
C15—O11—Cu1120.1 (3)O22—C25—C26115.7 (4)
C15—O12—Cu2123.4 (3)F28—C26—F30108.8 (4)
C17—O13—Cu1121.7 (3)F28—C26—F29108.2 (4)
C17—O14—Cu2121.5 (3)F30—C26—F29107.9 (4)
C19—O15—Cu1123.5 (3)F28—C26—C25111.8 (4)
C19—O16—Cu2121.7 (3)F30—C26—C25110.8 (4)
C21—O17—Cu1123.0 (3)F29—C26—C25109.3 (4)
C21—O18—Cu2121.1 (3)O23—C27—O24128.4 (4)
C23—O19—Cu8126.6 (3)O23—C27—C28116.5 (4)
C23—O20—Cu6119.8 (3)O24—C27—C28115.1 (4)
C25—O21—Cu6128.0 (3)F32—C28—F33107.8 (4)
C25—O22—Cu3118.1 (3)F32—C28—F31107.9 (4)
C27—O23—Cu3120.9 (3)F33—C28—F31107.2 (4)
C27—O24—Cu5125.4 (3)F32—C28—C27112.4 (4)
C29—O25—Cu5121.7 (3)F33—C28—C27111.9 (4)
C29—O26—Cu8125.4 (3)F31—C28—C27109.5 (4)
O2—C1—O1128.8 (4)O26—C29—O25128.8 (4)
O2—C1—C2115.6 (4)O26—C29—C30113.4 (4)
O1—C1—C2115.5 (4)O25—C29—C30117.7 (4)
F3—C2—F1108.2 (4)F34—C30—F36107.9 (4)
F3—C2—F2107.7 (4)F34—C30—F35108.0 (4)
F1—C2—F2107.7 (4)F36—C30—F35107.0 (4)
F3—C2—C1112.1 (4)F34—C30—C29110.5 (4)
F1—C2—C1111.5 (4)F36—C30—C29112.9 (4)
F2—C2—C1109.4 (4)F35—C30—C29110.3 (4)

Experimental details

Crystal data
Chemical formula[Cu10(C2F3O2)12(C3H6O)2]
Mr2107.80
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.4999 (12), 11.1689 (15), 32.202 (4)
α, β, γ (°)94.586 (2), 90.880 (2), 107.708 (2)
V3)2900.4 (7)
Z2
Radiation typeMo Kα
µ (mm1)3.78
Crystal size (mm)0.28 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.417, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
24771, 12733, 9129
Rint0.028
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections12733
No. of parameters923
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.11, 0.69

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O131.965 (3)Cu5—Cu62.9257 (9)
Cu1—O111.966 (3)Cu6—O211.888 (3)
Cu1—O151.972 (3)Cu6—O201.914 (3)
Cu1—O171.991 (3)Cu6—Cu82.7492 (8)
Cu1—O92.167 (3)Cu7—O41.876 (3)
Cu1—Cu22.7171 (8)Cu7—O51.889 (3)
Cu2—O181.964 (3)Cu7—O92.627 (3)
Cu2—O121.977 (3)Cu7—O172.539 (3)
Cu2—O141.979 (3)Cu7—Cu102.7750 (8)
Cu2—O161.994 (3)Cu7—Cu92.8258 (9)
Cu2—O102.153 (3)Cu8—O191.882 (3)
Cu3—O231.895 (3)Cu8—O102.736 (3)
Cu3—O221.904 (3)Cu8—O162.508 (3)
Cu3—Cu62.7540 (9)Cu8—O261.887 (3)
Cu3—Cu52.7599 (8)Cu9—O71.899 (3)
Cu4—O81.896 (3)Cu9—O61.917 (3)
Cu4—O11.914 (3)Cu9—Cu102.9333 (9)
Cu4—Cu92.7443 (8)Cu10—O21.882 (3)
Cu4—Cu102.7489 (8)Cu10—O31.912 (3)
Cu5—O241.895 (3)O9—C101.225 (6)
Cu5—O251.922 (3)O10—C131.235 (6)
Cu5—Cu82.8043 (9)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds