Download citation
Download citation
link to html
As part of our search for catalytically active RuII–hydride complexes, we have synthesized and crystallographically characterized three different ruthenium species, namely dihydrido[(SR)-(10,11-η)-N-(pyridin-2-ylmethyl-κN)-5H-di­benzo[a,d]cyclo­hepten-5-amine](tri­phenyl­phosphane-κP)ruthenium(II) tetra­hydro­furan monosolvate, [RuH2(C21H18N2)(C18H15P)]·C4H8O or (SR)-[RuII(H)2{N-(pyridin-2-yl­meth­yl)tropNH}(PPh3)]·THF, (1), chlorido­{(1SR,2RS)-N,N′-bis­[(10,11-η)-5H-dibenzo[a,d]cyclo­hepten-5-amine]­ethane-1,2-di­amine-κ2N,N′}hydridoruthenium(II) di­meth­oxy­ethane hemisolvate, [RuClH(C32H28N2)]·0.5C4H10O2 or (1SR,2RS)-[RuII(H)(Cl){tropNH(CH2)2HNtrop}]·DME, (2), and chlo­rido­{(1SR,2RS)-N,N′-bis­[(10,11-η)-5H-dibenzo[a,d]cyclo­hep­ten-5-amine]­propane-1,3-di­amine-κ2N,N′}hydridoruthenium(II), [RuClH(C33H30N2)] or (1SR,2RS)-[RuII(H)(Cl){tropNH(CH2)3HNtrop}], (3), where trop is 5H-dibenzo[a,d]cyclo­hep­tene. In all three complexes, the RuII center resides in an octa­hedral coordination environment. For (1)–(3), the hydride atoms were located in a difference Fourier map and were refined freely. In solution, the 1H NMR spectra of all species show the presence of the hydride resonance. Comparison with quantum-chemical calculations reveals that the crystallographic data sets are plausible. In every case, the prediction is in very good agreement with the observed X-ray data. Not only the observed geometry is predicted well but also the Ru—H(hydride) bond lengths are reproduced remarkably well. Complexes (1) and (2) crystallized in the triclinic P\overline{1} space group, while (3) crystallized in the tetra­gonal space group I41/a. For (3), there is disorder of the axial ligands producing two isomers (in a 98.7:1.3 ratio). Details of the synthesis, characterization, X-ray analysis, and theoretical calculations for complexes (1)–(3) are presented.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113024505/fa3321sup1.cif
Contains datablocks I, II, III, paper

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024505/fa3321Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024505/fa3321IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113024505/fa3321IIIsup4.hkl
Contains datablock III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270113024505/fa3321sup5.pdf
Supplementary material

Introduction top

The history of ruthenium(II) complexes having either nitro­gen or phosphanyl ligands dates back to the mid 1960s (Wilkinson & Stephenson, 1966). In the mid 1980s, several examples of RuII complexes were shown to be efficient catalysts for the conversion of simple alcohols to esters and hydrogen (Shvo & Blum, 1985). These authors also presented the possible strategic role of a chemically non-innocent co-operative ligand in the coordination sphere of a metal catalyst. This concept for catalytic processes has been further studied and developed by Milstein et al. (2005, 2007).

In the past decade, part of our research has focused on the synthesis, characterization and catalytic activity of various metal complexes using the trop family of ligands, for example, bis-tropamine ligands (trop2NH, trop is 5H-dibenzo[a,d]cyclo­hepten-5-yl) (Büttner et al., 2004; Maire, Büttner et al. 2005). In combination with a 2,2'-bi­pyridyl ligand (bipy), we were even able to isolate one of the first stable aminyl radical complexes, namely [RhI(trop2N)(bipy)](OTf) (OTf = triflate or tri­fluoro­methane­sulfonate, F3CSO3) (Büttner et al., 2005).

We have shown that, under mild conditions, RhI(trop2NH)(L) complexes (L = various neutral 2e- donors) are highly efficient catalysts for hydrogenation reactions of ketones and imines (Maire, Breher, Schönberg & Grützmacher, 2005; OR Maire, Breher & Grützmacher, 2005). In particular, we have proven the role that these species play for efficient de­hydrogenative coupling reactions (DHC) of primary alcohols, polyalcohols, and sugars in the presence of a hydrogen acceptor (Zweifel et al., 2008, 2009; Annen et al., 2010; Trincado et al., 2010, 2011). Recently, we have been able to use N2O as a hydrogen acceptor for the DHC reactions of various alcohols to obtain either esters or carb­oxy­lic acids and N2 gas (Annen et al., 2013). This catalytic reaction is very promising as an alternative route to eliminate a potentially harmful greenhouse gas (N2O).

Further modifications on our bis­tropN- ligand to obtain tropNRNtrop ligands (R being a linear or cyclic aliphatic fragment) have also proven to be successful for catalytic hydrogen-transfer reactions (Maire, Breher, Schönberg & Grützmacher, 2005; OR Maire, Breher & Grützmacher, 2005). A highlight of our research in this field was the preparation and isolation of a ruthenium–hydride complex, namely [K(DME)2]+[RuII(H)(tropdadtrop)]- (DME is di­meth­oxy­ethane and dad is –NCHCHN–; Rodríguez-Lugo et al., 2013). With this complex as a catalyst or precursor thereof, several different tasks could be fulfilled at once. This complex demonstrated the potential of a non-innocent co-operative ligand in a metal catalyst, its effectiveness to reversibly store hydrogen and, last but not least, its ability to cleanly convert methanol and water into H2 and CO2. This is a promising catalytic reaction, as it shows great potential for the development of methanol-based fuel cells.

On the way to the successful complex [K(DME)2]+[RuII(H)(tropdadtrop)]- complex, other ruthenium–hydride complexes were prepared, characterized and tested in catalytic reactions. Herein we report on three of these complexes, (1)–(3), and their X-ray single-crystal diffraction studies. Also, we compare our structural data with quantum-chemical calculations which provide additional evidence for the existence of such hydrides.

Experimental top

Synthesis and crystallization top

Scheme 1 shows the synthetic approach used for the preparation of RuII–hydrides (1)–(3). A detailed description of the synthetic procedures has been deposited in the Supplementary materials. The isolated materials were crystallized by slow evaporation of either a pure solvent or a mixture of them (see Supplementary materials). The crystals of these materials are air sensitive, but they can be handled for a certain period of time under perfluorinated viscous oil and mounted conveniently on a X-ray single crystal diffractometer. Dark-yellow to amber re­cta­ngular blocks of (1) suitable for X-ray single-crystal analysis were obtained. Complex (2) crystallized from a DME/n-hexane mixture of solvents to give green re­cta­ngular platelets suitable for X-ray single-crystal analysis. The complex crystallized in the triclinic P1 space group and was identified also as a mixture of the meso diastereoisomers (1SR,2RS)-[RuII(H)(Cl){tropNH(CH2)2HNtrop}].DME (see Fig. 2b). Green prismatic crystals of (3) suitable for X-ray analysis were obtained by dissolving the isolated material in hot toluene and cooling the sample slowly to room temperature.

Refinement and calculations top

Crystal data, data collection and structure refinement details are summarized in Table 1. In all three structures, the hydride atoms were located in difference Fourier maps and were refined freely. 1H NMR analysis of the parent solutions reveals the presence of the hydride signals, viz. -3.37 and -11.47 p.p.m. for (1), -7.72 p.p.m. for (2) and -7.03 p.p.m. for (3) (see Supplementary materials for detailed 1H NMR assignments).

Results and discussion top

The single-crystal structure analysis of (1) revealed a racemic mixture of the enanti­omers (SR)-[RuII(H)2{N-(pyridin-2-yl­methyl)tropNH}(PPh3)].THF (THF is tetra­hydro­furan) (see Fig. 2a). In this structure, the RuII center is located in a slightly distorted o­cta­hedral coordination environment. The P atom of PPh3 ligand and one of the N atoms of the bidentate N-(pyridin-2-yl­methyl)­tropamine ligand occupy the axial positions (see Fig. 2a and Table 2). The pyridine N atom of the bidentate ligand and the centroid (ct) of the coordinated olefin unit are located in the equatorial plane. The other two equatorial positions are occupied by two hydride ligands. Since both of the ligands are neutral, the H-atom units have to be undoubtedly H-.

The main question that arises is how reliable the assignment of H atoms to the two observed positions of electron density is. To answer this question, we performed quantum-chemical calculations (TURBOMOLE) using various functionals, DFT (density functional theory) [(RI)—BP86] and hybrid (PBE0) and two different sets of basis SV(P) and TZVPP (Eichkorn et al., 1995). (see Supplementary materials for a comparison of all calculations.)

Remarkably, our crystal structure can be reproduced very well with calculations using the PBE0/TZVPP functional. Table 2 also shows the calculated bond lengths and angles for complex (1). A close analysis of the bond lengths of (1) shows that within the experimental errors of the diffraction method, both H- are rather unsymmetrically bound to the RuII center. The experimentally observed Ru—H bond lengths are 1.54 and 1.69 Å. The H0a···H0b distance is 1.88 Å (Table 2) and excludes any bonding inter­action (cf experimental H2 bond lengths of 0.741 Å; https://webbook.NIST.gov/chemistry/). Our calculations predict these trends too, i.e. one shorter and one longer Ru—H bond length and a H···H distance much longer than the experimental H2 bond length. These observations clearly indicate that the two H atoms are classically bound as hydrides to the RuII center and not as a di­hydrogen molecule.

The difference in the experimentally observed Ru—H bond lengths in the three reported complexes, (1)–(3), can be attributed to the different intra­molecular electronic effects of the ligand in mutual trans position (trans influence). The shortest Ru—H distances is trans to the pyridine N atom and the longest is trans to the coordinated CC bond of the trop unit. This result indicates that an olefin ligand in an RuII complex shows, despite its characteristics as π-acceptor, a stronger electron-donating effect than the N atom of a pyridine ring which consequently is a particularly weak ligand. Apart from this intra­molecular electronic effect, inter­molecular H···H inter­actions are also observed for H0b, which shows the longer Ru—H distance (see figure in the Supplementary materials). An electrostatic Hδ-···Hδ+ inter­action is observed between the RuII–hydride of one molecule with the Hδ+ of the N atom of a tropN unit of a neighbouring molecule, with an inter­molecular Hδ-···Hδ+ distance of ca 1.83 Å. For H0a, the shortest possible inter­molecular Hδ-···Hδ+ distance observed is > 2.23 Å.

All other distances observed in this crystal structure are in very good agreement with previously reported complexes (see, for example, Rodríguez-Lugo et al., 2013). Even the Ru—H(hydride) distances compare very well with our recently characterized and reported ruthenium(II) hydride catalyst (Rodríguez-Lugo et al., 2013).

Similar to (1), complex (2) also has an o­cta­hedral environment for the RuII center. The two N atoms and the two centroids of the coordinated olefin units bind at the equatorial plane. One Cl- and one H- bind in the axial positions. The sum of all angles for the equatorial ligands is 358.8°, indicating that all of them lie in an almost planar arrangement.

The observed Ru—H distance is 1.55 (3) Å (calculated 1.56 Å), which is in good agreement with the Ru—H distances observed in (1) and other previously reported ruthenium(II) hydrides (see, for example, Rodríguez-Lugo et al., 2013). Theoretical calculations (PBE0/TZVPP) for this complex reproduce all bond lengths very well, including the Ru—H distance (see Table 2). Only the calculated Ru—ct distances are underestimated by ca 1%. The o­cta­hedral environment of the RuII center is also accurately described by the theoretical calculations (cf Table 2). In (2), no intra- or inter­molecular Hδ-···Hδ+ inter­actions below 2.08 Å are observed (see Supplementary materials)

Analogous to (1) and (2), in (3) the RuII center has an o­cta­hedral environment. The equatorial and axial ligands are exactly the same as those described above for (2). The main difference between (2) and (3) is the chain length between the two N atoms of the ligand, i.e. –(CH2)3– instead of –(CH2)2–. As in (2), the complex was identified as a mixture of the meso diastereoisomers (1SR,2RS)-[RuII(H)(Cl){tropNH(CH2)3HNtrop}].

In the structure of (3), the Ru—H distance is ca 0.07 Å longer than in (1) or (2) [i.e. 1.63 (3) Å, calculated value = 1.56 Å]. This is basically due to a crystallographic issue, i.e. a disorder on the axial positions for the Cl- and H- units in (3) (see Fig. 3). In Fig. 2(c) and Table 2, only the observed structure and structural parameters, respectively, for the main partition of the system (σim 98.7 %) have been depicted.

Fig. 3(b) shows the observed structure including the ca 1.3% occupancy of the disordered Cl- and H- atoms. In the refinement of the structure without any partitioning {R[F2 > 2σ(F2)] = 0.0348, wR(F2) = 0.0741, and S = 0.918}, there is one residual density Q1 (0.74 e Å-3, Ru—Q1 = 2.669 Å) seen in the direction of the Ru—H0 bond (Fig. 3a). In this refinement, the observed Ru—H0 bond length [1.84 (3) Å] is relatively long compared to that in (1) and (2), and other Ru—H(hydride) distances (see, for example, Rodríguez-Lugo et al., 2013). The Ru—Q1 distance (σim 2.67 Å) is also longer than the observed Ru—Cl1 distance [2.5255 (7) Å]. These findings suggest that this chosen model is wrong.

Therefore Cl1 and H0 were refined using a separate independent variable. Q1 was assigned as Cl1b. After the refinement, the overall statistics barely improved {R[F2 > 2σ(F2)] = 0.0344, wR(F2) = 0.0730, and S = 0.918}, but the major change observed is Ru—H0 = 1.63 (3) Å. This bond length is shorter than before (cf 1.84 Å) and more representative for Ru—H(hydride) distances. The observed Ru—Cl1b distance of 2.66 (5) Å is longer than the Ru—Cl1 distance.

We also have performed a quantum-chemical calculation on an isomer of (3), i.e. (1S,2R)-[RuII(Cl)(H)(tropdaptrop)], (3a) (Fig. 4; calculations deposited in the Supplementary materials). In (3a), only the two axial positions have been permutated. In other words, the hydride is pointing in the same direction as the H atoms of the tropamine fragment. The chloride is now pointing in the opposite direction. This structure is also a minimum in the energy hyper surface, as indicated by the absence of negative vibrational frequencies (see Supplementary materials).

For (3a), the predicted Ru—H0b bond length is 1.57 Å and Ru—Cl1b is 2.52 Å. So, undoubtedly if the hydride and chloride positions are inter­changed, the predicted structure does not show such long Ru—H and Ru—Cl distances as seen in the crystal structure of (3). This suggests that the elongated distances observed in (3) are basically artifacts due to the mixing of the two partitions.

Overall, in the final refinement of (3) there still is a mixing of the H0 (98.7 %) and Cl1b (1.3 %) electron densities making the Ru—H(hydride) bond length a slightly longer (σim 0.07 Å longer) and the Ru—Cl1b distance relatively longer (σim 0.14 Å). The contribution of H0b with ca 1.3% in (3) cannot be seen at all. Therefore, in the refinement of the structure, H0b was fixed at 1.55 Å on the Ru—Cl1 axis.

A comparison between the two calculated (PBE0/TZVPP) species (3) and (3a) shows that for both complexes most of the bond lengths remain unchanged. The most noticeable change is seen on the Ru—N bond lengths (cf in Supplementary materials). For (3a), these predicted distances are much longer than calculated for (3), denoted (3)calc, or than in the observed X-ray data (Table 3). Also, a pronounced difference in the bond angles of ±4° to ±11° is seen for some of the angles around the metal center. Between the two calculated isomers, noticeably (3)calc resembles much more the proposed X-ray model.

We also see that the difference in energies (PBE0/TZVPP) between the two isomers of (3) is approximately 40 kJ mol-1 higher for (3a) (see Supplementary materials). This would give a possible explanation for the low percentage (1.3%) of species observed in the crystal structure of (3) in the form (3a).

In (2), the crystal structure determination does not show any disorder of the axial positions as in (3). We have also performed an optimization and vibration analysis of a possible isomer (2a) (for details, see Supplementary materials). As in (3), the axial positions have been inter­changed [see structure (2a) in Fig. 4]. For these two isomers of (2), regardless of the functionals used, isomer (2a) is at least 54 kJ mol-1 higher in energy than (2). This is a good reason to believe why in the structural determination of (2) no mixed species were observed.

In conclusion, on our search for catalytically active RuII complexes we have synthesized, isolated and characterized three new ruthenium–hydride complexes. All three complexes have been characterized in solution by NMR techniques. In the 1H NMR the hydride signals can be unequivocally detected. X-ray single-crystal determination of all three complexes also shows the hydride unit. Comparison with quantum chemical calculations gives further proof for the presence of the hydrides. The agreement between the experimental bond lengths and angles with the predicted structures is very good, providing further evidence for the structural data obtained. Two isomers, namely (1SR,2RS)-[RuII(H)(Cl)(tropdaptrop)], (3), and (1SR,2RS)-[RuII(Cl)(H)(tropdaptrop)], (3a), were found in the refinement of its X-ray structure. Quantum-chemical calculations for both isomers provide an energy difference of ca 40 kJ mol-1 in favor of the isomer in the form (3). In the X-ray data this isomer is the one present in the highest ratio (98.7%).

Related literature top

For related literature, see: Annen et al. (2010, 2013); Büttner et al. (2004, 2005); Eichkorn et al. (1995); Maire, Büttner, Breher, Le Floch & Grützmacher (2005); Maire, Breher & Grützmacher (2005); Maire, Breher, Schönberg & Grützmacher (2005); Milstein et al. (2005, 2007); Rodríguez-Lugo, Trincado, Vogt, Tewes, Santiso-Quinones & Grützmacher (2013); Shvo & Blum (1985); Trincado et al. (2010, 2011); Wilkinson & Stephenson (1966); Zweifel et al. (2008, 2009).

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008). Molecular graphics: SHELXTL (Sheldrick, 2008) for (I), (II); SHELXTL (Sheldrick, 2008)' for (III). For all compounds, software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plots for three title Ru(II)–hydride complexes, viz. (a) (1), (b) (2) and (c) (3),drawn at the 50% probability level. All nonrelevant H atoms and solvent molecules have been omitted for clarity. ct is the centroid of the coordinated CC bond of the trop units. All C atoms are shown unlabelled.
[Figure 2] Fig. 2. Displacement ellipsoid plot of (3), drawn at the 50% probability level. All nonrelevant H atoms have been omitted for clarity. (a) Refinement without partition (R[F2 > 2σ(F2)] = 0.0348, wR(F2) = 0.0741, and S = 0.918), showing the residual Q1 (0.74 e Å-3); d(Ru—H0) = 1.84 (3) Å, d(Ru—Q1) = 2.669 Å. (b) Refinement after partition showing the disordered positions of the Cl1 and H0 atoms (R[F2 > 2σ(F2)] = 0.0344, wR(F2) = 0.0730, and S = 0.918). Cl1 and H0 σim 98.7%, and Cl1b and H0b σim 1.3%.
[Figure 3] Fig. 3. Calculated species, showing two possible isomers for (2) and (3). Complexes (2) and (3) are energetically favoured over (2a) and (3a), respectively.
(I) Dihydrido[(η-10,11)-(SR)N-(pyridine-2-ylmethyl-κN)-5H-dibenzo[a,d]cyclohepten-5-amine](triphenylphosphane-κP)ruthenium(II) tetrahydrofuran monosolvate top
Crystal data top
[RuH2(C21H18N2)(C18H15P)]·C4H8OZ = 2
Mr = 735.83F(000) = 764
Triclinic, P1Dx = 1.420 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.6656 (8) ÅCell parameters from 7529 reflections
b = 11.8605 (9) Åθ = 2.3–27.1°
c = 14.6067 (11) ŵ = 0.54 mm1
α = 108.659 (1)°T = 100 K
β = 92.297 (1)°Rectangular block, yellow
γ = 99.040 (1)°0.14 × 0.10 × 0.04 mm
V = 1720.8 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7529 independent reflections
Radiation source: fine-focus sealed tube6442 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1113
Tmin = 0.930, Tmax = 0.979k = 1515
14969 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.033P)2 + 0.7263P]
where P = (Fo2 + 2Fc2)/3
7529 reflections(Δ/σ)max = 0.001
581 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.51 e Å3
Crystal data top
[RuH2(C21H18N2)(C18H15P)]·C4H8Oγ = 99.040 (1)°
Mr = 735.83V = 1720.8 (2) Å3
Triclinic, P1Z = 2
a = 10.6656 (8) ÅMo Kα radiation
b = 11.8605 (9) ŵ = 0.54 mm1
c = 14.6067 (11) ÅT = 100 K
α = 108.659 (1)°0.14 × 0.10 × 0.04 mm
β = 92.297 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7529 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6442 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 0.979Rint = 0.027
14969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.65 e Å3
7529 reflectionsΔρmin = 0.51 e Å3
581 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.631100 (18)0.556741 (15)0.162105 (13)0.01269 (6)
H0A0.495 (2)0.582 (2)0.1487 (17)0.018 (6)*
H0B0.627 (2)0.630 (2)0.0801 (17)0.017 (6)*
P10.66615 (6)0.74334 (5)0.27007 (4)0.01352 (12)
N10.58675 (19)0.39229 (16)0.03845 (14)0.0163 (4)
H1A0.522 (2)0.399 (2)0.0026 (17)0.013 (6)*
N20.82235 (18)0.51983 (16)0.13147 (13)0.0151 (4)
C10.5437 (2)0.2754 (2)0.05666 (17)0.0189 (5)
C20.4208 (2)0.2774 (2)0.10409 (17)0.0199 (5)
C30.4107 (2)0.3672 (2)0.19215 (17)0.0194 (5)
C40.5180 (2)0.4641 (2)0.24555 (17)0.0175 (5)
C50.6441 (2)0.4439 (2)0.25731 (16)0.0165 (5)
C60.6919 (2)0.3312 (2)0.21052 (16)0.0174 (5)
C70.6483 (2)0.2508 (2)0.11640 (17)0.0182 (5)
C80.7037 (2)0.1490 (2)0.07650 (18)0.0216 (5)
H80.67410.09600.01270.026*
C90.8013 (2)0.1239 (2)0.1283 (2)0.0242 (5)
C100.8445 (2)0.2013 (2)0.22150 (19)0.0236 (5)
C110.7908 (2)0.3037 (2)0.26147 (18)0.0207 (5)
C120.3166 (3)0.1854 (2)0.0599 (2)0.0241 (5)
C130.2029 (3)0.1800 (2)0.1021 (2)0.0305 (6)
C140.1914 (3)0.2690 (2)0.1885 (2)0.0288 (6)
H140.11350.26640.21780.035*
C150.2935 (2)0.3617 (2)0.23227 (19)0.0232 (5)
C160.7005 (2)0.3871 (2)0.01692 (16)0.0191 (5)
H16A0.69920.43970.05750.023*
H16B0.69700.30320.06080.023*
C170.8220 (2)0.4267 (2)0.04836 (16)0.0171 (5)
C180.9295 (2)0.3750 (2)0.02375 (18)0.0208 (5)
C191.0411 (3)0.4197 (2)0.08417 (19)0.0236 (5)
C201.0422 (3)0.5157 (2)0.16880 (19)0.0239 (5)
C210.9320 (2)0.5625 (2)0.19006 (17)0.0196 (5)
C220.8191 (2)0.84296 (19)0.27186 (16)0.0162 (5)
C230.8733 (2)0.8325 (2)0.18469 (18)0.0192 (5)
C240.9852 (2)0.9087 (2)0.1823 (2)0.0235 (5)
C251.0463 (2)0.9953 (2)0.2677 (2)0.0247 (6)
C260.9948 (2)1.0053 (2)0.3535 (2)0.0252 (6)
C270.8813 (2)0.9308 (2)0.35653 (18)0.0216 (5)
C280.5505 (2)0.83598 (19)0.25035 (15)0.0163 (5)
C290.5848 (3)0.9373 (2)0.22255 (17)0.0211 (5)
C300.4913 (3)0.9973 (2)0.19917 (18)0.0251 (6)
C310.3645 (3)0.9581 (2)0.20540 (17)0.0236 (5)
C320.3296 (3)0.8601 (2)0.23671 (17)0.0222 (5)
C330.4213 (2)0.7986 (2)0.25706 (16)0.0181 (5)
C340.6616 (2)0.76769 (19)0.40121 (15)0.0153 (5)
C350.7375 (2)0.7082 (2)0.44333 (17)0.0188 (5)
C360.7334 (3)0.7166 (2)0.53980 (18)0.0239 (5)
C370.6550 (3)0.7870 (2)0.59683 (18)0.0251 (6)
C380.5832 (3)0.8505 (2)0.55783 (18)0.0246 (5)
C390.5865 (2)0.8410 (2)0.46076 (17)0.0207 (5)
H10.523 (2)0.212 (2)0.0025 (19)0.019 (6)*
H40.493 (2)0.520 (2)0.3014 (18)0.017 (6)*
H50.688 (2)0.489 (2)0.3162 (18)0.014 (6)*
H90.839 (2)0.054 (2)0.1026 (18)0.021 (7)*
H100.914 (2)0.185 (2)0.2581 (18)0.019 (7)*
H110.825 (2)0.353 (2)0.3230 (19)0.019 (7)*
H120.322 (3)0.128 (3)0.004 (2)0.029 (8)*
H130.129 (3)0.118 (3)0.067 (2)0.035 (8)*
H150.287 (2)0.420 (2)0.2909 (19)0.020 (7)*
H180.924 (3)0.313 (2)0.032 (2)0.024 (7)*
H191.119 (2)0.383 (2)0.0662 (17)0.018 (6)*
H201.113 (3)0.548 (3)0.212 (2)0.031 (8)*
H210.927 (2)0.624 (2)0.2461 (18)0.016 (6)*
H230.829 (3)0.775 (2)0.1293 (19)0.023 (7)*
H241.017 (2)0.901 (2)0.1245 (19)0.019 (7)*
H251.123 (3)1.044 (3)0.266 (2)0.030 (8)*
H261.035 (3)1.062 (3)0.409 (2)0.028 (7)*
H270.846 (2)0.936 (2)0.4104 (19)0.016 (7)*
H290.671 (3)0.966 (2)0.221 (2)0.027 (7)*
H300.518 (3)1.066 (3)0.185 (2)0.031 (8)*
H310.300 (2)0.998 (2)0.1864 (18)0.020 (7)*
H320.243 (3)0.833 (2)0.2433 (18)0.019 (7)*
H330.398 (2)0.728 (2)0.2753 (17)0.014 (6)*
H350.795 (2)0.663 (2)0.4048 (18)0.017 (6)*
H360.784 (2)0.673 (2)0.5622 (17)0.015 (6)*
H370.650 (3)0.792 (2)0.658 (2)0.029 (8)*
H380.522 (3)0.901 (3)0.599 (2)0.034 (8)*
H390.536 (2)0.882 (2)0.4345 (18)0.018 (6)*
O500.1786 (2)0.56630 (18)0.46745 (18)0.0478 (6)
C500.0695 (3)0.6139 (3)0.4501 (3)0.0410 (7)
C510.1173 (3)0.7337 (3)0.4361 (2)0.0376 (7)
C520.2422 (3)0.7769 (2)0.5012 (2)0.0341 (6)
H52A0.30250.83350.47960.041*
H52B0.22790.81670.56970.041*
C530.2901 (3)0.6592 (3)0.4878 (3)0.0368 (7)
H50A0.011 (3)0.555 (3)0.394 (2)0.050 (10)*
H50B0.016 (3)0.626 (3)0.509 (2)0.046 (9)*
H51A0.061 (3)0.785 (3)0.453 (2)0.048 (10)*
H51B0.138 (3)0.717 (3)0.365 (3)0.059 (11)*
H53A0.351 (3)0.640 (3)0.430 (2)0.054 (10)*
H53B0.339 (3)0.657 (3)0.545 (2)0.040 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01373 (10)0.01091 (9)0.01306 (9)0.00259 (7)0.00078 (6)0.00352 (6)
P10.0143 (3)0.0121 (3)0.0135 (3)0.0025 (2)0.0000 (2)0.0035 (2)
N10.0191 (11)0.0135 (9)0.0156 (9)0.0043 (8)0.0028 (8)0.0038 (7)
N20.0166 (10)0.0148 (9)0.0146 (9)0.0033 (8)0.0011 (8)0.0056 (7)
C10.0215 (13)0.0116 (11)0.0211 (12)0.0026 (9)0.0033 (10)0.0026 (9)
C20.0203 (13)0.0153 (11)0.0264 (13)0.0023 (10)0.0040 (10)0.0112 (9)
C30.0203 (13)0.0173 (11)0.0245 (12)0.0026 (10)0.0028 (10)0.0132 (9)
C40.0204 (13)0.0160 (11)0.0184 (11)0.0047 (10)0.0030 (10)0.0080 (9)
C50.0200 (12)0.0153 (11)0.0147 (11)0.0014 (9)0.0011 (9)0.0066 (9)
C60.0186 (12)0.0151 (11)0.0208 (12)0.0011 (9)0.0023 (9)0.0100 (9)
C70.0180 (12)0.0128 (11)0.0253 (12)0.0013 (9)0.0004 (10)0.0092 (9)
C80.0219 (13)0.0165 (11)0.0268 (13)0.0031 (10)0.0022 (10)0.0078 (10)
C90.0197 (13)0.0188 (12)0.0384 (15)0.0064 (10)0.0050 (11)0.0137 (11)
C100.0177 (13)0.0232 (13)0.0370 (15)0.0049 (10)0.0022 (11)0.0189 (11)
C110.0205 (13)0.0191 (12)0.0239 (13)0.0022 (10)0.0002 (10)0.0100 (10)
C120.0242 (14)0.0176 (12)0.0304 (14)0.0008 (10)0.0059 (11)0.0104 (11)
C130.0245 (15)0.0236 (13)0.0462 (17)0.0032 (11)0.0081 (13)0.0202 (12)
C140.0170 (13)0.0341 (15)0.0442 (16)0.0012 (11)0.0015 (12)0.0270 (13)
C150.0224 (14)0.0229 (13)0.0296 (14)0.0055 (11)0.0011 (11)0.0157 (11)
C160.0201 (13)0.0202 (12)0.0157 (11)0.0067 (10)0.0013 (9)0.0027 (9)
C170.0183 (12)0.0163 (11)0.0186 (11)0.0041 (9)0.0040 (9)0.0078 (9)
C180.0250 (14)0.0183 (12)0.0215 (12)0.0100 (10)0.0075 (10)0.0064 (10)
C190.0229 (14)0.0263 (13)0.0303 (14)0.0125 (11)0.0079 (11)0.0167 (11)
C200.0188 (13)0.0256 (13)0.0286 (13)0.0049 (11)0.0025 (11)0.0110 (11)
C210.0225 (13)0.0173 (11)0.0190 (12)0.0045 (10)0.0006 (10)0.0058 (9)
C220.0147 (12)0.0128 (10)0.0219 (12)0.0043 (9)0.0001 (9)0.0060 (9)
C230.0195 (13)0.0155 (11)0.0219 (12)0.0045 (10)0.0017 (10)0.0047 (9)
C240.0216 (14)0.0204 (12)0.0339 (15)0.0092 (10)0.0110 (11)0.0128 (11)
C250.0127 (12)0.0178 (12)0.0449 (16)0.0012 (10)0.0022 (11)0.0132 (11)
C260.0200 (13)0.0194 (12)0.0330 (14)0.0009 (10)0.0053 (11)0.0071 (11)
C270.0214 (13)0.0201 (12)0.0230 (13)0.0019 (10)0.0001 (11)0.0080 (10)
C280.0192 (12)0.0156 (11)0.0117 (10)0.0057 (9)0.0004 (9)0.0002 (8)
C290.0236 (14)0.0199 (12)0.0223 (12)0.0077 (11)0.0066 (10)0.0082 (10)
C300.0365 (16)0.0210 (13)0.0243 (13)0.0143 (12)0.0085 (11)0.0115 (10)
C310.0282 (15)0.0284 (13)0.0171 (12)0.0177 (12)0.0030 (10)0.0056 (10)
C320.0200 (14)0.0238 (13)0.0198 (12)0.0077 (11)0.0004 (10)0.0015 (10)
C330.0208 (13)0.0156 (11)0.0156 (11)0.0029 (10)0.0005 (9)0.0024 (9)
C340.0158 (12)0.0145 (11)0.0130 (10)0.0004 (9)0.0011 (9)0.0023 (8)
C350.0194 (13)0.0164 (11)0.0183 (11)0.0028 (10)0.0002 (10)0.0030 (9)
C360.0292 (15)0.0207 (12)0.0211 (12)0.0041 (11)0.0063 (11)0.0073 (10)
C370.0311 (15)0.0273 (13)0.0158 (12)0.0018 (11)0.0004 (11)0.0074 (10)
C380.0255 (14)0.0279 (13)0.0183 (12)0.0074 (11)0.0023 (10)0.0037 (10)
C390.0213 (13)0.0226 (12)0.0186 (12)0.0068 (10)0.0014 (10)0.0063 (9)
O500.0322 (12)0.0308 (11)0.0800 (17)0.0036 (10)0.0002 (12)0.0191 (11)
C500.0301 (17)0.0452 (19)0.050 (2)0.0003 (14)0.0010 (15)0.0222 (16)
C510.0360 (18)0.0386 (17)0.0389 (17)0.0052 (14)0.0003 (14)0.0147 (14)
C520.0319 (16)0.0296 (15)0.0373 (16)0.0043 (12)0.0042 (13)0.0067 (12)
C530.0253 (16)0.0351 (16)0.0500 (19)0.0060 (13)0.0071 (14)0.0135 (14)
Geometric parameters (Å, º) top
Ru1—N12.1629 (18)C19—H191.01 (3)
Ru1—C42.169 (2)C20—C211.382 (4)
Ru1—N22.1866 (19)C20—H200.91 (3)
Ru1—C52.231 (2)C21—H210.92 (2)
Ru1—P12.2325 (6)C22—C271.396 (3)
Ru1—H0A1.54 (2)C22—C231.397 (3)
Ru1—H0B1.69 (2)C23—C241.388 (3)
P1—C281.847 (2)C23—H230.93 (3)
P1—C341.847 (2)C24—C251.392 (4)
P1—C221.852 (2)C24—H240.90 (3)
N1—C161.484 (3)C25—C261.367 (4)
N1—C11.500 (3)C25—H250.93 (3)
N1—H1A0.92 (2)C26—C271.393 (4)
N2—C211.346 (3)C26—H260.91 (3)
N2—C171.354 (3)C27—H270.87 (3)
C1—C21.507 (3)C28—C291.389 (3)
C1—C71.509 (3)C28—C331.397 (3)
C1—H10.94 (3)C29—C301.402 (3)
C2—C121.397 (3)C29—H290.93 (3)
C2—C31.404 (3)C30—C311.376 (4)
C3—C151.403 (4)C30—H300.91 (3)
C3—C41.477 (3)C31—C321.385 (4)
C4—C51.416 (3)C31—H310.97 (3)
C4—H40.95 (2)C32—C331.384 (3)
C5—C61.473 (3)C32—H320.95 (3)
C5—H50.92 (2)C33—H330.95 (2)
C6—C111.405 (3)C34—C391.394 (3)
C6—C71.410 (3)C34—C351.396 (3)
C7—C81.396 (3)C35—C361.383 (3)
C8—C91.386 (3)C35—H350.95 (3)
C8—H80.9500C36—C371.386 (4)
C9—C101.387 (4)C36—H360.92 (3)
C9—H90.95 (3)C37—C381.378 (4)
C10—C111.391 (3)C37—H370.88 (3)
C10—H100.98 (3)C38—C391.388 (3)
C11—H110.93 (3)C38—H381.03 (3)
C12—C131.384 (4)C39—H390.92 (3)
C12—H120.89 (3)O50—C501.418 (4)
C13—C141.387 (4)O50—C531.437 (4)
C13—H130.98 (3)C50—C511.512 (4)
C14—C151.386 (4)C50—H50A1.01 (3)
C14—H140.9500C50—H50B1.04 (3)
C15—H150.93 (3)C51—C521.521 (4)
C16—C171.493 (3)C51—H51A0.90 (3)
C16—H16A0.9900C51—H51B1.04 (4)
C16—H16B0.9900C52—C531.519 (4)
C17—C181.391 (3)C52—H52A0.9900
C18—C191.377 (4)C52—H52B0.9900
C18—H180.90 (3)C53—H53A1.07 (3)
C19—C201.386 (4)C53—H53B0.97 (3)
N1—Ru1—C488.51 (8)H16A—C16—H16B107.9
N1—Ru1—N279.07 (7)N2—C17—C18122.0 (2)
C4—Ru1—N2119.90 (8)N2—C17—C16115.60 (19)
N1—Ru1—C588.72 (8)C18—C17—C16122.3 (2)
C4—Ru1—C537.51 (9)C19—C18—C17119.8 (2)
N2—Ru1—C583.22 (8)C19—C18—H18121.4 (17)
N1—Ru1—P1169.19 (5)C17—C18—H18118.7 (18)
C4—Ru1—P198.62 (6)C18—C19—C20118.3 (2)
N2—Ru1—P1103.99 (5)C18—C19—H19120.1 (14)
C5—Ru1—P1101.89 (6)C20—C19—H19121.6 (14)
N1—Ru1—H0A90.3 (9)C21—C20—C19119.3 (2)
C4—Ru1—H0A75.0 (9)C21—C20—H20119.0 (18)
N2—Ru1—H0A161.0 (9)C19—C20—H20121.7 (18)
C5—Ru1—H0A112.5 (9)N2—C21—C20123.0 (2)
P1—Ru1—H0A83.8 (9)N2—C21—H21114.1 (16)
N1—Ru1—H0B85.8 (8)C20—C21—H21122.9 (16)
C4—Ru1—H0B145.2 (8)C27—C22—C23118.2 (2)
N2—Ru1—H0B92.7 (8)C27—C22—P1122.76 (19)
C5—Ru1—H0B173.7 (8)C23—C22—P1118.98 (17)
P1—Ru1—H0B83.8 (8)C24—C23—C22120.8 (2)
H0A—Ru1—H0B70.7 (12)C24—C23—H23122.7 (17)
C28—P1—C34101.18 (10)C22—C23—H23116.5 (17)
C28—P1—C22101.04 (10)C23—C24—C25120.1 (2)
C34—P1—C22100.19 (10)C23—C24—H24118.7 (17)
C28—P1—Ru1113.02 (7)C25—C24—H24121.2 (17)
C34—P1—Ru1120.84 (7)C26—C25—C24119.6 (2)
C22—P1—Ru1117.54 (7)C26—C25—H25120.8 (18)
C16—N1—C1111.31 (18)C24—C25—H25119.6 (17)
C16—N1—Ru1106.40 (13)C25—C26—C27120.8 (2)
C1—N1—Ru1118.21 (14)C25—C26—H26119.2 (18)
C16—N1—H1A105.3 (15)C27—C26—H26119.9 (18)
C1—N1—H1A105.4 (15)C26—C27—C22120.4 (2)
Ru1—N1—H1A109.5 (15)C26—C27—H27122.5 (17)
C21—N2—C17117.5 (2)C22—C27—H27117.1 (17)
C21—N2—Ru1128.75 (16)C29—C28—C33118.0 (2)
C17—N2—Ru1112.71 (15)C29—C28—P1122.88 (19)
N1—C1—C2110.79 (18)C33—C28—P1118.98 (17)
N1—C1—C7109.71 (19)C28—C29—C30120.5 (2)
C2—C1—C7112.1 (2)C28—C29—H29119.6 (17)
N1—C1—H1110.1 (15)C30—C29—H29119.9 (17)
C2—C1—H1104.2 (16)C31—C30—C29120.5 (2)
C7—C1—H1109.8 (15)C31—C30—H30121.5 (18)
C12—C2—C3120.0 (2)C29—C30—H30117.8 (19)
C12—C2—C1118.6 (2)C30—C31—C32119.5 (2)
C3—C2—C1121.4 (2)C30—C31—H31119.9 (15)
C15—C3—C2117.9 (2)C32—C31—H31120.6 (15)
C15—C3—C4118.8 (2)C33—C32—C31120.1 (2)
C2—C3—C4123.3 (2)C33—C32—H32118.8 (16)
C5—C4—C3123.1 (2)C31—C32—H32121.1 (16)
C5—C4—Ru173.63 (14)C32—C33—C28121.4 (2)
C3—C4—Ru1117.31 (16)C32—C33—H33120.8 (15)
C5—C4—H4113.9 (15)C28—C33—H33117.8 (15)
C3—C4—H4111.8 (15)C39—C34—C35117.8 (2)
Ru1—C4—H4111.7 (15)C39—C34—P1124.25 (17)
C4—C5—C6126.7 (2)C35—C34—P1117.91 (17)
C4—C5—Ru168.86 (13)C36—C35—C34121.1 (2)
C6—C5—Ru1113.71 (15)C36—C35—H35120.2 (15)
C4—C5—H5114.3 (15)C34—C35—H35118.7 (15)
C6—C5—H5113.4 (15)C35—C36—C37120.0 (2)
Ru1—C5—H5110.6 (15)C35—C36—H36116.4 (15)
C11—C6—C7117.4 (2)C37—C36—H36123.6 (15)
C11—C6—C5118.1 (2)C38—C37—C36119.9 (2)
C7—C6—C5124.5 (2)C38—C37—H37119.2 (18)
C8—C7—C6120.3 (2)C36—C37—H37120.9 (18)
C8—C7—C1119.3 (2)C37—C38—C39120.0 (2)
C6—C7—C1120.5 (2)C37—C38—H38120.6 (16)
C9—C8—C7121.1 (2)C39—C38—H38119.3 (16)
C9—C8—H8119.4C38—C39—C34121.1 (2)
C7—C8—H8119.4C38—C39—H39119.6 (15)
C8—C9—C10119.5 (2)C34—C39—H39119.3 (15)
C8—C9—H9122.1 (15)C50—O50—C53109.5 (2)
C10—C9—H9118.4 (15)O50—C50—C51106.9 (3)
C9—C10—C11119.8 (2)O50—C50—H50A111.4 (19)
C9—C10—H10120.0 (15)C51—C50—H50A113.2 (19)
C11—C10—H10120.1 (15)O50—C50—H50B110.0 (18)
C10—C11—C6121.9 (2)C51—C50—H50B110.4 (18)
C10—C11—H11115.9 (16)H50A—C50—H50B105 (3)
C6—C11—H11122.2 (16)C50—C51—C52101.7 (2)
C13—C12—C2121.1 (3)C50—C51—H51A112 (2)
C13—C12—H12118.6 (19)C52—C51—H51A113 (2)
C2—C12—H12120.3 (19)C50—C51—H51B108.4 (19)
C12—C13—C14119.3 (3)C52—C51—H51B108 (2)
C12—C13—H13119.2 (17)H51A—C51—H51B113 (3)
C14—C13—H13121.1 (17)C53—C52—C51102.0 (2)
C15—C14—C13120.0 (3)C53—C52—H52A111.4
C15—C14—H14120.0C51—C52—H52A111.4
C13—C14—H14120.0C53—C52—H52B111.4
C14—C15—C3121.5 (3)C51—C52—H52B111.4
C14—C15—H15120.1 (17)H52A—C52—H52B109.2
C3—C15—H15118.2 (17)O50—C53—C52106.3 (2)
N1—C16—C17112.02 (18)O50—C53—H53A110.8 (18)
N1—C16—H16A109.2C52—C53—H53A111.9 (18)
C17—C16—H16A109.2O50—C53—H53B107.3 (18)
N1—C16—H16B109.2C52—C53—H53B114.6 (18)
C17—C16—H16B109.2H53A—C53—H53B106 (3)
(II) Chlorido{(1SR,2RS)-N,N'-bis[(10,11-η)-5H-dibenzo[a,d]cyclohepten-5-amine]ethane-1,2-diamine-κ2N,N'}hydridoruthenium(II) dimethoxyethane hemisolvate top
Crystal data top
[RuClH(C32H28N2)]·0.5C4H10O2Z = 2
Mr = 623.15F(000) = 642
Triclinic, P1Dx = 1.533 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2374 (4) ÅCell parameters from 4562 reflections
b = 10.4465 (5) Åθ = 2.3–24.7°
c = 15.5708 (7) ŵ = 0.71 mm1
α = 94.297 (3)°T = 100 K
β = 99.725 (3)°Rectangular platelet, green
γ = 112.661 (2)°0.12 × 0.06 × 0.02 mm
V = 1350.35 (11) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3553 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
Graphite monochromatorθmax = 24.7°, θmin = 1.3°
phi and ω scansh = 1010
11354 measured reflectionsk = 1212
4562 independent reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0202P)2]
where P = (Fo2 + 2Fc2)/3
4562 reflections(Δ/σ)max = 0.001
371 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[RuClH(C32H28N2)]·0.5C4H10O2γ = 112.661 (2)°
Mr = 623.15V = 1350.35 (11) Å3
Triclinic, P1Z = 2
a = 9.2374 (4) ÅMo Kα radiation
b = 10.4465 (5) ŵ = 0.71 mm1
c = 15.5708 (7) ÅT = 100 K
α = 94.297 (3)°0.12 × 0.06 × 0.02 mm
β = 99.725 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3553 reflections with I > 2σ(I)
11354 measured reflectionsRint = 0.043
4562 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 1.04 e Å3
4562 reflectionsΔρmin = 0.60 e Å3
371 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ru10.35475 (3)0.42021 (3)0.785353 (19)0.01281 (8)
H00.212 (4)0.457 (4)0.747 (2)0.060 (12)*
Cl10.59239 (9)0.43252 (8)0.89989 (5)0.01573 (19)
N10.2553 (3)0.4373 (2)0.89582 (18)0.0120 (6)
N20.4658 (3)0.6399 (3)0.82561 (18)0.0150 (6)
O10.7854 (2)0.9070 (2)0.48023 (14)0.0205 (5)
C10.1213 (3)0.3094 (3)0.9120 (2)0.0119 (7)
H10.08500.33570.96500.014*
C20.0195 (3)0.2563 (3)0.8340 (2)0.0132 (7)
C30.0029 (3)0.2158 (3)0.7497 (2)0.0123 (7)
C40.1508 (3)0.2240 (3)0.7295 (2)0.0132 (7)
H40.14210.19640.66530.016*
C50.2692 (3)0.1945 (3)0.7842 (2)0.0123 (7)
H50.32540.15040.75030.015*
C60.2573 (3)0.1493 (3)0.8715 (2)0.0116 (5)
C70.1866 (3)0.1995 (3)0.9314 (2)0.0116 (5)
C80.1379 (3)0.1688 (3)0.6803 (2)0.0148 (7)
H80.12820.14230.62260.018*
C90.2847 (4)0.1602 (3)0.6941 (2)0.0176 (8)
H90.37520.12660.64620.021*
C100.3006 (4)0.2003 (3)0.7769 (2)0.0186 (8)
H100.40160.19510.78640.022*
C110.1683 (3)0.2482 (3)0.8462 (2)0.0148 (7)
H110.17930.27620.90330.018*
C120.3170 (3)0.0495 (3)0.8953 (2)0.0159 (8)
H120.36910.01680.85670.019*
C130.3015 (3)0.0024 (3)0.9741 (2)0.0181 (8)
H130.34070.07160.98840.022*
C140.2295 (3)0.0458 (3)1.0318 (2)0.0168 (8)
H140.21790.00941.08550.020*
C150.1742 (3)0.1477 (3)1.0108 (2)0.0152 (7)
H150.12700.18291.05120.018*
C160.5395 (4)0.7299 (3)0.7607 (2)0.0145 (7)
C170.6817 (4)0.7013 (3)0.7433 (2)0.0142 (7)
C180.6647 (4)0.5651 (3)0.7125 (2)0.0133 (7)
C190.5086 (3)0.4411 (3)0.6911 (2)0.0139 (7)
H190.51770.35170.67120.017*
C200.3633 (4)0.4476 (3)0.6497 (2)0.0164 (8)
H200.29140.36050.60730.020*
C210.3412 (3)0.5735 (3)0.6242 (2)0.0165 (8)
C220.4179 (3)0.7062 (3)0.6771 (2)0.0138 (7)
C230.8004 (4)0.5460 (4)0.6980 (2)0.0209 (8)
C240.9480 (4)0.6584 (4)0.7094 (2)0.0232 (9)
H241.03830.64330.69770.028*
C250.9634 (4)0.7922 (4)0.7378 (2)0.0229 (9)
C260.8321 (4)0.8132 (3)0.7558 (2)0.0184 (8)
H260.84420.90520.77700.022*
C270.2340 (4)0.5595 (3)0.5458 (2)0.0231 (8)
H270.18050.47040.50950.028*
C280.2034 (4)0.6721 (4)0.5194 (2)0.0256 (9)
H280.13160.66020.46510.031*
C290.2779 (4)0.8021 (4)0.5726 (2)0.0237 (9)
H290.25660.87950.55540.028*
C300.3836 (4)0.8177 (3)0.6508 (2)0.0202 (8)
H300.43400.90650.68740.024*
C310.3548 (4)0.6828 (3)0.8676 (2)0.0240 (8)
H31A0.30990.73400.82750.029*
H31B0.41700.74840.92270.029*
C320.2174 (4)0.5613 (3)0.8888 (3)0.0283 (9)
H32A0.19450.59030.94520.034*
H32B0.11980.53640.84200.034*
C330.6774 (4)0.8193 (3)0.5277 (2)0.0249 (8)
H33A0.69630.73380.53260.037*
H33B0.56660.79420.49640.037*
H33C0.69510.86960.58680.037*
C340.9478 (3)0.9388 (3)0.5193 (2)0.0181 (8)
H34A0.97320.85640.50680.022*
H34B0.96710.96390.58410.022*
H1A0.340 (3)0.458 (3)0.941 (2)0.017 (9)*
H2A0.541 (4)0.643 (3)0.868 (2)0.026 (10)*
H160.577 (3)0.824 (3)0.788 (2)0.018 (8)*
H230.788 (3)0.455 (3)0.674 (2)0.025 (9)*
H251.060 (4)0.866 (3)0.745 (2)0.029 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01252 (15)0.00934 (13)0.01561 (16)0.00248 (11)0.00474 (11)0.00311 (11)
Cl10.0145 (4)0.0157 (4)0.0151 (5)0.0050 (4)0.0015 (4)0.0007 (3)
N10.0096 (15)0.0100 (13)0.0151 (16)0.0039 (12)0.0000 (13)0.0012 (12)
N20.0155 (17)0.0125 (14)0.0152 (17)0.0040 (13)0.0027 (14)0.0021 (13)
O10.0151 (13)0.0240 (13)0.0242 (14)0.0067 (11)0.0088 (11)0.0116 (11)
C10.0094 (17)0.0124 (16)0.0120 (19)0.0022 (14)0.0026 (14)0.0022 (14)
C20.0128 (18)0.0068 (15)0.021 (2)0.0039 (14)0.0049 (15)0.0077 (15)
C30.0117 (18)0.0053 (15)0.018 (2)0.0004 (14)0.0035 (15)0.0059 (14)
C40.0128 (18)0.0093 (15)0.0127 (19)0.0002 (14)0.0025 (15)0.0005 (14)
C50.0117 (18)0.0055 (15)0.019 (2)0.0008 (13)0.0079 (15)0.0009 (14)
C60.0055 (12)0.0072 (11)0.0154 (14)0.0029 (9)0.0014 (10)0.0008 (10)
C70.0055 (12)0.0072 (11)0.0154 (14)0.0029 (9)0.0014 (10)0.0008 (10)
C80.019 (2)0.0113 (16)0.0134 (19)0.0055 (15)0.0025 (16)0.0043 (14)
C90.0116 (19)0.0108 (16)0.024 (2)0.0002 (15)0.0039 (16)0.0054 (15)
C100.0128 (19)0.0139 (17)0.029 (2)0.0045 (15)0.0047 (17)0.0103 (16)
C110.018 (2)0.0118 (16)0.019 (2)0.0075 (15)0.0089 (16)0.0075 (15)
C120.0096 (18)0.0106 (16)0.025 (2)0.0012 (14)0.0037 (15)0.0003 (15)
C130.0096 (18)0.0097 (16)0.028 (2)0.0006 (15)0.0069 (16)0.0028 (16)
C140.0112 (18)0.0130 (16)0.020 (2)0.0005 (14)0.0021 (15)0.0065 (15)
C150.0089 (18)0.0148 (16)0.0157 (19)0.0003 (14)0.0001 (14)0.0003 (15)
C160.020 (2)0.0069 (16)0.015 (2)0.0029 (15)0.0051 (15)0.0043 (15)
C170.0127 (18)0.0187 (18)0.0079 (18)0.0036 (15)0.0005 (14)0.0054 (15)
C180.0163 (19)0.0163 (17)0.0078 (18)0.0062 (15)0.0032 (14)0.0053 (14)
C190.0178 (19)0.0140 (16)0.0125 (19)0.0070 (15)0.0080 (15)0.0034 (14)
C200.0190 (19)0.0128 (16)0.0122 (19)0.0019 (15)0.0006 (15)0.0024 (15)
C210.0091 (18)0.0186 (17)0.019 (2)0.0017 (15)0.0030 (15)0.0085 (16)
C220.0082 (17)0.0158 (17)0.019 (2)0.0041 (14)0.0067 (15)0.0084 (15)
C230.022 (2)0.023 (2)0.020 (2)0.0094 (18)0.0067 (16)0.0073 (17)
C240.015 (2)0.033 (2)0.026 (2)0.0102 (17)0.0079 (16)0.0161 (18)
C250.013 (2)0.025 (2)0.021 (2)0.0036 (18)0.0031 (17)0.0086 (17)
C260.017 (2)0.0177 (18)0.0129 (19)0.0000 (16)0.0009 (15)0.0053 (15)
C270.017 (2)0.0211 (18)0.024 (2)0.0012 (16)0.0006 (16)0.0097 (17)
C280.0130 (19)0.033 (2)0.029 (2)0.0067 (17)0.0014 (17)0.0167 (19)
C290.019 (2)0.028 (2)0.033 (2)0.0129 (17)0.0107 (18)0.0210 (19)
C300.019 (2)0.0147 (17)0.030 (2)0.0066 (16)0.0117 (17)0.0092 (16)
C310.026 (2)0.0183 (18)0.032 (2)0.0111 (16)0.0115 (17)0.0086 (17)
C320.021 (2)0.0230 (19)0.043 (3)0.0106 (17)0.0052 (18)0.0141 (19)
C330.022 (2)0.0240 (19)0.028 (2)0.0057 (17)0.0111 (17)0.0066 (17)
C340.018 (2)0.0199 (17)0.021 (2)0.0106 (16)0.0059 (16)0.0067 (16)
Geometric parameters (Å, º) top
Ru1—N12.109 (3)C14—H140.9500
Ru1—N22.113 (3)C15—H150.9500
Ru1—C202.163 (3)C16—C221.504 (4)
Ru1—C42.170 (3)C16—C171.516 (4)
Ru1—C52.176 (3)C16—H160.95 (3)
Ru1—C192.177 (3)C17—C261.400 (4)
Ru1—Cl12.5380 (8)C17—C181.406 (4)
Ru1—H01.55 (3)C18—C231.395 (4)
N1—C321.473 (4)C18—C191.484 (4)
N1—C11.504 (4)C19—C201.417 (4)
N1—H1A0.91 (3)C19—H191.0000
N2—C311.488 (4)C20—C211.479 (4)
N2—C161.501 (4)C20—H201.0000
N2—H2A0.86 (3)C21—C271.395 (4)
O1—C341.417 (3)C21—C221.406 (4)
O1—C331.424 (3)C22—C301.391 (4)
C1—C21.511 (4)C23—C241.386 (4)
C1—C71.516 (4)C23—H230.95 (3)
C1—H11.0000C24—C251.380 (5)
C2—C111.390 (4)C24—H240.9500
C2—C31.401 (4)C25—C261.381 (4)
C3—C81.398 (4)C25—H250.91 (3)
C3—C41.478 (4)C26—H260.9500
C4—C51.414 (4)C27—C281.386 (4)
C4—H41.0000C27—H270.9500
C5—C61.480 (4)C28—C291.386 (5)
C5—H51.0000C28—H280.9500
C6—C121.400 (4)C29—C301.381 (4)
C6—C71.403 (4)C29—H290.9500
C7—C151.389 (4)C30—H300.9500
C8—C91.379 (4)C31—C321.515 (4)
C8—H80.9500C31—H31A0.9900
C9—C101.374 (4)C31—H31B0.9900
C9—H90.9500C32—H32A0.9900
C10—C111.382 (4)C32—H32B0.9900
C10—H100.9500C33—H33A0.9800
C11—H110.9500C33—H33B0.9800
C12—C131.386 (4)C33—H33C0.9800
C12—H120.9500C34—C34i1.513 (5)
C13—C141.376 (4)C34—H34A0.9900
C13—H130.9500C34—H34B0.9900
C14—C151.385 (4)
N1—Ru1—N279.88 (10)C14—C13—H13119.8
N1—Ru1—C20149.17 (11)C12—C13—H13119.8
N2—Ru1—C2090.79 (11)C13—C14—C15119.4 (3)
N1—Ru1—C490.49 (11)C13—C14—H14120.3
N2—Ru1—C4153.64 (11)C15—C14—H14120.3
C20—Ru1—C485.03 (12)C14—C15—C7121.0 (3)
N1—Ru1—C589.71 (10)C14—C15—H15119.5
N2—Ru1—C5163.16 (11)C7—C15—H15119.5
C20—Ru1—C5104.68 (12)N2—C16—C22111.4 (3)
C4—Ru1—C537.98 (10)N2—C16—C17109.1 (2)
N1—Ru1—C19166.40 (11)C22—C16—C17111.9 (3)
N2—Ru1—C1989.49 (11)N2—C16—H16106.2 (18)
C20—Ru1—C1938.10 (11)C22—C16—H16109.1 (17)
C4—Ru1—C19102.67 (12)C17—C16—H16109.0 (18)
C5—Ru1—C1998.53 (11)C26—C17—C18119.3 (3)
N1—Ru1—Cl183.93 (7)C26—C17—C16119.4 (3)
N2—Ru1—Cl181.22 (8)C18—C17—C16121.3 (3)
C20—Ru1—Cl1123.89 (8)C23—C18—C17118.5 (3)
C4—Ru1—Cl1122.40 (8)C23—C18—C19117.9 (3)
C5—Ru1—Cl184.56 (8)C17—C18—C19123.6 (3)
C19—Ru1—Cl186.09 (8)C20—C19—C18122.7 (3)
N1—Ru1—H076.9 (13)C20—C19—Ru170.43 (17)
N2—Ru1—H081.1 (13)C18—C19—Ru1116.2 (2)
C20—Ru1—H072.6 (13)C20—C19—H19113.5
C4—Ru1—H072.8 (13)C18—C19—H19113.6
C5—Ru1—H0109.6 (13)Ru1—C19—H19113.6
C19—Ru1—H0110.0 (13)C19—C20—C21126.9 (3)
Cl1—Ru1—H0155.9 (14)C19—C20—Ru171.47 (17)
C32—N1—C1114.9 (2)C21—C20—Ru1114.5 (2)
C32—N1—Ru1104.3 (2)C19—C20—H20112.4
C1—N1—Ru1118.43 (19)C21—C20—H20112.4
C32—N1—H1A109.7 (19)Ru1—C20—H20112.4
C1—N1—H1A106.4 (18)C27—C21—C22118.0 (3)
Ru1—N1—H1A102.3 (19)C27—C21—C20118.7 (3)
C31—N2—C16115.1 (2)C22—C21—C20123.2 (3)
C31—N2—Ru1108.12 (18)C30—C22—C21119.7 (3)
C16—N2—Ru1117.8 (2)C30—C22—C16119.6 (3)
C31—N2—H2A106 (2)C21—C22—C16120.7 (3)
C16—N2—H2A109 (2)C24—C23—C18121.4 (3)
Ru1—N2—H2A98 (2)C24—C23—H23119.9 (19)
C34—O1—C33112.0 (2)C18—C23—H23118.4 (19)
N1—C1—C2110.7 (2)C25—C24—C23119.9 (3)
N1—C1—C7108.4 (2)C25—C24—H24120.1
C2—C1—C7112.1 (2)C23—C24—H24120.1
N1—C1—H1108.5C24—C25—C26119.8 (3)
C2—C1—H1108.5C24—C25—H25120 (2)
C7—C1—H1108.5C26—C25—H25120 (2)
C11—C2—C3119.4 (3)C25—C26—C17121.1 (3)
C11—C2—C1119.4 (3)C25—C26—H26119.4
C3—C2—C1121.3 (3)C17—C26—H26119.4
C8—C3—C2118.3 (3)C28—C27—C21121.7 (3)
C8—C3—C4118.2 (3)C28—C27—H27119.1
C2—C3—C4123.5 (3)C21—C27—H27119.1
C5—C4—C3126.1 (3)C27—C28—C29119.8 (3)
C5—C4—Ru171.24 (16)C27—C28—H28120.1
C3—C4—Ru1114.5 (2)C29—C28—H28120.1
C5—C4—H4112.7C30—C29—C28119.2 (3)
C3—C4—H4112.7C30—C29—H29120.4
Ru1—C4—H4112.7C28—C29—H29120.4
C4—C5—C6124.8 (3)C29—C30—C22121.5 (3)
C4—C5—Ru170.77 (16)C29—C30—H30119.2
C6—C5—Ru1114.8 (2)C22—C30—H30119.2
C4—C5—H5113.1N2—C31—C32113.9 (3)
C6—C5—H5113.1N2—C31—H31A108.8
Ru1—C5—H5113.1C32—C31—H31A108.8
C12—C6—C7118.0 (3)N2—C31—H31B108.8
C12—C6—C5118.6 (3)C32—C31—H31B108.8
C7—C6—C5123.4 (3)H31A—C31—H31B107.7
C15—C7—C6120.0 (3)N1—C32—C31111.6 (3)
C15—C7—C1118.3 (3)N1—C32—H32A109.3
C6—C7—C1121.7 (3)C31—C32—H32A109.3
C9—C8—C3121.3 (3)N1—C32—H32B109.3
C9—C8—H8119.3C31—C32—H32B109.3
C3—C8—H8119.3H32A—C32—H32B108.0
C10—C9—C8120.2 (3)O1—C33—H33A109.5
C10—C9—H9119.9O1—C33—H33B109.5
C8—C9—H9119.9H33A—C33—H33B109.5
C9—C10—C11119.3 (3)O1—C33—H33C109.5
C9—C10—H10120.3H33A—C33—H33C109.5
C11—C10—H10120.3H33B—C33—H33C109.5
C10—C11—C2121.4 (3)O1—C34—C34i107.7 (3)
C10—C11—H11119.3O1—C34—H34A110.2
C2—C11—H11119.3C34i—C34—H34A110.2
C13—C12—C6121.1 (3)O1—C34—H34B110.2
C13—C12—H12119.4C34i—C34—H34B110.2
C6—C12—H12119.4H34A—C34—H34B108.5
C14—C13—C12120.4 (3)
N2—Ru1—N1—C3241.6 (2)C3—C2—C11—C100.4 (4)
C20—Ru1—N1—C3232.7 (3)C1—C2—C11—C10180.0 (3)
C4—Ru1—N1—C32113.8 (2)C7—C6—C12—C132.4 (4)
C5—Ru1—N1—C32151.7 (2)C5—C6—C12—C13176.5 (3)
C19—Ru1—N1—C3280.7 (5)C6—C12—C13—C141.4 (4)
Cl1—Ru1—N1—C32123.69 (19)C12—C13—C14—C150.7 (4)
N2—Ru1—N1—C1170.7 (2)C13—C14—C15—C71.6 (4)
C20—Ru1—N1—C196.5 (3)C6—C7—C15—C140.5 (4)
C4—Ru1—N1—C115.4 (2)C1—C7—C15—C14179.1 (3)
C5—Ru1—N1—C122.6 (2)C31—N2—C16—C2271.9 (3)
C19—Ru1—N1—C1150.2 (4)Ru1—N2—C16—C2257.5 (3)
Cl1—Ru1—N1—C1107.14 (19)C31—N2—C16—C17164.1 (3)
N1—Ru1—N2—C3130.3 (2)Ru1—N2—C16—C1766.4 (3)
C20—Ru1—N2—C31120.2 (2)N2—C16—C17—C26125.0 (3)
C4—Ru1—N2—C3139.8 (4)C22—C16—C17—C26111.4 (3)
C5—Ru1—N2—C3182.9 (4)N2—C16—C17—C1856.8 (4)
C19—Ru1—N2—C31158.2 (2)C22—C16—C17—C1866.9 (4)
Cl1—Ru1—N2—C31115.6 (2)C26—C17—C18—C231.9 (4)
N1—Ru1—N2—C16162.9 (2)C16—C17—C18—C23179.9 (3)
C20—Ru1—N2—C1612.4 (2)C26—C17—C18—C19175.5 (3)
C4—Ru1—N2—C1692.8 (3)C16—C17—C18—C192.7 (5)
C5—Ru1—N2—C16144.5 (3)C23—C18—C19—C20139.1 (3)
C19—Ru1—N2—C1625.6 (2)C17—C18—C19—C2038.3 (5)
Cl1—Ru1—N2—C16111.8 (2)C23—C18—C19—Ru1138.2 (3)
C32—N1—C1—C265.2 (4)C17—C18—C19—Ru144.4 (4)
Ru1—N1—C1—C258.9 (3)N1—Ru1—C19—C20130.3 (4)
C32—N1—C1—C7171.4 (3)N2—Ru1—C19—C2091.92 (18)
Ru1—N1—C1—C764.5 (3)C4—Ru1—C19—C2064.49 (19)
N1—C1—C2—C11120.7 (3)C5—Ru1—C19—C20102.94 (18)
C7—C1—C2—C11118.2 (3)Cl1—Ru1—C19—C20173.16 (17)
N1—C1—C2—C358.9 (3)N1—Ru1—C19—C1812.6 (6)
C7—C1—C2—C362.2 (3)N2—Ru1—C19—C1825.8 (2)
C11—C2—C3—C80.2 (4)C20—Ru1—C19—C18117.7 (3)
C1—C2—C3—C8179.4 (2)C4—Ru1—C19—C18177.8 (2)
C11—C2—C3—C4178.3 (2)C5—Ru1—C19—C18139.4 (2)
C1—C2—C3—C41.3 (4)Cl1—Ru1—C19—C1855.5 (2)
C8—C3—C4—C5143.9 (3)C18—C19—C20—C211.9 (5)
C2—C3—C4—C538.0 (4)Ru1—C19—C20—C21107.2 (3)
C8—C3—C4—Ru1132.2 (2)C18—C19—C20—Ru1109.1 (3)
C2—C3—C4—Ru145.9 (3)N1—Ru1—C20—C19159.52 (19)
N1—Ru1—C4—C588.89 (18)N2—Ru1—C20—C1988.18 (18)
N2—Ru1—C4—C5156.7 (2)C4—Ru1—C20—C19117.89 (19)
C20—Ru1—C4—C5121.65 (19)C5—Ru1—C20—C1985.09 (19)
C19—Ru1—C4—C587.66 (19)Cl1—Ru1—C20—C198.2 (2)
Cl1—Ru1—C4—C55.8 (2)N1—Ru1—C20—C2136.6 (3)
N1—Ru1—C4—C333.1 (2)N2—Ru1—C20—C2134.7 (2)
N2—Ru1—C4—C334.7 (4)C4—Ru1—C20—C21119.2 (2)
C20—Ru1—C4—C3116.4 (2)C5—Ru1—C20—C21152.0 (2)
C5—Ru1—C4—C3122.0 (3)C19—Ru1—C20—C21122.9 (3)
C19—Ru1—C4—C3150.4 (2)Cl1—Ru1—C20—C21114.7 (2)
Cl1—Ru1—C4—C3116.21 (19)C19—C20—C21—C27142.6 (3)
C3—C4—C5—C60.3 (5)Ru1—C20—C21—C27132.8 (3)
Ru1—C4—C5—C6107.4 (3)C19—C20—C21—C2240.2 (5)
C3—C4—C5—Ru1107.1 (3)Ru1—C20—C21—C2244.4 (4)
N1—Ru1—C5—C491.18 (18)C27—C21—C22—C301.0 (5)
N2—Ru1—C5—C4142.6 (3)C20—C21—C22—C30176.3 (3)
C20—Ru1—C5—C461.2 (2)C27—C21—C22—C16177.7 (3)
C19—Ru1—C5—C499.68 (19)C20—C21—C22—C165.1 (5)
Cl1—Ru1—C5—C4175.11 (18)N2—C16—C22—C30119.6 (3)
N1—Ru1—C5—C629.1 (2)C17—C16—C22—C30118.0 (3)
N2—Ru1—C5—C622.3 (5)N2—C16—C22—C2161.8 (4)
C20—Ru1—C5—C6178.4 (2)C17—C16—C22—C2160.6 (4)
C4—Ru1—C5—C6120.3 (3)C17—C18—C23—C242.9 (5)
C19—Ru1—C5—C6140.0 (2)C19—C18—C23—C24174.6 (3)
Cl1—Ru1—C5—C654.79 (19)C18—C23—C24—C251.6 (5)
C4—C5—C6—C12142.4 (3)C23—C24—C25—C260.9 (5)
Ru1—C5—C6—C12134.5 (2)C24—C25—C26—C171.9 (5)
C4—C5—C6—C736.5 (4)C18—C17—C26—C250.5 (5)
Ru1—C5—C6—C746.6 (3)C16—C17—C26—C25177.8 (3)
C12—C6—C7—C151.5 (4)C22—C21—C27—C280.4 (5)
C5—C6—C7—C15177.4 (3)C20—C21—C27—C28177.8 (3)
C12—C6—C7—C1178.9 (3)C21—C27—C28—C291.3 (5)
C5—C6—C7—C12.2 (4)C27—C28—C29—C300.9 (5)
N1—C1—C7—C15122.7 (3)C28—C29—C30—C220.5 (5)
C2—C1—C7—C15114.9 (3)C21—C22—C30—C291.4 (5)
N1—C1—C7—C657.7 (4)C16—C22—C30—C29177.2 (3)
C2—C1—C7—C664.8 (3)C16—N2—C31—C32147.2 (3)
C2—C3—C8—C90.9 (4)Ru1—N2—C31—C3213.2 (3)
C4—C3—C8—C9179.1 (3)C1—N1—C32—C31176.9 (3)
C3—C8—C9—C101.0 (4)Ru1—N1—C32—C3145.6 (3)
C8—C9—C10—C110.5 (4)N2—C31—C32—N122.1 (4)
C9—C10—C11—C20.2 (4)C33—O1—C34—C34i164.7 (3)
Symmetry code: (i) x+2, y+2, z+1.
(III) Chlorido{(1SR,2RS)-N,N'-bis[(10,11-η)-5H-dibenzo[a,d]cyclohepten-5-amine]propane-1,3-diamine-κ2N,N'}hydridoruthenium(II) top
Crystal data top
[RuClH(C33H30N2)]Dx = 1.499 Mg m3
Mr = 592.12Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 6515 reflections
Hall symbol: -I 4adθ = 2.2–28.3°
a = 24.1125 (4) ŵ = 0.73 mm1
c = 18.0487 (7) ÅT = 100 K
V = 10493.7 (5) Å3Prismatic, green
Z = 160.10 × 0.07 × 0.07 mm
F(000) = 4864
Data collection top
Bruker APEXII CCD
diffractometer
6515 independent reflections
Radiation source: fine-focus sealed tube4331 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
ϕ and ω scansθmax = 28.3°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 3231
Tmin = 0.931, Tmax = 0.951k = 3232
57769 measured reflectionsl = 2422
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
6515 reflections(Δ/σ)max = 0.002
393 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
[RuClH(C33H30N2)]Z = 16
Mr = 592.12Mo Kα radiation
Tetragonal, I41/aµ = 0.73 mm1
a = 24.1125 (4) ÅT = 100 K
c = 18.0487 (7) Å0.10 × 0.07 × 0.07 mm
V = 10493.7 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
6515 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
4331 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.951Rint = 0.091
57769 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 0.92Δρmax = 0.45 e Å3
6515 reflectionsΔρmin = 0.53 e Å3
393 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ru10.346331 (8)0.289188 (8)0.626094 (14)0.01196 (6)
Cl10.32636 (3)0.21549 (3)0.72187 (4)0.01485 (16)0.9867 (13)
H00.3369 (10)0.3361 (10)0.5618 (16)0.018*0.9867 (13)
Cl1B0.3349 (19)0.366 (2)0.522 (3)0.015*0.0133 (13)
H0B0.33000.24500.68500.018*0.0133 (13)
C10.31134 (11)0.19631 (11)0.51327 (15)0.0149 (6)
C30.37953 (10)0.26420 (10)0.46045 (16)0.0151 (6)
C40.40337 (10)0.27598 (11)0.53466 (15)0.0146 (6)
H40.43300.30490.53270.018*
C50.41316 (10)0.23635 (10)0.59088 (15)0.0137 (6)
H50.44830.24340.61870.016*
C60.39909 (10)0.17689 (11)0.58621 (15)0.0136 (6)
C70.35151 (10)0.15698 (11)0.55025 (15)0.0137 (6)
C80.40035 (12)0.29247 (12)0.39868 (17)0.0200 (7)
C90.38058 (13)0.28285 (12)0.32859 (18)0.0239 (7)
C100.33960 (13)0.24433 (12)0.31695 (17)0.0222 (7)
C110.31816 (11)0.21559 (12)0.37685 (17)0.0195 (6)
C120.43558 (11)0.13832 (12)0.61781 (16)0.0179 (6)
C130.42618 (13)0.08208 (12)0.61184 (17)0.0228 (7)
C140.37989 (13)0.06282 (13)0.57553 (19)0.0258 (7)
C150.34253 (12)0.10015 (12)0.54556 (17)0.0208 (6)
C160.28982 (11)0.37633 (11)0.73143 (16)0.0175 (6)
C170.32372 (11)0.35609 (11)0.79604 (16)0.0183 (6)
C180.37556 (11)0.33057 (10)0.78438 (16)0.0176 (6)
C190.40010 (10)0.32290 (10)0.71058 (16)0.0162 (6)
H190.43690.30380.71250.019*
C200.39626 (11)0.36129 (11)0.65116 (15)0.0158 (6)
H200.43100.36270.62090.019*
C210.36785 (11)0.41568 (11)0.65478 (16)0.0169 (6)
C220.31775 (11)0.42423 (11)0.69317 (16)0.0184 (6)
C230.40568 (12)0.31322 (11)0.84652 (17)0.0226 (7)
H230.43970.29410.83960.027*
C240.38718 (15)0.32317 (13)0.91745 (19)0.0291 (8)
C250.33714 (15)0.34930 (13)0.92880 (19)0.0310 (8)
C260.30513 (12)0.36524 (11)0.86824 (17)0.0248 (7)
H260.27020.38250.87610.030*
C270.39197 (12)0.46113 (12)0.61959 (19)0.0241 (7)
C280.36960 (13)0.51371 (12)0.6241 (2)0.0333 (8)
H280.38730.54400.60030.040*
C290.32134 (14)0.52185 (13)0.6637 (2)0.0393 (9)
H290.30590.55800.66770.047*
C300.29530 (13)0.47717 (12)0.6975 (2)0.0318 (8)
H300.26170.48290.72390.038*
N10.28797 (8)0.23816 (9)0.56627 (12)0.0137 (5)
H1A0.27040.21720.60260.016*
N20.27720 (8)0.33030 (9)0.67816 (12)0.0137 (5)
H2A0.26030.30300.70680.016*
C20.33710 (10)0.22575 (10)0.44843 (15)0.0141 (6)
C310.24266 (11)0.26980 (11)0.52981 (16)0.0188 (6)
H31A0.21920.24390.50120.023*
H31B0.25900.29670.49460.023*
C320.20693 (11)0.30059 (11)0.58483 (16)0.0197 (6)
H32A0.19360.27360.62220.024*
H32B0.17400.31490.55830.024*
C330.23364 (11)0.34849 (11)0.62534 (17)0.0200 (6)
H33A0.25030.37410.58870.024*
H33B0.20470.36920.65280.024*
H10.2808 (11)0.1750 (11)0.4986 (15)0.019 (8)*
H80.4283 (12)0.3169 (11)0.4074 (16)0.023 (8)*
H90.3924 (11)0.2994 (11)0.2893 (18)0.023 (8)*
H100.3251 (12)0.2386 (11)0.2723 (18)0.029 (9)*
H110.2901 (11)0.1904 (11)0.3697 (16)0.020 (8)*
H120.4648 (10)0.1514 (10)0.6442 (15)0.012 (7)*
H130.4536 (11)0.0608 (11)0.6363 (16)0.022 (8)*
H140.3724 (11)0.0280 (12)0.5696 (17)0.026 (9)*
H150.3113 (11)0.0880 (10)0.5199 (16)0.018 (8)*
H160.2558 (11)0.3900 (11)0.7489 (16)0.022 (8)*
H250.3241 (12)0.3572 (12)0.9745 (19)0.031 (9)*
H270.4238 (11)0.4555 (10)0.5946 (15)0.014 (7)*
H240.4064 (11)0.3124 (11)0.9554 (18)0.023 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ru10.01028 (11)0.01440 (12)0.01121 (10)0.00117 (9)0.00053 (9)0.00090 (9)
Cl10.0147 (3)0.0178 (4)0.0121 (4)0.0001 (3)0.0010 (3)0.0020 (3)
C10.0122 (14)0.0179 (15)0.0146 (15)0.0040 (11)0.0006 (11)0.0007 (11)
C30.0156 (14)0.0147 (14)0.0149 (16)0.0017 (11)0.0029 (11)0.0016 (11)
C40.0113 (13)0.0206 (15)0.0121 (15)0.0064 (11)0.0040 (11)0.0010 (11)
C50.0076 (13)0.0212 (15)0.0122 (15)0.0014 (11)0.0012 (10)0.0002 (11)
C60.0144 (14)0.0189 (14)0.0076 (14)0.0024 (11)0.0035 (11)0.0007 (11)
C70.0137 (13)0.0170 (14)0.0103 (14)0.0013 (11)0.0034 (11)0.0020 (11)
C80.0242 (16)0.0178 (15)0.0180 (17)0.0026 (13)0.0051 (12)0.0014 (12)
C90.0338 (18)0.0233 (17)0.0147 (17)0.0045 (14)0.0055 (14)0.0086 (13)
C100.0281 (17)0.0276 (17)0.0107 (16)0.0062 (13)0.0039 (13)0.0021 (13)
C110.0158 (14)0.0243 (15)0.0182 (16)0.0009 (12)0.0023 (13)0.0026 (13)
C120.0156 (14)0.0277 (16)0.0103 (15)0.0008 (12)0.0016 (12)0.0013 (12)
C130.0255 (17)0.0230 (16)0.0200 (19)0.0087 (13)0.0013 (13)0.0063 (12)
C140.0340 (19)0.0135 (16)0.030 (2)0.0026 (14)0.0058 (14)0.0033 (13)
C150.0184 (15)0.0219 (16)0.0221 (18)0.0048 (12)0.0013 (13)0.0021 (13)
C160.0153 (15)0.0171 (15)0.0199 (17)0.0017 (11)0.0060 (12)0.0034 (12)
C170.0245 (16)0.0158 (14)0.0147 (16)0.0095 (12)0.0003 (12)0.0017 (11)
C180.0239 (15)0.0121 (14)0.0167 (16)0.0064 (11)0.0029 (12)0.0007 (11)
C190.0108 (13)0.0188 (15)0.0189 (16)0.0029 (11)0.0030 (11)0.0014 (12)
C200.0121 (14)0.0173 (14)0.0178 (16)0.0060 (11)0.0002 (11)0.0014 (11)
C210.0182 (15)0.0171 (14)0.0153 (15)0.0021 (11)0.0009 (11)0.0010 (11)
C220.0193 (15)0.0194 (15)0.0166 (16)0.0018 (12)0.0014 (12)0.0002 (12)
C230.0312 (17)0.0179 (15)0.0188 (17)0.0062 (13)0.0067 (13)0.0006 (12)
C240.043 (2)0.0253 (18)0.0189 (19)0.0155 (16)0.0099 (16)0.0041 (14)
C250.051 (2)0.0286 (18)0.0137 (18)0.0190 (16)0.0046 (16)0.0041 (14)
C260.0313 (17)0.0237 (16)0.0195 (18)0.0124 (13)0.0081 (14)0.0050 (13)
C270.0234 (16)0.0246 (16)0.0244 (18)0.0004 (13)0.0037 (14)0.0021 (14)
C280.0391 (19)0.0206 (16)0.040 (2)0.0061 (14)0.0022 (17)0.0124 (16)
C290.044 (2)0.0170 (17)0.057 (3)0.0071 (15)0.0073 (19)0.0093 (16)
C300.0262 (17)0.0242 (17)0.045 (2)0.0067 (14)0.0078 (15)0.0000 (15)
N10.0098 (11)0.0188 (12)0.0126 (13)0.0001 (9)0.0001 (9)0.0029 (9)
N20.0146 (12)0.0134 (11)0.0132 (13)0.0017 (9)0.0021 (9)0.0018 (9)
C20.0133 (13)0.0155 (14)0.0137 (15)0.0038 (11)0.0010 (11)0.0004 (11)
C310.0146 (14)0.0243 (15)0.0174 (16)0.0024 (12)0.0037 (12)0.0033 (12)
C320.0125 (14)0.0297 (16)0.0170 (16)0.0028 (12)0.0000 (12)0.0022 (13)
C330.0164 (14)0.0242 (15)0.0195 (16)0.0067 (11)0.0024 (13)0.0062 (13)
Geometric parameters (Å, º) top
Ru1—C52.150 (2)C16—N21.500 (3)
Ru1—N22.155 (2)C16—C221.505 (4)
Ru1—N12.159 (2)C16—C171.505 (4)
Ru1—C192.160 (3)C16—H160.94 (3)
Ru1—C202.162 (2)C17—C261.396 (4)
Ru1—C42.172 (3)C17—C181.409 (4)
Ru1—Cl12.5255 (7)C18—C231.400 (4)
Ru1—Cl1B2.66 (5)C18—C191.469 (4)
Ru1—H01.64 (3)C19—C201.420 (4)
Ru1—H0B1.5558 (2)C19—H191.0000
Cl1—H0B0.9782 (6)C20—C211.481 (4)
Cl1B—H01.02 (5)C20—H201.0000
C1—N11.500 (3)C21—C271.394 (4)
C1—C21.503 (4)C21—C221.408 (4)
C1—C71.511 (4)C22—C301.389 (4)
C1—H10.94 (3)C23—C241.377 (4)
C3—C21.398 (3)C23—H230.9500
C3—C81.400 (4)C24—C251.377 (5)
C3—C41.485 (4)C24—H240.87 (3)
C4—C51.414 (4)C25—C261.392 (5)
C4—H41.0000C25—H250.90 (3)
C5—C61.476 (3)C26—H260.9500
C5—H51.0000C27—C281.380 (4)
C6—C121.402 (4)C27—H270.90 (3)
C6—C71.403 (3)C28—C291.379 (4)
C7—C151.390 (4)C28—H280.9500
C8—C91.372 (4)C29—C301.388 (4)
C8—H80.91 (3)C29—H290.9500
C9—C101.372 (4)C30—H300.9500
C9—H90.86 (3)N1—C311.486 (3)
C10—C111.384 (4)N1—H1A0.9300
C10—H100.89 (3)N2—C331.485 (3)
C11—C21.392 (4)N2—H2A0.9300
C11—H110.92 (3)C31—C321.510 (4)
C12—C131.379 (4)C31—H31A0.9900
C12—H120.91 (3)C31—H31B0.9900
C13—C141.375 (4)C32—C331.511 (4)
C13—H130.95 (3)C32—H32A0.9900
C14—C151.384 (4)C32—H32B0.9900
C14—H140.87 (3)C33—H33A0.9900
C15—H150.93 (3)C33—H33B0.9900
C5—Ru1—N2168.83 (9)C13—C14—H14123.8 (19)
C5—Ru1—N190.17 (9)C15—C14—H14116.5 (19)
N2—Ru1—N188.63 (8)C14—C15—C7121.1 (3)
C5—Ru1—C1988.95 (10)C14—C15—H15121.0 (16)
N2—Ru1—C1989.05 (9)C7—C15—H15117.8 (16)
N1—Ru1—C19163.48 (9)N2—C16—C22111.4 (2)
C5—Ru1—C2096.95 (10)N2—C16—C17111.5 (2)
N2—Ru1—C2088.26 (9)C22—C16—C17111.2 (2)
N1—Ru1—C20157.79 (9)N2—C16—H16107.3 (17)
C19—Ru1—C2038.35 (10)C22—C16—H16105.9 (16)
C5—Ru1—C438.18 (9)C17—C16—H16109.2 (18)
N2—Ru1—C4152.71 (9)C26—C17—C18119.6 (3)
N1—Ru1—C487.09 (9)C26—C17—C16119.8 (3)
C19—Ru1—C4102.21 (10)C18—C17—C16120.5 (3)
C20—Ru1—C485.66 (10)C23—C18—C17118.1 (3)
C5—Ru1—Cl185.89 (7)C23—C18—C19118.7 (3)
N2—Ru1—Cl182.98 (6)C17—C18—C19123.2 (3)
N1—Ru1—Cl179.45 (6)C20—C19—C18125.2 (2)
C19—Ru1—Cl184.03 (7)C20—C19—Ru170.91 (15)
C20—Ru1—Cl1121.92 (8)C18—C19—Ru1116.46 (17)
C4—Ru1—Cl1122.52 (7)C20—C19—H19112.6
C5—Ru1—Cl1B106.5 (10)C18—C19—H19112.6
N2—Ru1—Cl1B84.6 (10)Ru1—C19—H19112.6
N1—Ru1—Cl1B88.8 (10)C19—C20—C21125.0 (3)
C19—Ru1—Cl1B107.3 (10)C19—C20—Ru170.74 (15)
C20—Ru1—Cl1B69.1 (10)C21—C20—Ru1117.62 (18)
C4—Ru1—Cl1B68.4 (10)C19—C20—H20112.4
Cl1—Ru1—Cl1B163.0 (10)C21—C20—H20112.4
C5—Ru1—H0107.7 (9)Ru1—C20—H20112.4
N2—Ru1—H083.3 (9)C27—C21—C22117.9 (3)
N1—Ru1—H087.1 (9)C27—C21—C20118.9 (2)
C19—Ru1—H0108.9 (9)C22—C21—C20123.2 (2)
C20—Ru1—H070.7 (9)C30—C22—C21119.8 (3)
C4—Ru1—H069.6 (9)C30—C22—C16120.4 (3)
Cl1—Ru1—H0161.0 (9)C21—C22—C16119.8 (2)
Cl1B—Ru1—H02.1 (14)C24—C23—C18121.6 (3)
C5—Ru1—H0B89.19 (7)C24—C23—H23119.2
N2—Ru1—H0B79.70 (6)C18—C23—H23119.2
N1—Ru1—H0B77.67 (6)C25—C24—C23120.1 (3)
C19—Ru1—H0B85.82 (7)C25—C24—H24119 (2)
C20—Ru1—H0B123.26 (7)C23—C24—H24121 (2)
C4—Ru1—H0B125.39 (7)C24—C25—C26119.7 (3)
Cl1—Ru1—H0B3.738 (14)C24—C25—H25122 (2)
Cl1B—Ru1—H0B159.4 (10)C26—C25—H25118 (2)
H0—Ru1—H0B157.3 (9)C25—C26—C17120.8 (3)
Ru1—Cl1—H0B5.95 (2)C25—C26—H26119.6
Ru1—Cl1B—H03 (2)C17—C26—H26119.6
N1—C1—C2109.5 (2)C28—C27—C21122.1 (3)
N1—C1—C7112.4 (2)C28—C27—H27120.2 (17)
C2—C1—C7112.0 (2)C21—C27—H27117.7 (16)
N1—C1—H1104.7 (16)C29—C28—C27119.4 (3)
C2—C1—H1111.3 (17)C29—C28—H28120.3
C7—C1—H1106.6 (16)C27—C28—H28120.3
C2—C3—C8117.5 (3)C28—C29—C30119.9 (3)
C2—C3—C4123.4 (2)C28—C29—H29120.1
C8—C3—C4119.1 (2)C30—C29—H29120.1
C5—C4—C3125.7 (2)C29—C30—C22120.8 (3)
C5—C4—Ru170.09 (15)C29—C30—H30119.6
C3—C4—Ru1117.92 (17)C22—C30—H30119.6
C5—C4—H4112.2C31—N1—C1109.8 (2)
C3—C4—H4112.2C31—N1—Ru1114.08 (16)
Ru1—C4—H4112.2C1—N1—Ru1117.21 (15)
C4—C5—C6125.3 (2)C31—N1—H1A104.8
C4—C5—Ru171.73 (14)C1—N1—H1A104.8
C6—C5—Ru1114.85 (17)Ru1—N1—H1A104.8
C4—C5—H5112.8C33—N2—C16109.7 (2)
C6—C5—H5112.8C33—N2—Ru1113.77 (17)
Ru1—C5—H5112.8C16—N2—Ru1117.58 (16)
C12—C6—C7118.3 (2)C33—N2—H2A104.8
C12—C6—C5118.5 (2)C16—N2—H2A104.8
C7—C6—C5123.1 (2)Ru1—N2—H2A104.8
C15—C7—C6119.5 (2)C11—C2—C3120.1 (3)
C15—C7—C1119.5 (2)C11—C2—C1120.3 (2)
C6—C7—C1120.9 (2)C3—C2—C1119.7 (2)
C9—C8—C3121.8 (3)N1—C31—C32112.4 (2)
C9—C8—H8121.8 (19)N1—C31—H31A109.1
C3—C8—H8116.3 (19)C32—C31—H31A109.1
C8—C9—C10120.4 (3)N1—C31—H31B109.1
C8—C9—H9124 (2)C32—C31—H31B109.1
C10—C9—H9115 (2)H31A—C31—H31B107.9
C9—C10—C11119.2 (3)C31—C32—C33116.8 (2)
C9—C10—H10122 (2)C31—C32—H32A108.1
C11—C10—H10119 (2)C33—C32—H32A108.1
C10—C11—C2120.9 (3)C31—C32—H32B108.1
C10—C11—H11119.8 (19)C33—C32—H32B108.1
C2—C11—H11119.2 (19)H32A—C32—H32B107.3
C13—C12—C6121.2 (3)N2—C33—C32112.7 (2)
C13—C12—H12120.7 (16)N2—C33—H33A109.0
C6—C12—H12118.0 (16)C32—C33—H33A109.0
C14—C13—C12120.2 (3)N2—C33—H33B109.0
C14—C13—H13127.4 (17)C32—C33—H33B109.0
C12—C13—H13112.4 (17)H33A—C33—H33B107.8
C13—C14—C15119.7 (3)
C2—C3—C4—C537.9 (4)C4—Ru1—C20—C19115.96 (17)
C8—C3—C4—C5141.7 (3)Cl1—Ru1—C20—C1910.05 (18)
C2—C3—C4—Ru146.7 (3)Cl1B—Ru1—C20—C19175.6 (11)
C8—C3—C4—Ru1133.7 (2)C5—Ru1—C20—C21160.3 (2)
N2—Ru1—C4—C5175.31 (17)N2—Ru1—C20—C2129.6 (2)
N1—Ru1—C4—C593.99 (15)N1—Ru1—C20—C2152.5 (4)
C19—Ru1—C4—C572.22 (16)C19—Ru1—C20—C21120.2 (3)
C20—Ru1—C4—C5107.02 (16)C4—Ru1—C20—C21123.8 (2)
Cl1—Ru1—C4—C518.45 (17)Cl1—Ru1—C20—C21110.2 (2)
Cl1B—Ru1—C4—C5176.2 (11)Cl1B—Ru1—C20—C2155.3 (11)
C5—Ru1—C4—C3120.6 (3)C19—C20—C21—C27140.4 (3)
N2—Ru1—C4—C354.7 (3)Ru1—C20—C21—C27134.6 (2)
N1—Ru1—C4—C326.65 (19)C19—C20—C21—C2238.6 (4)
C19—Ru1—C4—C3167.13 (19)Ru1—C20—C21—C2246.4 (3)
C20—Ru1—C4—C3132.3 (2)C27—C21—C22—C302.6 (4)
Cl1—Ru1—C4—C3102.19 (19)C20—C21—C22—C30176.4 (3)
Cl1B—Ru1—C4—C363.2 (11)C27—C21—C22—C16179.4 (3)
C3—C4—C5—C62.7 (4)C20—C21—C22—C161.6 (4)
Ru1—C4—C5—C6108.0 (2)N2—C16—C22—C30124.3 (3)
C3—C4—C5—Ru1110.7 (2)C17—C16—C22—C30110.6 (3)
N2—Ru1—C5—C4168.8 (4)N2—C16—C22—C2157.7 (3)
N1—Ru1—C5—C485.07 (15)C17—C16—C22—C2167.3 (3)
C19—Ru1—C5—C4111.43 (16)C17—C18—C23—C243.5 (4)
C20—Ru1—C5—C473.84 (16)C19—C18—C23—C24174.7 (3)
Cl1—Ru1—C5—C4164.48 (15)C18—C23—C24—C252.0 (4)
Cl1B—Ru1—C5—C43.7 (11)C23—C24—C25—C260.5 (4)
N2—Ru1—C5—C647.7 (6)C24—C25—C26—C171.4 (4)
N1—Ru1—C5—C636.1 (2)C18—C17—C26—C250.2 (4)
C19—Ru1—C5—C6127.4 (2)C16—C17—C26—C25176.8 (2)
C20—Ru1—C5—C6165.02 (19)C22—C21—C27—C282.9 (5)
C4—Ru1—C5—C6121.1 (3)C20—C21—C27—C28176.2 (3)
Cl1—Ru1—C5—C643.34 (19)C21—C27—C28—C291.1 (5)
Cl1B—Ru1—C5—C6124.8 (11)C27—C28—C29—C300.9 (5)
C4—C5—C6—C12142.6 (3)C28—C29—C30—C221.1 (5)
Ru1—C5—C6—C12132.9 (2)C21—C22—C30—C290.7 (5)
C4—C5—C6—C736.0 (4)C16—C22—C30—C29178.7 (3)
Ru1—C5—C6—C748.5 (3)C2—C1—N1—C3163.4 (3)
C12—C6—C7—C151.4 (4)C7—C1—N1—C31171.3 (2)
C5—C6—C7—C15177.2 (3)C2—C1—N1—Ru168.9 (2)
C12—C6—C7—C1178.3 (2)C7—C1—N1—Ru156.4 (2)
C5—C6—C7—C10.3 (4)C5—Ru1—N1—C31142.36 (18)
N1—C1—C7—C15124.5 (3)N2—Ru1—N1—C3148.74 (18)
C2—C1—C7—C15111.7 (3)C19—Ru1—N1—C31130.7 (3)
N1—C1—C7—C658.5 (3)C20—Ru1—N1—C3133.3 (3)
C2—C1—C7—C665.3 (3)C4—Ru1—N1—C31104.29 (18)
C2—C3—C8—C90.5 (4)Cl1—Ru1—N1—C31131.86 (17)
C4—C3—C8—C9179.1 (3)Cl1B—Ru1—N1—C3135.9 (10)
C3—C8—C9—C100.6 (5)C5—Ru1—N1—C112.01 (19)
C8—C9—C10—C110.5 (4)N2—Ru1—N1—C1179.10 (18)
C9—C10—C11—C20.8 (4)C19—Ru1—N1—C198.9 (4)
C7—C6—C12—C132.1 (4)C20—Ru1—N1—C197.1 (3)
C5—C6—C12—C13176.6 (3)C4—Ru1—N1—C126.06 (18)
C6—C12—C13—C141.1 (4)Cl1—Ru1—N1—C197.79 (17)
C12—C13—C14—C150.6 (5)Cl1B—Ru1—N1—C194.5 (10)
C13—C14—C15—C71.3 (5)C22—C16—N2—C3368.1 (3)
C6—C7—C15—C140.3 (4)C17—C16—N2—C33167.1 (2)
C1—C7—C15—C14176.7 (3)C22—C16—N2—Ru164.0 (3)
N2—C16—C17—C26125.4 (3)C17—C16—N2—Ru160.9 (3)
C22—C16—C17—C26109.6 (3)C5—Ru1—N2—C33132.6 (4)
N2—C16—C17—C1858.0 (3)N1—Ru1—N2—C3348.67 (17)
C22—C16—C17—C1867.0 (3)C19—Ru1—N2—C33147.69 (17)
C26—C17—C18—C232.5 (4)C20—Ru1—N2—C33109.34 (18)
C16—C17—C18—C23179.1 (2)C4—Ru1—N2—C3332.3 (3)
C26—C17—C18—C19175.6 (2)Cl1—Ru1—N2—C33128.21 (16)
C16—C17—C18—C191.1 (4)Cl1B—Ru1—N2—C3340.2 (10)
C23—C18—C19—C20141.0 (3)C5—Ru1—N2—C1697.3 (5)
C17—C18—C19—C2037.1 (4)N1—Ru1—N2—C16178.83 (19)
C23—C18—C19—Ru1134.5 (2)C19—Ru1—N2—C1617.52 (19)
C17—C18—C19—Ru147.4 (3)C20—Ru1—N2—C1620.83 (19)
C5—Ru1—C19—C20102.59 (16)C4—Ru1—N2—C1697.9 (3)
N2—Ru1—C19—C2088.40 (16)Cl1—Ru1—N2—C16101.63 (18)
N1—Ru1—C19—C20170.3 (3)Cl1B—Ru1—N2—C1690.0 (10)
C4—Ru1—C19—C2066.53 (17)C10—C11—C2—C32.0 (4)
Cl1—Ru1—C19—C20171.44 (15)C10—C11—C2—C1176.8 (2)
Cl1B—Ru1—C19—C204.3 (11)C8—C3—C2—C111.8 (4)
C5—Ru1—C19—C18136.8 (2)C4—C3—C2—C11177.8 (2)
N2—Ru1—C19—C1832.2 (2)C8—C3—C2—C1177.0 (2)
N1—Ru1—C19—C1849.7 (4)C4—C3—C2—C13.4 (4)
C20—Ru1—C19—C18120.6 (3)N1—C1—C2—C11120.9 (3)
C4—Ru1—C19—C18172.87 (19)C7—C1—C2—C11113.6 (3)
Cl1—Ru1—C19—C1850.84 (19)N1—C1—C2—C357.9 (3)
Cl1B—Ru1—C19—C18116.3 (11)C7—C1—C2—C367.6 (3)
C18—C19—C20—C211.3 (4)C1—N1—C31—C32163.8 (2)
Ru1—C19—C20—C21110.8 (3)Ru1—N1—C31—C3262.3 (2)
C18—C19—C20—Ru1109.4 (3)N1—C31—C32—C3368.2 (3)
C5—Ru1—C20—C1979.42 (17)C16—N2—C33—C32163.4 (2)
N2—Ru1—C20—C1990.67 (16)Ru1—N2—C33—C3262.6 (3)
N1—Ru1—C20—C19172.7 (2)C31—C32—C33—N268.6 (3)

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[RuH2(C21H18N2)(C18H15P)]·C4H8O[RuClH(C32H28N2)]·0.5C4H10O2[RuClH(C33H30N2)]
Mr735.83623.15592.12
Crystal system, space groupTriclinic, P1Triclinic, P1Tetragonal, I41/a
Temperature (K)100100100
a, b, c (Å)10.6656 (8), 11.8605 (9), 14.6067 (11)9.2374 (4), 10.4465 (5), 15.5708 (7)24.1125 (4), 24.1125 (4), 18.0487 (7)
α, β, γ (°)108.659 (1), 92.297 (1), 99.040 (1)94.297 (3), 99.725 (3), 112.661 (2)90, 90, 90
V3)1720.8 (2)1350.35 (11)10493.7 (5)
Z2216
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.540.710.73
Crystal size (mm)0.14 × 0.10 × 0.040.12 × 0.06 × 0.020.10 × 0.07 × 0.07
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Bruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Multi-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.930, 0.9790.931, 0.951
No. of measured, independent and
observed [I > 2σ(I)] reflections
14969, 7529, 6442 11354, 4562, 3553 57769, 6515, 4331
Rint0.0270.0430.091
(sin θ/λ)max1)0.6410.5880.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.074, 1.03 0.032, 0.059, 0.92 0.034, 0.073, 0.92
No. of reflections752945626515
No. of parameters581371393
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.65, 0.511.04, 0.600.45, 0.53

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008)'.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds