Download citation
Download citation
link to html
The title compounds, C11H11BrO3, (I), and C11H11NO5, (II), respectively, are derivatives of 6-hy­droxy-5,7,8-trimethyl­chroman-2-one substituted at the 5-position by a Br atom in (I) and by a nitro group in (II). The pyran­one rings in both mol­ecules adopt half-chair conformations, and intra­molecular O—H...Br [in (I)] and O—H...Onitro [in (II)] hydrogen bonds affect the dispositions of the hy­droxy groups. Classical inter­molecular O—H...O hydrogen bonds are found in both mol­ecules but play quite dissimilar roles in the crystal structures. In (I), O—H...O hydrogen bonds form zigzag C(9) chains of molecules along the a axis. Because of the tetragonal symmetry, similar chains also form along b. In (II), however, similar contacts involving an O atom of the nitro group form inversion dimers and generate R22(12) rings. These also result in a close inter­molecular O...O contact of 2.686 (4) Å. For (I), four additional C—H...O hydrogen bonds combine with π–π stacking inter­actions between the benzene rings to build an extensive three-dimensional network with mol­ecules stacked along the c axis. The packing in (II) is much simpler and centres on the inversion dimers formed through O—H...O contacts. These dimers are stacked through additional C—H...O hydrogen bonds, and further weak C—H...O inter­actions generate a three-dimensional network of dimer stacks.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113005325/fa3310sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113005325/fa3310Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113005325/fa3310IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113005325/fa3310Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113005325/fa3310IIsup5.cml
Supplementary material

CCDC references: 934614; 934615

Computing details top

For both compounds, data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(I) 5-Bromo-6-hydroxy-7,8-dimethylchroman-2-one top
Crystal data top
C11H11BrO3Dx = 1.786 Mg m3
Mr = 271.11Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P421cCell parameters from 3775 reflections
Hall symbol: P -4 2nθ = 2.5–24.6°
a = 16.2247 (19) ŵ = 4.06 mm1
c = 7.6586 (8) ÅT = 91 K
V = 2016.1 (4) Å3Rectangular block, colourless
Z = 80.25 × 0.13 × 0.13 mm
F(000) = 1088
Data collection top
Bruker APEXII CCD area-detector
diffractometer
1715 independent reflections
Radiation source: fine-focus sealed tube1615 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω scansθmax = 24.8°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1915
Tmin = 0.579, Tmax = 0.745k = 1419
9841 measured reflectionsl = 96
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.0336P)2 + 1.9393P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
1715 reflectionsΔρmax = 0.47 e Å3
141 parametersΔρmin = 0.32 e Å3
7 restraintsAbsolute structure: Flack (1983), with 717 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.023 (15)
Special details top

Experimental. ADDITIONAL EXPERIMENTAL & CHARACTERISATION DETAILS

Bromotrimethylquinone: 70% yield. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.04 (s, 3H, CH3), 2.08 (s, 3H, CH3), 2.21 (s, 3H, CH3); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 12.6, 13.2, 17.1, 135.4, 140.7, 140.9, 145.6, 179.4, 184.4.

Methyl 5-bromo-6-hydroxy-7,8-dimethyl-2-oxochroman-3-carboxylate: 76% yield. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.20 (s, 3H, CH3), 2.24 (s, 3H, CH3), 3.23 (dd, J = 4 and 16 Hz, 1H, CH), 3.45 (dd, J = 8 and 16 Hz, 1H, CH), 3.76 (m, 1H, CH), 3.37 (s, 3H, OCH3),5.51 (bs, 1H, OH); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 12.1, 13.0, 20.1, 45.8, 53.1, 107.4, 117.8, 124.3, 125.8, 143.3, 147.2, 164.3, 167.7. HR MS (ESI): calculated for C13H13BrO5: [M]+ m/z 327.9940, found: m/z 327.9682.

5-Bromo-6-hydroxy-7,8-dimethylchroman-2-one, (I), 72% yield. 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 11.8, 12.8, 24.7, 28.8, 107.3, 119.3, 123.6, 125.7, 144.0, 146.8, 168.4.

Nitrotrimethylquinone: 60% yield. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.06 (s, 3H, CH3), 2.09 (m, 6H, CH3); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 11.3, 12.2, 12.8, 134.3, 139.7, 142.2, 150.2, 177.2, 185.5.

Methyl 7,8-dimethyl-5-nitro-2,6-dioxo-3,4,6,8a-tetrahydro-2H-chromene- 3-carboxylate: 50% yield. 1H NMR (400 MHz, CDCl3, δ, p.p.m.): 2.28 (s, 3H, CH3), 2.32 (s, 3H, CH3), 3.52 (dd, J = 4 and 16 Hz, 1H, CH), 3.67–3.75 (m, 2H, CH2), 3.77 (s, 3H, OCH3); 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 12.2, 13.4, 25.5, 45.0, 53.3, 114.9, 117.8, 127.8, 135.8, 143.2, 150.5, 163.5, 167.3. HR MS (ESI): calculated for C13H13NO7: [M]+ m/z 295.0686, found: m/z 295.0687.

5-Nitro-6-hydroxy-7,8-dimethylchroman-2-one (II) 66% yield. 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 12.1, 12.6, 23.7, 29.1, 116.8, 127.1, 131.1, 135.7, 143.8, 149.9, 167.5.

6-Hydroxy-7,8-dimethyl-5-(trifluoromethyl)chroman-2-one,(III). 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 12.1, 13.3, 22.2, 28.1, 118.0, 126.2, 132.2, 140.5, 145.2, 148.7, 168.1; 19F NMR (376 MHz, CDCl3, δ, p.p.m.): -79.1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.20618 (19)0.02966 (18)0.4131 (4)0.0138 (7)
O20.0990 (2)0.04812 (19)0.3584 (4)0.0196 (8)
C20.1321 (3)0.0176 (3)0.3337 (6)0.0139 (10)
C30.1009 (3)0.0836 (3)0.2165 (7)0.0168 (10)
H3A0.04000.08100.21460.020*
H3B0.12060.07240.09650.020*
C40.1266 (2)0.1706 (3)0.2666 (6)0.0147 (10)
H4A0.11750.20820.16660.018*
H4B0.09240.19000.36540.018*
C50.2662 (3)0.2413 (2)0.3011 (6)0.0120 (9)
Br50.22113 (3)0.34214 (3)0.22181 (7)0.02019 (16)
C60.3503 (3)0.2402 (3)0.3475 (6)0.0129 (10)
O60.4009 (2)0.30533 (19)0.3291 (4)0.0175 (8)
H6O0.377 (3)0.342 (2)0.284 (6)0.026*
C70.3844 (3)0.1678 (3)0.4196 (6)0.0125 (10)
C710.4768 (2)0.1693 (3)0.4774 (5)0.0054 (9)
H71A0.48100.15230.59980.008*
H71B0.49860.22530.46440.008*
H71C0.50860.13140.40420.008*
C80.3351 (3)0.0981 (3)0.4391 (6)0.0118 (10)
C810.3700 (3)0.0164 (3)0.5104 (6)0.0098 (10)
H81A0.39890.01280.41680.015*
H81B0.32470.01780.55400.015*
H81C0.40850.02800.60590.015*
C90.2528 (3)0.1024 (3)0.3874 (6)0.0134 (10)
C100.2159 (3)0.1724 (3)0.3178 (5)0.0111 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0118 (17)0.0080 (16)0.0218 (17)0.0011 (14)0.0016 (15)0.0034 (13)
O20.0179 (18)0.0118 (18)0.0291 (19)0.0020 (14)0.0033 (16)0.0020 (15)
C20.014 (3)0.016 (3)0.011 (2)0.001 (2)0.0053 (19)0.0043 (19)
C30.014 (2)0.017 (2)0.020 (2)0.0031 (19)0.001 (2)0.000 (2)
C40.007 (2)0.018 (2)0.019 (2)0.0015 (17)0.001 (2)0.002 (2)
C50.013 (2)0.009 (2)0.013 (2)0.0015 (18)0.002 (2)0.002 (2)
Br50.0211 (3)0.0144 (3)0.0250 (3)0.00195 (19)0.0010 (2)0.0031 (2)
C60.013 (2)0.015 (2)0.011 (2)0.0016 (19)0.003 (2)0.0018 (18)
O60.0148 (18)0.0153 (18)0.0223 (19)0.0047 (14)0.0046 (15)0.0031 (15)
C70.015 (2)0.013 (2)0.010 (2)0.003 (2)0.001 (2)0.000 (2)
C710.0053 (12)0.0054 (12)0.0054 (12)0.0004 (9)0.0018 (9)0.0002 (9)
C80.009 (2)0.016 (2)0.011 (2)0.003 (2)0.001 (2)0.002 (2)
C810.008 (2)0.011 (2)0.010 (2)0.0035 (19)0.0010 (19)0.0003 (19)
C90.020 (3)0.008 (2)0.012 (2)0.0031 (19)0.005 (2)0.0022 (19)
C100.013 (2)0.013 (2)0.008 (2)0.0033 (19)0.0010 (19)0.0038 (18)
Geometric parameters (Å, º) top
O1—C21.361 (6)C6—C71.411 (6)
O1—C91.416 (5)O6—H6O0.794 (19)
O2—C21.209 (5)C7—C81.392 (6)
C2—C31.486 (6)C7—C711.563 (6)
C3—C41.520 (6)C71—H71A0.9800
C3—H3A0.9900C71—H71B0.9800
C3—H3B0.9900C71—H71C0.9800
C4—C101.500 (6)C8—C91.395 (6)
C4—H4A0.9900C8—C811.541 (6)
C4—H4B0.9900C81—H81A0.9800
C5—C101.390 (6)C81—H81B0.9800
C5—C61.409 (6)C81—H81C0.9800
C5—Br51.892 (4)C9—C101.390 (6)
C6—O61.347 (5)
C2—O1—C9121.9 (3)C8—C7—C71122.3 (4)
O2—C2—O1116.7 (4)C6—C7—C71118.3 (4)
O2—C2—C3125.4 (4)C7—C71—H71A109.5
O1—C2—C3117.8 (4)C7—C71—H71B109.5
C2—C3—C4115.0 (4)H71A—C71—H71B109.5
C2—C3—H3A108.5C7—C71—H71C109.5
C4—C3—H3A108.5H71A—C71—H71C109.5
C2—C3—H3B108.5H71B—C71—H71C109.5
C4—C3—H3B108.5C7—C8—C9118.6 (4)
H3A—C3—H3B107.5C7—C8—C81121.7 (4)
C10—C4—C3110.4 (3)C9—C8—C81119.6 (4)
C10—C4—H4A109.6C8—C81—H81A109.5
C3—C4—H4A109.6C8—C81—H81B109.5
C10—C4—H4B109.6H81A—C81—H81B109.5
C3—C4—H4B109.6C8—C81—H81C109.5
H4A—C4—H4B108.1H81A—C81—H81C109.5
C10—C5—C6122.3 (4)H81B—C81—H81C109.5
C10—C5—Br5119.8 (3)C10—C9—C8124.2 (4)
C6—C5—Br5117.8 (3)C10—C9—O1120.3 (4)
O6—C6—C5123.6 (4)C8—C9—O1115.5 (4)
O6—C6—C7117.1 (4)C5—C10—C9116.0 (4)
C5—C6—C7119.3 (4)C5—C10—C4124.0 (4)
C6—O6—H6O110 (4)C9—C10—C4120.0 (4)
C8—C7—C6119.5 (4)
C9—O1—C2—O2176.9 (4)C7—C8—C9—C100.4 (7)
C9—O1—C2—C30.3 (6)C81—C8—C9—C10178.5 (4)
O2—C2—C3—C4152.6 (4)C7—C8—C9—O1179.2 (4)
O1—C2—C3—C431.2 (6)C81—C8—C9—O12.7 (6)
C2—C3—C4—C1043.1 (5)C2—O1—C9—C1016.8 (6)
C10—C5—C6—O6178.5 (4)C2—O1—C9—C8164.3 (4)
Br5—C5—C6—O63.9 (6)C6—C5—C10—C91.5 (6)
C10—C5—C6—C72.4 (6)Br5—C5—C10—C9176.0 (3)
Br5—C5—C6—C7175.2 (3)C6—C5—C10—C4178.7 (4)
O6—C6—C7—C8179.0 (4)Br5—C5—C10—C43.7 (6)
C5—C6—C7—C81.8 (7)C8—C9—C10—C50.1 (6)
O6—C6—C7—C711.8 (6)O1—C9—C10—C5178.6 (4)
C5—C6—C7—C71177.4 (4)C8—C9—C10—C4179.9 (4)
C6—C7—C8—C90.4 (7)O1—C9—C10—C41.1 (6)
C71—C7—C8—C9178.7 (4)C3—C4—C10—C5152.4 (4)
C6—C7—C8—C81177.6 (4)C3—C4—C10—C927.9 (6)
C71—C7—C8—C813.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···Br50.79 (2)2.57 (4)3.089 (3)124 (4)
O6—H6O···O2i0.79 (2)2.12 (4)2.778 (4)140 (5)
C3—H3A···O2ii0.992.573.469 (6)152
C4—H4B···O1iii0.992.623.575 (6)162
C4—H4B···O2iii0.992.683.349 (6)125
C3—H3B···O6iv0.992.413.343 (6)156
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x, y, z; (iii) y, x, z+1; (iv) y+1/2, x+1/2, z1/2.
(II) 6-Hydroxy-7,8-dimethyl-5-nitrochroman-2-one top
Crystal data top
C11H11NO5Z = 2
Mr = 237.21F(000) = 248
Triclinic, P1Dx = 1.552 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0922 (12) ÅCell parameters from 1620 reflections
b = 7.3347 (15) Åθ = 3.0–27.4°
c = 13.942 (3) ŵ = 0.12 mm1
α = 97.657 (12)°T = 93 K
β = 100.072 (11)°Plate, yellow
γ = 90.862 (12)°0.43 × 0.17 × 0.05 mm
V = 507.75 (19) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2317 independent reflections
Radiation source: fine-focus sealed tube1367 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.300
ω scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 66
Tmin = 0.649, Tmax = 0.746k = 98
7686 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0872P)2]
where P = (Fo2 + 2Fc2)/3
2317 reflections(Δ/σ)max < 0.001
160 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5980 (3)0.5812 (2)0.88673 (12)0.0211 (5)
O20.7046 (3)0.7507 (3)1.03108 (14)0.0278 (5)
C20.5337 (5)0.7046 (4)0.96087 (19)0.0211 (6)
C30.2542 (5)0.7678 (4)0.9441 (2)0.0241 (6)
H3A0.24310.88300.98900.029*
H3B0.13380.67360.96020.029*
C40.1604 (5)0.8018 (4)0.83830 (19)0.0218 (6)
H4A0.03140.82950.82810.026*
H4B0.26190.90850.82450.026*
C50.0373 (5)0.5664 (3)0.68000 (19)0.0192 (6)
N50.1732 (4)0.6805 (3)0.63995 (16)0.0209 (5)
O510.3682 (3)0.6060 (3)0.58054 (14)0.0251 (5)
O520.1494 (4)0.8473 (3)0.66469 (14)0.0307 (5)
C60.0720 (5)0.3954 (3)0.62688 (18)0.0180 (6)
O60.0884 (3)0.3227 (3)0.54185 (13)0.0222 (5)
H6O0.223 (6)0.393 (4)0.541 (2)0.033*
C70.2890 (5)0.2897 (3)0.66103 (19)0.0178 (6)
C710.3268 (5)0.1090 (4)0.6017 (2)0.0240 (6)
H71A0.33590.01130.64360.036*
H71B0.49300.11570.57570.036*
H71C0.17620.08200.54690.036*
C80.4606 (5)0.3538 (3)0.74836 (18)0.0178 (6)
C810.6915 (5)0.2437 (4)0.7883 (2)0.0219 (6)
H81A0.77980.19120.73440.033*
H81B0.62590.14410.81930.033*
H81C0.81930.32400.83710.033*
C90.4106 (5)0.5231 (3)0.80064 (19)0.0176 (6)
C100.2038 (5)0.6325 (3)0.77009 (19)0.0190 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0141 (9)0.0273 (10)0.0217 (11)0.0010 (7)0.0036 (7)0.0019 (8)
O20.0191 (9)0.0378 (12)0.0254 (11)0.0019 (8)0.0033 (8)0.0016 (9)
C20.0203 (12)0.0248 (14)0.0205 (15)0.0032 (10)0.0085 (11)0.0053 (12)
C30.0206 (13)0.0299 (15)0.0240 (15)0.0025 (11)0.0097 (11)0.0044 (12)
C40.0187 (12)0.0240 (14)0.0236 (15)0.0025 (10)0.0043 (11)0.0051 (12)
C50.0146 (12)0.0216 (14)0.0236 (15)0.0020 (10)0.0073 (10)0.0063 (12)
N50.0203 (11)0.0237 (12)0.0211 (12)0.0041 (9)0.0085 (9)0.0048 (10)
O510.0149 (9)0.0313 (11)0.0278 (11)0.0003 (7)0.0004 (7)0.0037 (9)
O520.0343 (11)0.0246 (11)0.0316 (12)0.0079 (8)0.0012 (9)0.0036 (9)
C60.0171 (12)0.0215 (14)0.0163 (13)0.0025 (10)0.0050 (10)0.0041 (11)
O60.0167 (9)0.0254 (11)0.0236 (11)0.0026 (7)0.0018 (8)0.0027 (8)
C70.0174 (12)0.0187 (13)0.0200 (14)0.0010 (10)0.0086 (10)0.0052 (11)
C710.0237 (13)0.0234 (15)0.0248 (15)0.0031 (11)0.0035 (11)0.0038 (12)
C80.0141 (11)0.0221 (14)0.0199 (14)0.0007 (9)0.0076 (10)0.0067 (11)
C810.0179 (12)0.0240 (14)0.0251 (15)0.0044 (10)0.0065 (11)0.0042 (12)
C90.0157 (11)0.0211 (14)0.0175 (13)0.0009 (10)0.0057 (10)0.0047 (11)
C100.0161 (12)0.0203 (14)0.0231 (15)0.0019 (10)0.0091 (10)0.0051 (11)
Geometric parameters (Å, º) top
O1—C21.369 (3)O51—O51i2.686 (4)
O1—C91.409 (3)C6—O61.355 (3)
O2—C21.198 (3)C6—C71.410 (3)
C2—C31.492 (4)O6—H6O0.86 (3)
C3—C41.524 (4)C7—C81.389 (3)
C3—H3A0.9900C7—C711.500 (4)
C3—H3B0.9900C71—H71A0.9800
C4—C101.504 (4)C71—H71B0.9800
C4—H4A0.9900C71—H71C0.9800
C4—H4B0.9900C8—C91.404 (4)
C5—C61.399 (4)C8—C811.505 (3)
C5—C101.409 (4)C81—H81A0.9800
C5—N51.450 (3)C81—H81B0.9800
N5—O521.225 (3)C81—H81C0.9800
N5—O511.243 (3)C9—C101.376 (3)
C2—O1—C9121.11 (19)C6—O6—H6O101 (2)
O2—C2—O1117.5 (2)C8—C7—C6119.7 (2)
O2—C2—C3127.2 (2)C8—C7—C71121.7 (2)
O1—C2—C3115.3 (2)C6—C7—C71118.6 (2)
C2—C3—C4112.2 (2)C7—C71—H71A109.5
C2—C3—H3A109.2C7—C71—H71B109.5
C4—C3—H3A109.2H71A—C71—H71B109.5
C2—C3—H3B109.2C7—C71—H71C109.5
C4—C3—H3B109.2H71A—C71—H71C109.5
H3A—C3—H3B107.9H71B—C71—H71C109.5
C10—C4—C3108.9 (2)C7—C8—C9118.5 (2)
C10—C4—H4A109.9C7—C8—C81121.4 (2)
C3—C4—H4A109.9C9—C8—C81120.1 (2)
C10—C4—H4B109.9C8—C81—H81A109.5
C3—C4—H4B109.9C8—C81—H81B109.5
H4A—C4—H4B108.3H81A—C81—H81B109.5
C6—C5—C10122.0 (2)C8—C81—H81C109.5
C6—C5—N5118.9 (2)H81A—C81—H81C109.5
C10—C5—N5119.1 (2)H81B—C81—H81C109.5
O52—N5—O51122.5 (2)C10—C9—C8124.2 (2)
O52—N5—C5118.6 (2)C10—C9—O1120.7 (2)
O51—N5—C5118.9 (2)C8—C9—O1115.0 (2)
N5—O51—O51i157.66 (18)C9—C10—C5116.1 (2)
O6—C6—C5124.3 (2)C9—C10—C4118.1 (2)
O6—C6—C7116.3 (2)C5—C10—C4125.6 (2)
C5—C6—C7119.4 (2)
Symmetry code: (i) x1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6O···O510.86 (3)1.80 (3)2.588 (3)151 (3)
O6—H6O···O51i0.86 (3)2.45 (3)3.078 (3)130 (3)
C3—H3B···O2ii0.992.593.245 (3)124
C81—H81A···O52iii0.982.633.362 (3)131
Symmetry codes: (i) x1, y+1, z+1; (ii) x1, y, z; (iii) x+1, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds