Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complex, [Ir2(C18H13FNO2S)4Cl2]·C7H8, was crystallized from dichloro­methane solution under a toluene atmos­phere. It is a dimeric complex in which each of the two IrIII centres is octa­hedrally coordinated by two bridging chloride ligands and by two chelating cyclo­metalated 2-(4-benzyl­sulfonyl-2-fluorophenyl)pyridine ligands. The crystal structure analysis unequivocally establishes the trans disposition of the two cyclo­metalated ligands bound to each IrIII centre, contrary to our previous hypothesis of a cis disposition. The latter was based on the 1H NMR spectra of a series of dimeric benzyl­sulfonyl-functionalized dichloride-bridged iridium complexes, including the compound described in the present work [Ragni et al. (2009). Chem. Eur. J. 15, 136–148]. The toluene solvent mol­ecules, embedded in cavities in the crystal structure, are highly disordered and could not be modelled successfully; their contribution was removed from the refinement using the SQUEEZE routine in the program PLATON [Spek (2009). Acta Cryst. D65, 148–155].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011300663X/fa3306sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011300663X/fa3306Isup2.hkl
Contains datablock I

CCDC reference: 950351

Comment top

Homoleptic [Ir(C^N)3] and heteroleptic [(C^N)2IrLX] organometallic complexes of iridium(III) with 2-arylpyridine (C^N) ligands have recently attracted much attention in both academic research and industry because of their use as phosphorescent emitters in highly efficient organic light-emitting diodes (Ulbricht et al., 2009). The emission colour of these complexes can be finely tuned by properly choosing the structure and functionalization of the organic ligands (C^N and LX) (Lamansky et al., 2001). Recent reports show that the stereochemistry of both homoleptic and heteroleptic phosphorescent complexes has a significant influence on their photophysical properties, as well as on device performance (Ragni et al., 2006; Baranoff et al., 2010; Fernández-Hernández et al., 2011).

A common synthetic route to homoleptic and heteroleptic iridium complexes involves the use of the dichloride-bridged dimeric precursors [(C^N)2Ir(µ-Cl)2Ir(C^N)2]. The stereochemical arrangement of the arylpyridine ligands around each iridium centre in the dimeric precursors is retained in the final phosphorescent complexes (Colombo et al., 1994; Lamansky et al., 2001).

A series of heteroleptic iridium complexes with highly tuneable emission colour, and bearing two phenylpyridine ligands functionalized with benzylsulfonyl groups and F atoms and an ancillary diketonate ligand, were recently synthesized starting from the corresponding dimeric precursors (Ragni et al., 2009). The authors postulated a mutual cis disposition of the phenylpyridine ligands around the iridium centres of these complexes on the basis of the 1H NMR spectra of their dichloride-bridged dimer precursors.

The crystal structure of one of these dimers, namely the title compound, di-µ-dichlorido-(bis{bis[2-(5-benzylsulfonyl-3-fluoro-2-(pyridin-2-yl)phenyl-κ2N,C1]}iridium(III)) toluene monosolvate, (I), enables the unambiguous assignment of its stereochemistry.

The title dichloride-bridged dimeric complex has a slightly distorted octahedral coordination for each IrIII cation (Fig. 1). Its spatial arrangement is similar to that found for the previously reported analogue [(ppy)2Ir(µ-Cl)2Ir(ppy)2], bearing nonsubstituted phenylpyridine (ppy) ligands (Graces et al., 1988), and that for the corresponding heteroleptic complex (ppy)2Ir(acac), bearing acetylacetonate (acac) as the third ancillary ligand (Lamansky et al., 2001). The present structure has the two Ir—N bonds at each IrIII cation in a unequivocal trans geometry (Fig. 1), in contrast with the hypothesis of Ragni et al. (2009). That conclusion was based on the 1H NMR spectrum recorded after dissolving the dimer complexes in deuterated dimethylsulfoxide, d6-DMSO, which was used as the NMR solvent because of the low solubility of the complexes in more common deuterated solvents, e.g. chloroform (CDCl3) or dichloromethane (CD2Cl2). In the present 1H NMR spectrum of (I), as well as in the 1H NMR spectra recorded in d6-DMSO for all the benzylsulfonyl-substituted dimer complexes reported in our previous work (Ragni et al., 2009), two different sets of protonic signals are distinguishable for the phenylpyridine ligands present in the dimer. Such spectroscopic behaviour led us to assume a cis arrangement of these ligands around each iridium centre. On the basis of the crystal structure reported here, we can infer that the recorded pattern of the 1H NMR signals was not due to the cis stereochemistry of the dimer complex, but rather to a different product generated from the reaction of the dimer complex with the coordinating DMSO solvent used to record the NMR spectrum. This hypothesis is in fact supported by previous literature reports describing reactions of dimeric complexes with coordinating molecules such as water, acetonitrile (Schmid et al., 1994; McGee & Mann, 2007), triphenylphosphine or dimethylformamide (Sprouse et al., 1984), leading to the conversion of the dimeric complexes into asymmetric mononuclear complexes. DMSO is also mentioned in one of these papers (Schmid et al., 1994). More recently, in 2011, the tendency of DMSO to cleave mono-chloro bridged iridium(III) dimer complexes to form mononuclear complexes has also been demonstrated by Fernández-Hernández et al. (2011).

The crystal structure of (I) contains cavities embedding disordered solvent molecules. The overall void volume is 474 Å3, with a total electron count per cell of 141 and a Kitaigorodskii packing index (KPI) of 61.7% (Kitaigorodskii, 1973). The largest isolated cavity has a volume of 185 Å3 (about 40% of the overall void volume and 5% of the unit-cell volume), consistent with the expected volume for a toluene molecule (100–300 Å3). The electron density in the cavities could not be modelled and was handled by means of the SQUEEZE routine of the program PLATON (Spek, 2009).

Bond lengths (Table 1) and angles are in ranges typical of comparable resonant systems (average C—C in the phenyl ring = 1.38 Å) and related compounds (Okada et al., 2005; Yang et al., 2005; Lyu et al., 2006; Wu et al., 2007). The Ir1···Ir2 distance is 3.7315 (4) Å, too long for any significant intermetallic interaction. The Ir1—N1 bond is slightly longer [2.053 (6) Å] than the other Ir—N bonds (mean Ir—N = 2.042 Å). As a consequence of the stereochemistry of the complex, this result cannot be ascribed to a trans influence, so it is believed to be caused by steric interaction of the substituted phenylpyridine ligand with a disordered solvent molecule. This interaction seems to be small, with no apparent influence on the N1—Ir1—N20 angle [173.4 (3)°].

Pairs of centrosymmetrically related molecules have slipped ππ stacking interactions between their C71–C76 phenyl rings (Fig. 2), with an interplanar distance of 3.503 Å and a centroid-to-centroid separation Cg1···Cg1i of 3.9522 (1) Å [symmetry code: (i) -x + 1, -y + 1, -z + 1].

Related literature top

For related literature, see: Baranoff et al. (2010); Colombo et al. (1994); Cooper et al. (2010); Fernández-Hernández, Yang, Beltrán, Lemaur, Polo, Fröhlich, Cornil & De Cola (2011); Görbitz (1999); Graces et al. (1988); Hirshfeld (1976); Kitaigorodskii (1973); Lamansky et al. (2001); Lyu et al. (2006); McGee & Mann (2007); Okada et al. (2005); Prince (1982); Ragni et al. (2006, 2009); Schmid et al. (1994); Sheldrick (2008); Sheldrick & Schneider (1997); Spek (2009); Sprouse et al. (1984); Ulbricht et al. (2009); Watkin (1994); Wu et al. (2007); Yang et al. (2005).

Experimental top

The title complex was prepared by refluxing, under a nitrogen athmosphere, 2-(4-benzylsulfonyl-2-fluorophenyl)pyridine with iridium chloride trihydrate in a mixture of water and 2-ethoxyethanol [Please give quantities or mole ratio]. The precipitate was filtered and washed with hexane and ethanol. The products were purified by column chromatography on silica gel, using first petroleum ether–ethyl acetate (1:1 v/v) as eluent to remove the residual unreacted 2-(4-benzylsulfonyl-2-fluorophenyl)pyridine, and then acetone–petroleum ether (6:4 v/v) to elute the dimers. Yellow single crystals of (I) suitable for structure analysis were obtained from a dichloromethane solution kept in a toluene atmosphere.

Refinement top

The relatively large ratio of minimum-to-maximum corrections applied in the multiscan process (0.653:1) reflects changes in the illuminated volume of the crystal, which it was attempting to minimize and which were taken into account (Görbitz, 1999) by the multiscan interframe scaling method (SADABS; Sheldrick, 2008). Structural refinements on both Fo and Fo2 were tested. They resulted in the same atomic positions, within 3σ. Here, the parameters derived from the refinement against Fo are reported. Reflections with I > 3σ(I) were considered observed (Watkin, 1994).

The H atoms were all located in a difference map and repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H = 0.93–0.98 Å), with Uiso(H) values in the range 1.2–1.5Ueq(parent), after which the positions were refined with riding constraints (Cooper et al., 2010).

The residual peak pattern of the difference Fourier map suggested that the solvent molecules were highly disordered, and all attempts to model the disorder were unsuccessful. In the final cycles of refinement, the contribution to electron density corresponding to disordered toluene molecules was removed from the observed data using the SQUEEZE option in PLATON (Spek, 2009). On the assumption that the two large voids in the unit cell related by a centre of inversion contain one molecule of toluene each, the contribution of one molecule of toluene has been included in the molecular formula.

Possibly owing to the influence of the solvent, the rigid-bond model (Hirshfeld, 1976) was violated for some bonds. To achieve a better correspondence for these atom pairs, default `rigid-bond restraints' (DELU) and `similar ADP restraints' (SIMU) on neighbouring atoms (Sheldrick & Schneider, 1997) were applied. In addition, some phenyl-group bond lengths were not initially consistent with the aromatic system distance, so soft restraints to the expected value were applied. Reflections with Δ(Fo - Fc)/Fo larger than 30% were manually omitted in the final cycles of refinement, because they were considered to have been poorly measured and/or affected by the structural disorder. For more details about the weighting schemes used in the refinement, see Prince (1982) and Watkin (1994).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The slipped ππ stacking interaction (dotted lines) between the phenyl rings of a pair of centrosymmetrically related molecules. H atoms have been omitted. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
Di-µ-dichlorido-bis{bis[2-(5-benzylsulfonyl)-3-fluoro-2-(pyridin-2-yl)phenyl-κ2N,C1]iridium(III)} toluene monosolvate top
Crystal data top
[Ir2(C18H13FNO2S)4Cl2]·C7H8Z = 2
Mr = 1852.97F(000) = 1828
Triclinic, P1Dx = 1.715 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 13.5049 (4) ÅCell parameters from 9254 reflections
b = 14.3144 (5) Åθ = 2–34°
c = 19.6770 (6) ŵ = 3.97 mm1
α = 89.772 (2)°T = 293 K
β = 78.954 (2)°Plate, yellow
γ = 74.262 (2)°0.75 × 0.44 × 0.08 mm
V = 3588.8 (2) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
9065 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω/2θ scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
h = 1616
Tmin = 0.653, Tmax = 1.000k = 1717
49952 measured reflectionsl = 024
14669 independent reflections
Refinement top
Refinement on FPrimary atom site location: difference Fourier map
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.043H-atom parameters constrained
S = 1.14 {Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)],
where Ai are the Chebychev coefficients listed below and x = F /Fmax. Method = robust weighting (Prince, 1982), W = [weight] * [1-(ΔF/6σF)2]2,
where Ai are: 0.945 1.14 0.666 0.399 0.113}
8337 reflections(Δ/σ)max = 0.002
865 parametersΔρmax = 2.01 e Å3
440 restraintsΔρmin = 1.37 e Å3
Crystal data top
[Ir2(C18H13FNO2S)4Cl2]·C7H8γ = 74.262 (2)°
Mr = 1852.97V = 3588.8 (2) Å3
Triclinic, P1Z = 2
a = 13.5049 (4) ÅMo Kα radiation
b = 14.3144 (5) ŵ = 3.97 mm1
c = 19.6770 (6) ÅT = 293 K
α = 89.772 (2)°0.75 × 0.44 × 0.08 mm
β = 78.954 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
14669 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
9065 reflections with I > 2σ(I)
Tmin = 0.653, Tmax = 1.000Rint = 0.048
49952 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044440 restraints
wR(F2) = 0.043H-atom parameters constrained
S = 1.14Δρmax = 2.01 e Å3
8337 reflectionsΔρmin = 1.37 e Å3
865 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.7440 (5)0.0402 (6)0.1173 (3)0.0706
O20.6208 (7)0.0934 (7)0.2073 (4)0.0827
O31.2674 (5)0.1750 (6)0.3865 (3)0.0651
O41.3929 (6)0.2892 (5)0.2946 (4)0.0777
O50.6338 (6)0.7888 (5)0.3854 (4)0.0708
O60.7521 (5)0.6690 (6)0.4461 (4)0.0671
O71.2683 (5)0.5346 (6)0.0420 (4)0.0703
O81.3932 (6)0.5857 (6)0.1019 (4)0.0787
S10.6726 (2)0.0219 (2)0.18267 (13)0.0601
S21.33590 (18)0.19111 (17)0.31941 (12)0.0515
S30.68163 (18)0.69006 (18)0.39724 (13)0.0536
S41.33757 (19)0.5166 (2)0.09077 (13)0.0571
N10.9878 (5)0.1133 (5)0.3563 (3)0.0385
C21.0540 (7)0.1339 (6)0.3924 (4)0.0413
C31.0368 (8)0.1308 (7)0.4636 (5)0.0531
C40.9522 (9)0.1157 (7)0.4972 (5)0.0549
C50.8755 (7)0.0951 (6)0.4627 (4)0.0486
C60.8977 (6)0.0911 (6)0.3896 (4)0.0395
C70.8380 (7)0.0611 (7)0.3429 (4)0.0460
C80.8833 (6)0.0600 (6)0.2714 (4)0.0357
C90.8333 (6)0.0294 (7)0.2243 (5)0.0443
C100.7389 (7)0.0060 (7)0.2453 (5)0.0509
C110.6931 (8)0.0091 (9)0.3145 (5)0.0656
C120.7440 (8)0.0371 (9)0.3617 (5)0.0664
C130.5725 (8)0.0892 (9)0.1782 (6)0.0710
C140.6130 (9)0.1746 (9)0.1587 (5)0.0743
C150.6476 (9)0.1886 (11)0.0897 (6)0.0873
C160.6808 (10)0.2677 (11)0.0685 (8)0.0985
C170.6824 (10)0.3338 (11)0.1181 (8)0.1017
C180.6494 (11)0.3233 (12)0.1877 (8)0.1005
C190.6110 (11)0.2443 (10)0.2077 (8)0.0960
N201.0181 (5)0.1038 (5)0.1455 (3)0.0312
C210.9534 (6)0.1584 (6)0.1091 (4)0.0409
C220.9725 (7)0.1465 (7)0.0346 (5)0.0481
C231.0557 (8)0.0845 (7)0.0042 (5)0.0517
C241.1275 (7)0.0231 (7)0.0396 (4)0.0477
C251.1056 (6)0.0325 (6)0.1123 (4)0.0378
C261.1623 (6)0.0292 (6)0.1604 (4)0.0422
C271.1194 (6)0.0051 (7)0.2317 (4)0.0365
C281.1723 (6)0.0608 (6)0.2798 (4)0.0385
C291.2625 (7)0.1337 (7)0.2574 (5)0.0473
C301.3044 (8)0.1584 (8)0.1878 (5)0.0650
C311.2529 (8)0.1042 (8)0.1405 (5)0.0645
C321.4323 (7)0.1269 (7)0.3176 (5)0.0561
C331.3949 (7)0.0253 (7)0.3479 (5)0.0533
C341.3984 (9)0.0077 (8)0.4174 (6)0.0688
C351.3707 (10)0.0858 (9)0.4454 (7)0.0829
C361.3353 (9)0.1641 (9)0.4067 (7)0.0763
C371.3296 (8)0.1485 (8)0.3396 (6)0.0649
C381.4367 (7)0.4048 (9)0.0661 (5)0.0639
C391.3570 (7)0.0549 (7)0.3096 (5)0.0531
N401.0213 (5)0.3824 (5)0.3471 (3)0.0362
C410.9545 (6)0.3636 (6)0.4009 (4)0.0383
C420.9714 (7)0.3660 (6)0.4709 (4)0.0453
C431.0544 (8)0.3866 (7)0.4803 (5)0.0537
C441.1267 (7)0.4080 (7)0.4255 (5)0.0493
C451.1069 (6)0.4083 (6)0.3586 (4)0.0398
C461.1683 (7)0.4373 (7)0.2958 (5)0.0477
C471.1255 (6)0.4349 (7)0.2359 (5)0.0409
C481.1760 (6)0.4650 (7)0.1741 (4)0.0432
C491.2674 (7)0.4930 (7)0.1716 (5)0.0498
C501.3085 (8)0.4965 (9)0.2307 (5)0.0629
C511.2581 (8)0.4668 (9)0.2912 (5)0.0601
C521.3994 (8)0.3197 (8)0.0480 (5)0.0602
C531.3675 (8)0.2591 (8)0.0972 (6)0.0684
C541.3388 (9)0.1785 (9)0.0771 (7)0.0752
C551.3410 (10)0.1578 (10)0.0093 (7)0.0861
C561.3719 (11)0.2183 (10)0.0404 (7)0.0897
C571.4005 (10)0.2988 (9)0.0212 (6)0.0773
N580.9932 (5)0.3870 (5)0.1451 (3)0.0334
C591.0586 (6)0.3323 (6)0.0912 (4)0.0408
C601.0434 (8)0.3419 (7)0.0248 (5)0.0504
C610.9632 (8)0.4032 (7)0.0104 (4)0.0450
C620.8846 (7)0.4651 (7)0.0664 (4)0.0497
C630.9048 (6)0.4580 (6)0.1330 (4)0.0399
C640.8472 (6)0.5184 (6)0.1949 (5)0.0425
C650.8909 (6)0.4980 (6)0.2560 (4)0.0340
C660.8405 (6)0.5519 (6)0.3153 (4)0.0402
C670.7490 (7)0.6275 (7)0.3188 (5)0.0499
C680.7057 (8)0.6491 (8)0.2589 (5)0.0732
C690.7573 (9)0.5926 (9)0.1993 (5)0.0817
C700.5787 (7)0.6342 (8)0.4242 (6)0.0650
C710.6152 (8)0.5294 (9)0.4389 (6)0.0687
C720.6226 (10)0.4603 (10)0.3899 (7)0.0883
C730.6548 (11)0.3598 (11)0.4077 (8)0.0968
C740.6757 (10)0.3348 (11)0.4700 (8)0.0952
C750.6675 (10)0.4065 (11)0.5182 (8)0.0920
C760.6383 (9)0.5032 (10)0.5034 (7)0.0771
Cl10.87462 (14)0.28127 (15)0.26514 (10)0.0347
Cl21.13626 (14)0.21142 (15)0.23118 (10)0.0354
Ir11.00330 (2)0.11670 (2)0.250499 (16)0.0325
Ir21.00697 (2)0.37639 (2)0.246152 (16)0.0326
F271.3012 (6)0.4672 (8)0.3478 (3)0.1135
F500.7135 (6)0.6140 (6)0.1427 (4)0.1122
F691.2949 (6)0.1284 (7)0.0732 (3)0.1196
F920.6994 (6)0.0421 (6)0.4297 (3)0.0944
H211.11320.15080.36830.0490*
H311.08720.14020.48730.0672*
H410.93960.11860.54520.0722*
H510.81340.08420.48720.0570*
H910.86310.02500.17690.0532*
H1110.63040.00670.32890.0842*
H1310.52570.10390.22290.0850*
H1320.53420.07850.14340.0852*
H1510.64870.14280.05580.1062*
H1610.70370.27780.02200.1441*
H1710.70610.38790.10480.1481*
H1810.65110.36820.22110.1511*
H1910.58370.23730.25420.1331*
H2110.89400.20560.13250.0501*
H2210.92540.18360.00950.0620*
H2311.06900.07940.04420.0652*
H2411.18780.02210.01590.0562*
H2811.14590.04760.32710.0464*
H3011.36470.20920.17380.0770*
H3211.48490.16410.34210.0670*
H3221.46450.12360.26940.0670*
H3411.42040.06020.44440.0853*
H3511.37580.09680.49130.1071*
H3611.31560.22740.42650.0962*
H3711.30670.20110.31320.0822*
H3811.48640.41540.02610.0742*
H3821.47260.38800.10450.0741*
H3911.34950.04440.26420.0623*
H4110.89460.34820.39270.0461*
H4210.92390.35240.50770.0533*
H4311.06610.38800.52530.0712*
H4411.18770.42170.43340.0601*
H4811.14920.46470.13380.0511*
H5011.36780.51860.22960.0811*
H5311.36480.27300.14400.0811*
H5411.31790.13850.11110.0922*
H5511.32310.10270.00390.1082*
H5611.37200.20560.08700.1191*
H5711.42260.33930.05480.0951*
H5911.11770.28520.09980.0500*
H6011.09310.30230.01130.0641*
H6110.95410.40860.03500.0583*
H6210.82280.50790.05830.0611*
H6610.86810.53770.35530.0482*
H6810.64390.69900.25980.0830*
H7010.53420.66920.46620.0781*
H7020.53840.63920.38770.0782*
H7210.60580.47810.34690.1172*
H7310.66200.31150.37370.1311*
H7410.69380.26930.48010.1242*
H7510.68360.38930.56120.1313*
H7610.63290.55160.53670.0943*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.057 (4)0.108 (6)0.050 (4)0.040 (4)0.007 (3)0.009 (4)
O20.090 (6)0.103 (6)0.072 (5)0.067 (5)0.002 (4)0.002 (5)
O30.054 (4)0.078 (5)0.052 (4)0.006 (3)0.001 (3)0.020 (4)
O40.085 (5)0.050 (4)0.080 (5)0.015 (4)0.019 (4)0.014 (4)
O50.068 (4)0.058 (4)0.068 (5)0.018 (4)0.021 (4)0.004 (4)
O60.054 (4)0.085 (5)0.056 (4)0.005 (4)0.028 (3)0.010 (4)
O70.057 (4)0.099 (6)0.059 (4)0.024 (4)0.018 (3)0.031 (4)
O80.085 (5)0.085 (6)0.079 (5)0.053 (5)0.005 (4)0.017 (4)
S10.0538 (14)0.0883 (19)0.0482 (13)0.0424 (14)0.0010 (11)0.0021 (13)
S20.0479 (12)0.0481 (13)0.0468 (13)0.0031 (10)0.0055 (10)0.0143 (10)
S30.0470 (12)0.0539 (14)0.0517 (13)0.0075 (10)0.0211 (10)0.0054 (11)
S40.0529 (13)0.0756 (18)0.0545 (14)0.0347 (13)0.0141 (11)0.0225 (13)
N10.042 (3)0.033 (3)0.033 (3)0.002 (3)0.002 (3)0.001 (3)
C20.044 (4)0.038 (4)0.041 (4)0.008 (3)0.010 (3)0.003 (3)
C30.061 (4)0.054 (5)0.042 (4)0.003 (4)0.022 (4)0.004 (4)
C40.084 (5)0.044 (4)0.027 (4)0.005 (4)0.006 (4)0.009 (3)
C50.060 (4)0.045 (4)0.033 (4)0.011 (4)0.005 (3)0.011 (3)
C60.049 (4)0.031 (4)0.036 (4)0.010 (3)0.001 (3)0.007 (3)
C70.046 (4)0.062 (5)0.032 (4)0.019 (4)0.006 (3)0.012 (4)
C80.032 (3)0.040 (4)0.030 (4)0.009 (3)0.002 (3)0.005 (3)
C90.043 (4)0.053 (4)0.038 (4)0.020 (3)0.001 (3)0.002 (3)
C100.050 (4)0.069 (5)0.042 (4)0.033 (4)0.003 (3)0.000 (4)
C110.060 (5)0.100 (6)0.046 (4)0.046 (4)0.002 (4)0.003 (4)
C120.067 (4)0.106 (5)0.035 (4)0.048 (4)0.002 (3)0.009 (4)
C130.043 (5)0.115 (10)0.058 (6)0.033 (6)0.001 (5)0.003 (6)
C140.058 (5)0.095 (7)0.076 (6)0.027 (5)0.019 (5)0.014 (5)
C150.060 (5)0.105 (7)0.089 (6)0.016 (5)0.003 (5)0.025 (6)
C160.061 (5)0.107 (7)0.117 (7)0.012 (5)0.010 (6)0.038 (6)
C170.064 (5)0.107 (7)0.136 (8)0.017 (6)0.034 (6)0.033 (6)
C180.087 (6)0.107 (7)0.124 (7)0.029 (5)0.059 (6)0.008 (6)
C190.093 (6)0.108 (7)0.099 (7)0.030 (6)0.044 (6)0.009 (6)
N200.028 (3)0.039 (3)0.027 (3)0.011 (2)0.004 (2)0.008 (3)
C210.044 (4)0.045 (4)0.035 (4)0.014 (3)0.010 (3)0.009 (3)
C220.053 (4)0.055 (5)0.049 (4)0.026 (4)0.024 (3)0.016 (4)
C230.064 (4)0.063 (5)0.033 (4)0.028 (4)0.008 (3)0.007 (4)
C240.047 (4)0.057 (5)0.032 (4)0.008 (3)0.001 (3)0.000 (3)
C250.032 (3)0.046 (4)0.032 (3)0.012 (3)0.002 (3)0.005 (3)
C260.044 (4)0.043 (5)0.032 (4)0.001 (4)0.009 (3)0.001 (4)
C270.029 (4)0.056 (6)0.023 (4)0.016 (4)0.004 (3)0.002 (4)
C280.031 (4)0.042 (5)0.037 (4)0.002 (3)0.003 (3)0.009 (4)
C290.042 (4)0.052 (5)0.040 (5)0.004 (4)0.004 (4)0.014 (4)
C300.065 (6)0.067 (7)0.044 (6)0.011 (5)0.010 (5)0.005 (5)
C310.072 (6)0.071 (7)0.028 (5)0.011 (5)0.001 (4)0.005 (4)
C320.039 (5)0.066 (6)0.052 (6)0.001 (4)0.003 (4)0.011 (5)
C330.048 (4)0.064 (5)0.051 (4)0.020 (4)0.010 (4)0.015 (4)
C340.080 (5)0.065 (5)0.060 (5)0.013 (5)0.021 (4)0.017 (4)
C350.093 (6)0.076 (5)0.077 (6)0.018 (5)0.017 (5)0.007 (5)
C360.078 (5)0.069 (5)0.085 (6)0.020 (5)0.023 (5)0.006 (5)
C370.060 (5)0.065 (5)0.077 (5)0.020 (4)0.028 (4)0.018 (4)
C380.040 (5)0.103 (9)0.055 (6)0.027 (5)0.015 (4)0.023 (6)
C390.051 (4)0.063 (5)0.057 (5)0.025 (4)0.024 (4)0.018 (4)
N400.026 (3)0.041 (3)0.036 (3)0.001 (3)0.004 (2)0.002 (3)
C410.036 (3)0.036 (4)0.038 (4)0.003 (3)0.006 (3)0.005 (3)
C420.051 (4)0.034 (4)0.040 (4)0.003 (3)0.006 (3)0.007 (3)
C430.066 (4)0.050 (5)0.038 (4)0.002 (4)0.016 (4)0.011 (4)
C440.048 (4)0.057 (5)0.044 (4)0.012 (4)0.016 (3)0.004 (4)
C450.035 (3)0.045 (4)0.038 (4)0.005 (3)0.014 (3)0.010 (3)
C460.039 (4)0.061 (5)0.046 (4)0.015 (3)0.016 (3)0.012 (4)
C470.029 (3)0.050 (4)0.049 (4)0.015 (3)0.016 (3)0.009 (4)
C480.039 (4)0.056 (5)0.040 (4)0.016 (3)0.017 (3)0.018 (4)
C490.043 (4)0.067 (5)0.049 (4)0.028 (4)0.014 (3)0.018 (4)
C500.056 (4)0.092 (6)0.054 (5)0.040 (4)0.017 (4)0.013 (4)
C510.057 (4)0.089 (6)0.049 (4)0.034 (4)0.026 (4)0.015 (4)
C520.056 (5)0.069 (5)0.061 (5)0.020 (4)0.020 (4)0.019 (4)
C530.063 (5)0.072 (5)0.063 (5)0.013 (4)0.004 (4)0.019 (4)
C540.066 (5)0.066 (5)0.083 (6)0.012 (4)0.001 (5)0.021 (5)
C550.088 (6)0.078 (6)0.093 (6)0.023 (5)0.019 (6)0.007 (5)
C560.102 (6)0.090 (6)0.079 (6)0.022 (5)0.027 (5)0.011 (5)
C570.088 (6)0.082 (6)0.065 (5)0.024 (5)0.021 (5)0.021 (5)
N580.031 (3)0.029 (3)0.041 (3)0.014 (2)0.004 (3)0.010 (3)
C590.041 (4)0.039 (4)0.042 (4)0.010 (3)0.009 (3)0.004 (3)
C600.065 (5)0.053 (5)0.035 (4)0.022 (4)0.009 (4)0.010 (4)
C610.079 (5)0.048 (4)0.021 (3)0.031 (3)0.021 (3)0.019 (3)
C620.058 (4)0.053 (4)0.042 (4)0.013 (4)0.022 (3)0.019 (3)
C630.042 (4)0.042 (4)0.041 (4)0.015 (3)0.018 (3)0.013 (3)
C640.041 (4)0.039 (5)0.047 (5)0.009 (4)0.012 (4)0.011 (4)
C650.030 (4)0.039 (5)0.029 (4)0.002 (3)0.008 (3)0.007 (3)
C660.049 (5)0.035 (5)0.039 (5)0.006 (4)0.023 (4)0.008 (4)
C670.052 (5)0.041 (5)0.052 (6)0.002 (4)0.020 (4)0.000 (4)
C680.066 (7)0.070 (7)0.065 (7)0.024 (6)0.030 (6)0.001 (6)
C690.089 (6)0.090 (7)0.046 (5)0.029 (6)0.041 (5)0.004 (5)
C700.046 (5)0.074 (7)0.065 (7)0.003 (5)0.016 (5)0.003 (5)
C710.055 (5)0.073 (6)0.071 (5)0.013 (4)0.003 (4)0.010 (4)
C720.089 (6)0.084 (6)0.078 (6)0.018 (5)0.009 (5)0.003 (5)
C730.087 (6)0.088 (6)0.093 (6)0.014 (6)0.022 (6)0.004 (6)
C740.068 (5)0.088 (7)0.109 (7)0.011 (5)0.015 (6)0.023 (6)
C750.065 (5)0.095 (6)0.108 (7)0.014 (5)0.012 (5)0.030 (5)
C760.060 (5)0.086 (6)0.085 (6)0.020 (5)0.016 (5)0.021 (5)
Cl10.0263 (8)0.0359 (12)0.0391 (11)0.0055 (8)0.0046 (8)0.0033 (9)
Cl20.0294 (9)0.0378 (12)0.0372 (11)0.0069 (8)0.0057 (8)0.0061 (9)
Ir10.03029 (16)0.0366 (2)0.02807 (19)0.00850 (14)0.00084 (13)0.00528 (15)
Ir20.03050 (17)0.0365 (2)0.0312 (2)0.00820 (14)0.00887 (13)0.00736 (16)
F270.100 (5)0.226 (10)0.063 (4)0.106 (6)0.045 (4)0.041 (5)
F500.112 (5)0.124 (6)0.062 (4)0.055 (4)0.050 (4)0.009 (4)
F690.102 (5)0.152 (7)0.040 (3)0.064 (5)0.000 (3)0.012 (4)
F920.091 (4)0.163 (6)0.042 (3)0.073 (4)0.010 (3)0.007 (4)
Geometric parameters (Å, º) top
O1—S11.430 (7)C35—H3510.937
O2—S11.424 (8)C36—C371.362 (15)
O3—S21.438 (7)C36—H3610.936
O4—S21.442 (7)C37—C391.390 (15)
O5—S31.425 (7)C37—H3710.929
O6—S31.454 (6)C38—C521.507 (15)
O7—S41.439 (7)C38—H3810.972
O8—S41.435 (8)C38—H3820.969
S1—C101.760 (9)C39—H3910.936
S1—C131.801 (12)N40—C411.330 (10)
S2—C291.778 (9)N40—C451.363 (10)
S2—C321.780 (11)N40—Ir22.036 (7)
S3—C671.745 (9)C41—C421.441 (12)
S3—C701.780 (11)C41—H4110.937
S4—C381.784 (11)C42—C431.279 (13)
S4—C491.771 (9)C42—H4210.928
N1—C21.335 (11)C43—C441.402 (13)
N1—C61.383 (10)C43—H4310.932
N1—Ir12.053 (7)C44—C451.392 (11)
C2—C31.379 (12)C44—H4410.937
C2—H210.940C45—C461.475 (12)
C3—C41.278 (14)C46—C471.414 (12)
C3—H310.932C46—C511.375 (13)
C4—C51.434 (14)C47—C481.402 (11)
C4—H410.927C47—Ir21.976 (8)
C5—C61.411 (11)C48—C491.389 (12)
C5—H510.936C48—H4810.933
C6—C71.467 (12)C49—C501.387 (13)
C7—C81.421 (11)C50—C511.380 (14)
C7—C121.387 (12)C50—H5010.934
C8—C91.382 (12)C51—F271.352 (11)
C8—Ir11.977 (8)C52—C531.382 (14)
C9—C101.393 (11)C52—C571.390 (15)
C9—H910.938C53—C541.394 (17)
C10—C111.379 (12)C53—H5310.935
C11—C121.376 (8)C54—C551.361 (17)
C11—H1110.928C54—H5410.931
C12—F921.352 (10)C55—C561.384 (18)
C13—C141.489 (16)C55—H5510.936
C13—H1310.967C56—C571.386 (18)
C13—H1320.969C56—H5610.935
C14—C151.381 (9)C57—H5710.937
C14—C191.381 (9)N58—C591.339 (10)
C15—C161.363 (18)N58—C631.401 (10)
C15—H1510.933N58—Ir22.033 (7)
C16—C171.369 (9)C59—C601.362 (12)
C16—H1610.932C59—H5910.937
C17—C181.376 (9)C60—C611.274 (13)
C17—H1710.935C60—H6010.943
C18—C191.392 (19)C61—C621.474 (13)
C18—H1810.930C61—H6110.927
C19—H1910.935C62—C631.388 (11)
N20—C211.324 (10)C62—H6210.933
N20—C251.385 (9)C63—C641.455 (12)
N20—Ir12.041 (6)C64—C651.433 (11)
C21—C221.443 (12)C64—C691.367 (12)
C21—H2110.937C65—C661.357 (11)
C22—C231.269 (13)C65—Ir21.982 (7)
C22—H2210.931C66—C671.395 (11)
C23—C241.411 (13)C66—H6610.933
C23—H2310.935C67—C681.410 (13)
C24—C251.403 (11)C68—C691.379 (8)
C24—H2410.933C68—H6810.938
C25—C261.471 (11)C69—F501.355 (10)
C26—C271.417 (11)C70—C711.494 (15)
C26—C311.383 (12)C70—H7010.973
C27—C281.409 (11)C70—H7020.971
C27—Ir11.984 (8)C71—C721.355 (17)
C28—C291.370 (11)C71—C761.389 (16)
C28—H2810.932C72—C731.448 (19)
C29—C301.384 (12)C72—H7210.934
C30—C311.379 (13)C73—C741.336 (19)
C30—H3010.929C73—H7310.936
C31—F691.342 (10)C74—C751.37 (2)
C32—C331.490 (14)C74—H7410.934
C32—H3210.973C75—C761.379 (18)
C32—H3220.971C75—H7510.931
C33—C341.404 (14)C76—H7610.935
C33—C391.403 (13)Cl1—Ir12.4990 (19)
C34—C351.375 (16)Cl1—Ir22.500 (2)
C34—H3410.933Cl2—Ir12.502 (2)
C35—C361.380 (16)Cl2—Ir22.507 (2)
O1—S1—O2118.8 (5)C33—C39—H391119.1
O1—S1—C10108.1 (4)C37—C39—H391120.8
O2—S1—C10109.8 (5)C41—N40—C45119.1 (7)
O1—S1—C13107.8 (5)C41—N40—Ir2125.3 (6)
O2—S1—C13107.3 (5)C45—N40—Ir2115.7 (5)
C10—S1—C13104.1 (5)N40—C41—C42122.4 (8)
O4—S2—O3119.0 (5)N40—C41—H411118.5
O4—S2—C29109.5 (5)C42—C41—H411119.2
O3—S2—C29108.3 (4)C41—C42—C43117.6 (8)
O4—S2—C32105.9 (5)C41—C42—H421120.9
O3—S2—C32109.4 (5)C43—C42—H421121.5
C29—S2—C32103.7 (4)C42—C43—C44122.3 (9)
O6—S3—O5119.0 (5)C42—C43—H431118.2
O6—S3—C67107.6 (4)C44—C43—H431119.5
O5—S3—C67109.9 (4)C43—C44—C45119.0 (9)
O6—S3—C70108.7 (5)C43—C44—H441120.9
O5—S3—C70107.2 (5)C45—C44—H441120.1
C67—S3—C70103.4 (5)C44—C45—N40119.5 (8)
O7—S4—O8120.1 (5)C44—C45—C46126.7 (8)
O7—S4—C38109.4 (5)N40—C45—C46113.7 (7)
O8—S4—C38105.1 (5)C45—C46—C47113.6 (8)
O7—S4—C49108.6 (4)C45—C46—C51127.0 (8)
O8—S4—C49109.0 (5)C47—C46—C51119.3 (8)
C38—S4—C49103.3 (5)C46—C47—C48117.9 (8)
C2—N1—C6120.7 (7)C46—C47—Ir2115.6 (6)
C2—N1—Ir1125.2 (6)C48—C47—Ir2126.3 (7)
C6—N1—Ir1114.0 (6)C47—C48—C49120.9 (8)
N1—C2—C3121.4 (8)C47—C48—H481119.8
N1—C2—H21118.5C49—C48—H481119.3
C3—C2—H21120.1S4—C49—C48119.5 (7)
C2—C3—C4120.3 (10)S4—C49—C50119.2 (7)
C2—C3—H31119.7C48—C49—C50121.1 (8)
C4—C3—H31120.0C49—C50—C51117.5 (9)
C3—C4—C5122.0 (9)C49—C50—H501121.3
C3—C4—H41119.2C51—C50—H501121.2
C5—C4—H41118.8C50—C51—C46123.2 (9)
C4—C5—C6117.1 (8)C50—C51—F27116.9 (9)
C4—C5—H51122.1C46—C51—F27119.9 (9)
C6—C5—H51120.8C38—C52—C53122.6 (10)
C5—C6—N1118.2 (8)C38—C52—C57119.0 (10)
C5—C6—C7127.3 (8)C53—C52—C57118.4 (11)
N1—C6—C7114.4 (7)C52—C53—C54120.2 (11)
C6—C7—C8114.1 (7)C52—C53—H531119.4
C6—C7—C12126.9 (8)C54—C53—H531120.4
C8—C7—C12119.0 (8)C53—C54—C55121.2 (12)
C7—C8—C9117.4 (8)C53—C54—H541118.7
C7—C8—Ir1115.2 (6)C55—C54—H541120.1
C9—C8—Ir1127.1 (6)C54—C55—C56119.2 (14)
C8—C9—C10121.8 (8)C54—C55—H551120.7
C8—C9—H91119.4C56—C55—H551120.1
C10—C9—H91118.9C55—C56—C57120.2 (13)
S1—C10—C9119.8 (7)C55—C56—H561119.8
S1—C10—C11119.0 (7)C57—C56—H561120.0
C9—C10—C11121.1 (9)C52—C57—C56120.8 (12)
C10—C11—C12117.3 (8)C52—C57—H571118.8
C10—C11—H111121.6C56—C57—H571120.3
C12—C11—H111121.0C59—N58—C63118.7 (7)
C7—C12—C11123.2 (8)C59—N58—Ir2126.3 (5)
C7—C12—F92118.6 (8)C63—N58—Ir2115.0 (5)
C11—C12—F92118.1 (8)N58—C59—C60123.2 (8)
S1—C13—C14114.6 (7)N58—C59—H591118.0
S1—C13—H131108.4C60—C59—H591118.8
C14—C13—H131108.6C59—C60—C61121.2 (9)
S1—C13—H132107.7C59—C60—H601119.4
C14—C13—H132107.8C61—C60—H601119.4
H131—C13—H132109.7C60—C61—C62119.9 (8)
C13—C14—C15119.8 (11)C60—C61—H611120.1
C13—C14—C19121.7 (11)C62—C61—H611120.1
C15—C14—C19118.4 (13)C61—C62—C63117.8 (8)
C14—C15—C16122.5 (14)C61—C62—H621122.3
C14—C15—H151119.8C63—C62—H621120.0
C16—C15—H151117.8N58—C63—C62118.9 (8)
C15—C16—C17118.1 (14)N58—C63—C64112.7 (7)
C15—C16—H161122.8C62—C63—C64128.4 (8)
C17—C16—H161119.0C63—C64—C65115.9 (7)
C16—C17—C18121.9 (15)C63—C64—C69126.0 (8)
C16—C17—H171119.5C65—C64—C69118.0 (8)
C18—C17—H171118.5C64—C65—C66118.6 (7)
C17—C18—C19118.7 (14)C64—C65—Ir2113.5 (6)
C17—C18—H181121.5C66—C65—Ir2127.1 (6)
C19—C18—H181119.8C65—C66—C67122.5 (8)
C18—C19—C14120.2 (14)C65—C66—H661118.6
C18—C19—H191121.0C67—C66—H661118.9
C14—C19—H191118.8S3—C67—C66121.2 (7)
C21—N20—C25120.2 (7)S3—C67—C68119.1 (7)
C21—N20—Ir1125.2 (5)C66—C67—C68119.5 (8)
C25—N20—Ir1114.6 (5)C67—C68—C69117.1 (8)
N20—C21—C22121.3 (8)C67—C68—H681121.4
N20—C21—H211119.0C69—C68—H681121.5
C22—C21—H211119.7C68—C69—C64124.2 (9)
C21—C22—C23118.1 (8)C68—C69—F50116.0 (9)
C21—C22—H221120.8C64—C69—F50119.8 (8)
C23—C22—H221121.1S3—C70—C71114.4 (7)
C22—C23—C24123.6 (9)S3—C70—H701107.9
C22—C23—H231117.5C71—C70—H701108.2
C24—C23—H231118.9S3—C70—H702108.5
C23—C24—C25117.6 (8)C71—C70—H702107.9
C23—C24—H241121.7H701—C70—H702109.9
C25—C24—H241120.7C70—C71—C72119.6 (12)
C24—C25—N20119.0 (7)C70—C71—C76119.9 (11)
C24—C25—C26127.5 (7)C72—C71—C76120.4 (12)
N20—C25—C26113.4 (6)C71—C72—C73117.4 (14)
C25—C26—C27115.2 (7)C71—C72—H721120.2
C25—C26—C31124.8 (8)C73—C72—H721122.3
C27—C26—C31120.0 (8)C72—C73—C74122.1 (15)
C26—C27—C28117.3 (7)C72—C73—H731118.1
C26—C27—Ir1114.3 (6)C74—C73—H731119.8
C28—C27—Ir1127.8 (6)C73—C74—C75118.9 (15)
C27—C28—C29120.4 (7)C73—C74—H741119.7
C27—C28—H281119.6C75—C74—H741121.4
C29—C28—H281119.9C74—C75—C76121.1 (15)
S2—C29—C28118.7 (7)C74—C75—H751119.1
S2—C29—C30118.3 (7)C76—C75—H751119.7
C28—C29—C30122.7 (8)C71—C76—C75120.1 (14)
C29—C30—C31117.2 (9)C71—C76—H761119.6
C29—C30—H301121.2C75—C76—H761120.4
C31—C30—H301121.6Ir1—Cl1—Ir296.58 (6)
C26—C31—C30122.4 (8)Ir1—Cl2—Ir296.30 (6)
C26—C31—F69121.0 (9)Cl1—Ir1—Cl283.61 (7)
C30—C31—F69116.5 (9)Cl1—Ir1—N189.41 (18)
S2—C32—C33116.9 (6)Cl2—Ir1—N196.6 (2)
S2—C32—H321107.7Cl1—Ir1—N2095.43 (18)
C33—C32—H321108.3Cl2—Ir1—N2088.40 (18)
S2—C32—H322107.7N1—Ir1—N20173.4 (3)
C33—C32—H322106.7Cl1—Ir1—C27172.1 (2)
H321—C32—H322109.4Cl2—Ir1—C2789.1 (2)
C32—C33—C34119.3 (9)N1—Ir1—C2794.4 (3)
C32—C33—C39122.8 (9)N20—Ir1—C2781.4 (3)
C34—C33—C39117.9 (10)Cl1—Ir1—C888.3 (2)
C33—C34—C35120.4 (11)Cl2—Ir1—C8171.6 (2)
C33—C34—H341119.3N1—Ir1—C881.0 (3)
C35—C34—H341120.2N20—Ir1—C894.6 (3)
C34—C35—C36121.0 (13)C27—Ir1—C899.1 (3)
C34—C35—H351119.8Cl1—Ir2—Cl283.51 (7)
C36—C35—H351119.2Cl1—Ir2—N4095.8 (2)
C35—C36—C37119.4 (12)Cl2—Ir2—N4088.87 (18)
C35—C36—H361120.3Cl1—Ir2—N5889.35 (18)
C37—C36—H361120.3Cl2—Ir2—N5896.11 (18)
C36—C37—C39121.1 (11)N40—Ir2—N58173.2 (3)
C36—C37—H371119.8Cl1—Ir2—C6589.3 (2)
C39—C37—H371119.2Cl2—Ir2—C65172.5 (3)
S4—C38—C52116.2 (7)N40—Ir2—C6594.1 (3)
S4—C38—H381108.3N58—Ir2—C6581.5 (3)
C52—C38—H381107.9Cl1—Ir2—C47171.6 (3)
S4—C38—H382107.3Cl2—Ir2—C4788.9 (3)
C52—C38—H382108.3N40—Ir2—C4780.4 (3)
H381—C38—H382108.8N58—Ir2—C4795.1 (3)
C33—C39—C37120.1 (10)C65—Ir2—C4798.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H231···O1i0.942.573.168 (15)122 (1)
C32—H321···O5ii0.972.273.200 (15)161 (1)
C32—H322···O2iii0.972.383.155 (15)137 (1)
C43—H431···O6iv0.932.543.143 (15)123 (1)
Symmetry codes: (i) x+2, y, z; (ii) x+1, y1, z; (iii) x+1, y, z; (iv) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ir2(C18H13FNO2S)4Cl2]·C7H8
Mr1852.97
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)13.5049 (4), 14.3144 (5), 19.6770 (6)
α, β, γ (°)89.772 (2), 78.954 (2), 74.262 (2)
V3)3588.8 (2)
Z2
Radiation typeMo Kα
µ (mm1)3.97
Crystal size (mm)0.75 × 0.44 × 0.08
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.653, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
49952, 14669, 9065
Rint0.048
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.043, 1.14
No. of reflections8337
No. of parameters865
No. of restraints440
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)2.01, 1.37

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2009), SUPERFLIP (Palatinus & Chapuis, 2007), CRYSTALS (Betteridge et al., 2003), Mercury (Macrae et al., 2008).

Selected bond lengths (Å) top
N1—Ir12.053 (7)N58—Ir22.033 (7)
C8—Ir11.977 (8)C65—Ir21.982 (7)
N20—Ir12.041 (6)Cl1—Ir12.4990 (19)
C27—Ir11.984 (8)Cl1—Ir22.500 (2)
N40—Ir22.036 (7)Cl2—Ir12.502 (2)
C47—Ir21.976 (8)Cl2—Ir22.507 (2)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds