Download citation
Download citation
link to html
Although it has not proved possible to crystallize the newly prepared cyclam-methyl­imidazole ligand 1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetra­aza­cyclo­tetra­decane (LIm1), the trans and cis isomers of an NiII complex, namely trans-aqua­{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetra­aza­cyclo­tetra­decane}nickel(II) bis­(perchlorate) mono­hydrate, [Ni(C15H30N6)(H2O)](ClO4)2·H2O, (1), and cis-aqua­{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetraaza­cyclo­tetra­decane}nickel(II) bis­(perchlorate), [Ni(C15H30N6)(H2O)](ClO4)2, (2), have been prepared and structurally characterized. At different stages of the crystallization and thermal treatment from which (1) and (2) were obtained, a further two compounds were isolated in crystalline form and their structures also analysed, namely trans-{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetra­aza­cyclo­tetra­decane}(perchlorato)nickel(II) perchlorate, [Ni(ClO4)(C15H30N6)]ClO4, (3), and cis-{1,8-bis­[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetra­aza­cyclo­tetra­decane}nickel(II) bis­(perchlorate) 0.24-hy­drate, [Ni(C20H36N6)](ClO4)2·0.24H2O, (4); the 1,8-bis­[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetra­azacyclo­tetra­decane ligand is a minor side product, probably formed in trace amounts in the synthesis of LIm1. The configurations of the cyclam macrocycles in the complexes have been analysed and the structures are compared with analogues from the literature.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112014904/fa3274sup1.cif
Contains datablocks global, 1, 2, 3, 4

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112014904/fa32741sup2.hkl
Contains datablock 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112014904/fa32742sup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112014904/fa32743sup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112014904/fa32744sup5.hkl
Contains datablock 4

CCDC references: 879448; 879449; 879450; 879451

Comment top

Macrocyclic polyamines such as cyclam and cyclen, bearing potentially coordinating pendant arms, are useful in applications such as diagnostic medicine, waste-water treatment and others, due to the stability conferred on their metallic complexes by the additional donor groups in the pendant arms. This stability is especially important in processes where the release of free metals is particularly undesirable, as in, for instance, the majority of medical treatments. A paradigmatic example can be found in the administration of the gadolinium cation as a contrast agent for magnetic resonance imaging (MRI), a process where the stability of the tetraacetate cyclen (DOTA) complex of the GdIII cation, viz. Gd(DOTA)H2O, has made the complex, and some of its derivatives, a `must' for the safe and successful use of the technique.

Complexes of substituted macrocyclic polyamines are also interesting from a purely structural point of view, in particular due to the many different ring conformations attainable, as well as the diversity in binding modes provided by the functionalized side arms.

There are a large number of reported ligands of this type, with a wide range of pendant side groups, and consistent with the above-mentioned stability, the majority of their complexes are clathrates [Cambridge Structural Database (CSD), Version?; Allen, 2002].

Exploring further the substantial body of chemistry already based on the cyclam macrocycle, we have prepared a new cyclam–methylimidazole ligand, 1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetraazacyclotetradecane (LIm1). Crystallizing the free ligand has proved impossible so far. However, we succeeded in obtaining the trans and cis isomers of an NiII complex, viz. trans-[Ni(LIm1)(H2O)](ClO4)2.H2O, (1), and trans-[Ni(LIm1)(H2O)](ClO4)2, (2), reported herein. At different stages of the crystallization and thermal treatment processes (see Experimental for details), another two compounds were obtained in crystalline form and their structures are also reported here, viz. trans-[Ni(ClO4)(LIm1)]ClO4, (3), and cis-[Ni(LIm2)](ClO4)2, (4) (where LIm2 is 1,8-bis[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetraazacyclotetradecane, a minor side product probably formed in trace amounts in the synthesis of LIm1).

The structures of (1)–(4) (Figs. 1–4) all have a central NiII cation chelated by a cyclam ring (four N atoms), the common fifth ligand being the imidazole N atom. They differ in the sixth ligand completing the octahedral coordination of atom Ni1, this being water in (1) and (2), a perchlorate anion in (3) and a second imidazole N atom in (4). All four structures present perchlorate groups as either isolated counterions or a coordinated ligand, and invariably this fragment is disordered, as a result of which the quality of the refinement is in most cases diminished.

Chelation of the NiII cation by the four cyclic N atoms of the cyclam unit is achieved in two different fashions in these compounds, which can be described by the relative orientations of the Ni1/N1–N3 and Ni1/N1/N4/N3 mean planes. The dihedral angles are 3.9 (2) and 7.7 (2)° in (1) and (3), respectively, describing a fairly planar arrangement of the cyclam macrocycle, and 79.6 (2) and 81.5 (2)° in (2) and (4), respectively, describing a `butterfly-like' conformation. This is closely associated with the way the two extra ligands bind the cation, viz. trans in (1) and (3), and cis in (2) and (4). The similarities and differences in the coordination parameters are related to these differences in ligand conformation, as well as to the character of the sixth ligand, as reflected in the comparison of the geometric data given in Table 1. The bond angles are split into two groups, those in the first and third column of Table 1 (the `trans' moieties), and those in the second and fourth columns (`cis'), with the differences within each group being smaller than those between groups. The Ni—N bond distances fall between 2.046 (3) and 2.144 (3) Å, in the range expected for high-spin NiII—N bonds.

As described by Bonisch et al. (1965), the designation `trans' does not fully characterize these complexes since the cyclic ligand has a number of possible distinct configurations. Bonisch and co-workers analysed the principles which apply to any cyclic tetradentate ligand whose donor atoms are tetrahedral when coordinated, and concluded that, in the case of cyclam, each N atom when coordinated is an asymmetric centre. Five distinct non-enantiomeric combinations can be produced. Thus, they proposed a simple description of the five different possible configurations of a cyclam macrocycle upon chelation (named I to V in their paper) by stating the directions, either up (u) or down (d), which the N substituents adopt (in our case, either H atoms or the methylimidazole arm). According to this classification, in (1) and (3) the group adopts a trans type III configuration (see Scheme 2), while in (2) and (4) it prefers the cis form described by Bonisch and co-workers as V.

Similar NiII complexes with closely related monosusbtituted cyclam derivatives have been reported in the literature. El Ghachtouli et al. (2006) described two structures, (II) and (III) therein, having 2-methylpyridine as a pendant arm and CH3N [CH3CN?] and H2O, respectively, occupying the sixth coordination sites, and which present coordination analogous to that of (1) and (2). But while their compound (III) shares with our (2) the same cis-V cyclam configuration (Bonisch classification), compound (II) of El Ghachtouli and co-workers adopts a trans-I configuration (all up, see Scheme 2). A search of the CSD shows that the configuration found in (1) occurs slightly more frequently than that displayed by (II), appearing with a 60:40 relative frequency.

The disordered perchlorate groups, in addition to providing charge balance, act as acceptors in generally weak hydrogen bonds having the cyclam N—H and water O—H groups as donors (Tables 2–5). The result is an arrangement with the Ni–cyclam units isolated from each other in space but interconnected by a dense network of these perchlorate-mediated interactions.

The redox behaviour of the configurational isomers (1) and (2) was investigated in aqueous solution by means of cyclic voltammetry experiments. The oxidation of the trans isomer, (1), is quasi-reversible and occurs at E1/2 = 0.77 V. In contrast, and analogous with what is observed in the closely related derivatives reported by El Ghachtouli et al. (2006), the oxidation of the cis isomer, (2), is irreversible (Eox = 1.03 V) and after several scans leads to the exclusive formation of (1).

Related literature top

For related literature, see: Allen (2002); Barefield (1975); Bonisch et al. (1965); El Ghachtouli, Cadiou, Dechamps-Olivier, Chuburu, Aplincourt, Patinec, Le Baccon, Handel & Roisnel (2006); Flack (1983); Jones (1949).

Experimental top

The compounds 2-(chloromethyl)imidazole hydrochloride and 1,4,8,11-tetraazacyclotetradecane (cyclam) were prepared according to previously published procedures (Jones, 1949; Barefield, 1975). All other reagents employed were obtained commercially and used as supplied.

For the synthesis of 1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11-tetraazacyclotetradecane (LIm1), cyclam (2.50 g, 12.5 mmol) was partially dissolved in hot (388 K) dimethylformamide (DMF, 60 ml) and the suspension stirred vigorously. 2-(Chloromethyl)imidazole hydrochloride (0.7 g) dissolved in DMF (32 ml) was added dropwise over a period of 4 h. The reaction mixture was heated at 388–393 K for an extra hour, and then allowed to cool to 277 K. The unreacted cyclam separated as white needles, which were removed by filtration. The solution was concentrated to 15 ml [By heating? In vacuo?] and treated with water (10 ml) and KOH (4 M), raising the pH to 11.5. This solution was extracted with CHCl3 (10 × 50 ml). The organic extracts were evaporated to dryness, leaving a colourless oily residue.

Purification was achieved by chromatography in a column (diameter 4 cm and length 15 cm) packed with silica gel 40 (35–70 mesh) in a CH2Cl2–MeOH (9:1 v/v) mixture. The column was first eluted with the same solvent mixture to remove some nonmacrocyclic contaminants, then with CH2Cl2–MeOH–NH3 (5:5:1 v/v/v) to remove poly-substituted cyclam species and finally with CH2Cl2–MeOH–NH3 (2:2:1 v/v/v) to elute the monosubstituted derivative. Removal of the solvent in vacuo yielded 0.90 g (66%) of the oily product, LIm1.

For the synthesis of [Ni(LIm1)(H2O)](ClO4)2, LIm1 (150.4 mg, 0.51 mmol) dissolved in water (Volume?) was added dropwise and with constant stirring to a solution of Ni(ClO4)2.6H2O (189.7 mg, 0.52 mmol) in water (3 ml). The resulting pink solution was heated at 343 K for 80 min and then concentrated in a rotary evaporator to yield a microcrystalline pink–violet solid, which was collected by filtration, washed with chilled water and dried in vacuo (yield 220 mg, 0.39 mmol, 75%). Elemental analysis, found: C 31.6, N 14.7, H 5.6%; calculated for [Ni(LIm1)(H2O)](ClO4)2(C15H32Cl2N6NiO9): C 31.6, N 14.7, H 5.7%.

This material was redissolved in water and the solution was allowed to evaporate slowly, yielding three consecutive crops of crystals, all of them suitable for single-crystal X-ray diffraction (XRD) studies. The first crop was a violet [pale pink in CIF - please clarify] crystalline material which, upon XRD analysis, proved to be the cis-[Ni(LIm1)(H2O)](ClO4)2 isomer, (2). A second crop consisted of a very small number of pale-pink crystals which were found to be cis-[Ni(LIm2)](ClO4)2, (4), where LIm2 is a minor side product, probably formed in trace amounts in the synthesis of LIm1. Further evaporation of the mother liquors finally gave another pink crystalline solid which was identified by X-ray diffraction as the trans-[Ni(LIm1)(H2O)](ClO4)2 isomer, (1).

The thermal cis–trans conversion between (2) and (1) (see Comment) was followed spectrophotometrically. For that purpose, compound (2) (λ nm-1 [e/M-1 cm-1] = 344 [13], 544 [10], 788(sh) [6], 833(sh) [7], 942 [9]) was dissolved in water and the solution heated at 363 K for several hours, following the course of the process by changes in the electronic spectrum. The experiments show a cis trans [(2) (1)] conversion, as indicated by the appearance of new UV–vis features which are compatible with those found for isomer (1) (λ nm-1 [ε/M-1 cm-1] = 335 [13], 515 [9], 721 [3], 803 [2], 961 [5]). This thermal isomerization process was also followed by cyclic voltammetry measurements and suggests that trans-[Ni(LIm1)(H2O)](ClO4)2 is the thermodynamically stable isomer. Solutions kept at 363 K for longer periods of time (4–5 d) followed by slow evaporation of the solvent yielded single crystals of a major product identified by X-ray diffraction as trans-[Ni(ClO4)(LIm1)]ClO4, (3).

Refinement top

All H atoms attached to C and N atoms were placed at calculated positions, with aromatic C—H = 0.95 Å, methylene C—H = 0.97 Å, methyl C—H = 0.96 Å and N—H = 0.91 Å, the N—H group having been identified previously in difference Fourier maps. The O—H groups showed varying behaviours and were accordingly treated differently in the refinements of (1)–(4). In (1) and (2) they were found in difference maps, and while those in (2) could be refined successfully with restraints [O—H = 0.85 (1) Å], those in (1) would not refine properly. They were thus kept at their original positions as found in the difference map, corrected to an idealized O—H distance of 0.85 Å. Structure (3) does not include any solvent water molecules. In (4), the O—H atoms could not be located in the difference map and were accordingly not included in the model. In all cases, H atoms were assigned Uiso(H) = 1.2Ueq(host) [or 1.5Ueq(host) for methyl].

All the perchlorate anions showed some kind of disorder, which was treated through the use of split models, in most cases in the form of a rotation around a nondisordered Cl—O bond. Similarity restraints were used for Cl—O and O···O distances, as well as for displacement parameters.

For the first three structures, a simple twofold splitting was enough, with occupancies of 0.53 (3):0.47 (3) for (1), 0.62 (3):0.38 (3) and 0.61 (3):0.39 (3) for (2), and 0.48 (2):0.52 (2) for (3). In the case of (4), a threefold splitting was required, with occupancies of 0.405 (18):0.405 (18):0.190 (18). All four structures were refined in an homogeneous way, with similarity restraints applied to perchlorate geometries (s.u. values: Cl—O = 0.010 Å and O···O = 0.015 Å). Continuity in anisotropic displacement parameters for neighbouring atoms (except metallic centres) were also applied (SHELXL instructions DELU 0.01 and SIMU 0.02). An isolated peak in structure (4) was satisfactorily refined as a partially occupied water solvent molecule [occupancy factor 0.248 (15)].

Although (2) is metrically tetragonal, the Rint values indicate unequivocally that the diffraction pattern has orthorhombic symmetry [Rint(tetragonal 4/m) 0.31; Rint(tetragonal 4/mmm) 0.41; Rint(orthorhombic mmm): 0.06]. In addition, in this same structure, the Flack (1983) parameter refined to 0.14 (3), thus suggesting the presence of a significant fraction of an inversion twin, even if far removed from being a racemate. The noncentrosymmetric character is clearly in line with |E| statistics (mean values for |E*E - 1|: 0.740 (experimental), 0.968 (centrosymmetric) and 0.736 (noncentrosymmetric).

Computing details top

For all compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (1), with displacement ellipsoids drawn at the 35% probability level. The major components of the disordered perchlorate anions are shown with broken lines. The minor component(s) and H atoms have been omitted for clarity.
[Figure 2] Fig. 2. The molecular structure of (2), with displacement ellipsoids drawn at the 35% probability level. The major components of the disordered perchlorate anions are shown with broken lines. The minor component(s) and H atoms have been omitted for clarity.
[Figure 3] Fig. 3. The molecular structure of (3), with displacement ellipsoids drawn at the 35% probability level. The major components of the disordered perchlorate anions are shown with broken lines. The minor component(s) and H atoms have been omitted for clarity.
[Figure 4] Fig. 4. The molecular structure of (4), with displacement ellipsoids drawn at the 35% probability level. The major components of the disordered perchlorate anions are shown with broken lines. The minor component(s) and H atoms have been omitted for clarity.
(1) trans-aqua{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11- tetraazacyclotetradecane}nickel(II) bis(perchlorate) monohydrate top
Crystal data top
[Ni(C15H30N6)(H2O)](ClO4)2·H2OF(000) = 1232
Mr = 588.09Dx = 1.580 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3245 reflections
a = 14.596 (3) Åθ = 3.0–24.9°
b = 10.995 (2) ŵ = 1.06 mm1
c = 16.192 (3) ÅT = 294 K
β = 107.96 (3)°Prism, light pink
V = 2471.9 (9) Å30.18 × 0.16 × 0.12 mm
Z = 4
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4852 independent reflections
Radiation source: fine-focus sealed tube2770 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scans, thick slicesθmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1817
Tmin = 0.98, Tmax = 0.99k = 1213
8284 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + 8.9604P]
where P = (Fo2 + 2Fc2)/3
4852 reflections(Δ/σ)max < 0.001
362 parametersΔρmax = 0.51 e Å3
452 restraintsΔρmin = 0.91 e Å3
Crystal data top
[Ni(C15H30N6)(H2O)](ClO4)2·H2OV = 2471.9 (9) Å3
Mr = 588.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.596 (3) ŵ = 1.06 mm1
b = 10.995 (2) ÅT = 294 K
c = 16.192 (3) Å0.18 × 0.16 × 0.12 mm
β = 107.96 (3)°
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4852 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2770 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.077
8284 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.057452 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.23Δρmax = 0.51 e Å3
4852 reflectionsΔρmin = 0.91 e Å3
362 parameters
Special details top

Experimental. Materials and Physical Methods.

Microanalytical data for C, H and N were obtained with a Carlo Erba EA 1108 analyser. 1H and 13C NMR spectra were measured with a 500 MHz Bruker AM 500 spectrometer. UV–vis spectra were recorded with an HP8453 diode array spectrometer. Cyclic voltammetry (CV) determinations were done in aqueous solution (I = 0.1 M, NaClO4) with a standard three-electrode cell containing a glassy carbon working electrode (Φ = 3 mm) and a Pt wire as the counterelectrode. A commercial Ag/AgCl (ss. KCl) (BAS) electrode was used as the reference. Throughout this work all the potentials are expressed against Ag/AgCl (ss. KCl). The potential of the working electrode was controlled with a TEQ-03 potentiostat.

1H NMR data for N-(2-imidazolylmethyl) cyclam, LIm1, δH (p.p.m.) (CDCl3): 6.89 (1H, d), 6.80 (1H, d), 3.69 (3H, s), 3.65 (2H, s), 2.6 (16H, m), 1.79 (2H, m) 1.69 (2H, m). 13C-NMR, δC (p.p.m.) (CDCl3): 145.4, 127.6, 121.7, 55.4, 54.2, 51.0, 50.8, 49.3, 48.8, 48.7, 48.1, 47.7, 33.3, 28.8, 26.5.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.27576 (5)0.26476 (7)0.58735 (5)0.0367 (2)
N10.2368 (4)0.1205 (5)0.4963 (3)0.0432 (12)
N20.4163 (3)0.2264 (5)0.5923 (3)0.0451 (12)
H20.43290.28200.55780.054*
N30.3133 (4)0.4087 (5)0.6734 (3)0.0451 (13)
H30.32290.47370.64220.054*
N40.1352 (3)0.3151 (5)0.5749 (3)0.0470 (13)
H40.11350.26170.60750.056*
N50.2732 (4)0.1237 (5)0.6725 (3)0.0442 (12)
N60.2417 (4)0.0690 (5)0.6889 (4)0.0493 (13)
C10.3258 (5)0.1027 (6)0.4707 (4)0.0544 (17)
H1A0.32970.16530.42970.065*
H1B0.32340.02430.44270.065*
C20.4147 (5)0.1090 (6)0.5513 (4)0.0535 (16)
H2A0.41210.04470.59150.064*
H2B0.47260.09850.53480.064*
C30.4877 (5)0.2368 (7)0.6791 (4)0.0595 (17)
H3A0.55120.21860.67480.071*
H3B0.47330.17710.71730.071*
C40.4891 (5)0.3624 (7)0.7182 (5)0.066 (2)
H4A0.49370.42190.67540.080*
H4B0.54710.36940.76740.080*
C50.4026 (5)0.3961 (7)0.7486 (4)0.0625 (19)
H5A0.39310.33360.78750.075*
H5B0.41560.47220.78050.075*
C60.2271 (5)0.4368 (6)0.6984 (4)0.0566 (17)
H6A0.23340.51640.72530.068*
H6B0.21930.37710.73980.068*
C70.1402 (5)0.4345 (6)0.6171 (5)0.0581 (17)
H7A0.08180.44860.63250.070*
H7B0.14590.49830.57760.070*
C80.0638 (5)0.3119 (7)0.4856 (5)0.0628 (19)
H8A0.07880.37620.45080.075*
H8B0.00010.32710.48960.075*
C90.0642 (5)0.1917 (7)0.4412 (5)0.0626 (19)
H9A0.01060.19170.38790.075*
H9B0.05140.12860.47810.075*
C100.1534 (5)0.1557 (7)0.4188 (4)0.0549 (17)
H10A0.13780.08780.37870.066*
H10B0.17280.22320.38940.066*
C110.2433 (4)0.0199 (6)0.6319 (4)0.0407 (14)
C120.2718 (5)0.0211 (7)0.7694 (5)0.0623 (19)
H120.27840.06200.82120.075*
C130.2905 (5)0.0978 (7)0.7607 (4)0.0567 (17)
H130.31150.15330.80590.068*
C140.2137 (5)0.0066 (6)0.5356 (4)0.0523 (16)
H14A0.14500.00940.51350.063*
H14B0.24740.06140.52020.063*
C150.2122 (6)0.1950 (7)0.6678 (6)0.076 (2)
H15A0.16110.19780.61370.115*
H15B0.19010.22880.71300.115*
H15C0.26600.24140.66290.115*
Cl10.01898 (15)0.85354 (17)0.30704 (12)0.0637 (5)
O110.0101 (7)0.9300 (6)0.2383 (4)0.182 (4)
O21A0.1140 (7)0.8121 (17)0.3347 (11)0.159 (7)0.51
O31A0.0428 (13)0.7548 (11)0.2819 (10)0.103 (6)0.51
O41A0.0008 (14)0.9133 (14)0.3754 (9)0.130 (6)0.51
O21B0.1159 (7)0.8447 (17)0.3548 (11)0.164 (9)0.49
O31B0.0176 (15)0.7392 (10)0.2793 (10)0.103 (6)0.49
O41B0.0303 (14)0.9020 (15)0.3604 (10)0.136 (7)0.49
Cl20.41772 (15)0.68986 (17)0.54177 (12)0.0630 (5)
O120.3820 (5)0.6379 (6)0.6039 (4)0.137 (3)
O22A0.3741 (9)0.6482 (15)0.4583 (6)0.140 (6)0.53
O32A0.5192 (5)0.6679 (12)0.5653 (9)0.108 (5)0.53
O42A0.4071 (10)0.8175 (7)0.5462 (10)0.129 (5)0.53
O22B0.4271 (11)0.5933 (11)0.4860 (8)0.126 (6)0.47
O32B0.5071 (8)0.7449 (15)0.5778 (9)0.136 (7)0.47
O42B0.3521 (10)0.7727 (13)0.4891 (10)0.156 (7)0.47
O1W0.2785 (3)0.3973 (4)0.4808 (3)0.0559 (12)
H1WA0.22510.43170.45530.067*
H1WB0.32130.44960.48100.067*
O2W0.1390 (5)0.5700 (6)0.4017 (4)0.117 (3)
H2WA0.09770.53000.36260.141*
H2WB0.13270.64400.38560.141*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0370 (4)0.0393 (4)0.0338 (4)0.0017 (4)0.0107 (3)0.0006 (4)
N10.049 (3)0.044 (3)0.036 (3)0.001 (3)0.012 (2)0.001 (2)
N20.043 (3)0.050 (3)0.044 (3)0.005 (3)0.016 (2)0.006 (2)
N30.057 (3)0.035 (3)0.043 (3)0.008 (3)0.015 (2)0.003 (2)
N40.038 (3)0.049 (3)0.056 (3)0.002 (2)0.016 (2)0.012 (3)
N50.052 (3)0.046 (3)0.037 (3)0.001 (3)0.017 (2)0.004 (2)
N60.044 (3)0.049 (3)0.060 (3)0.001 (3)0.023 (3)0.015 (3)
C10.071 (4)0.051 (4)0.045 (4)0.005 (3)0.024 (3)0.012 (3)
C20.049 (4)0.057 (4)0.060 (4)0.012 (3)0.027 (3)0.003 (3)
C30.043 (4)0.070 (4)0.057 (4)0.006 (4)0.003 (3)0.013 (4)
C40.058 (4)0.069 (5)0.054 (4)0.014 (4)0.008 (3)0.008 (4)
C50.068 (4)0.060 (4)0.050 (4)0.008 (4)0.004 (3)0.004 (4)
C60.072 (4)0.046 (4)0.058 (4)0.001 (4)0.030 (3)0.007 (3)
C70.060 (4)0.057 (4)0.066 (4)0.007 (4)0.033 (3)0.007 (3)
C80.041 (4)0.071 (5)0.068 (4)0.007 (4)0.004 (3)0.019 (4)
C90.048 (4)0.080 (5)0.050 (4)0.003 (4)0.001 (3)0.013 (4)
C100.063 (4)0.068 (5)0.023 (3)0.012 (3)0.003 (3)0.002 (3)
C110.041 (3)0.038 (3)0.045 (3)0.003 (3)0.017 (3)0.012 (3)
C120.074 (5)0.072 (4)0.044 (4)0.004 (4)0.024 (4)0.016 (3)
C130.065 (4)0.063 (4)0.043 (3)0.008 (4)0.018 (3)0.006 (3)
C140.061 (4)0.046 (4)0.047 (3)0.011 (3)0.012 (3)0.002 (3)
C150.075 (5)0.051 (4)0.105 (6)0.014 (4)0.031 (5)0.015 (4)
Cl10.0733 (13)0.0568 (12)0.0610 (12)0.0188 (10)0.0208 (10)0.0020 (9)
O110.272 (10)0.147 (7)0.121 (6)0.068 (7)0.050 (6)0.060 (5)
O21A0.093 (8)0.118 (15)0.240 (16)0.002 (8)0.015 (10)0.065 (12)
O31A0.136 (11)0.100 (10)0.086 (11)0.075 (10)0.054 (9)0.037 (8)
O41A0.130 (13)0.144 (12)0.149 (9)0.103 (10)0.092 (10)0.095 (9)
O21B0.103 (8)0.086 (12)0.242 (16)0.021 (8)0.036 (10)0.068 (11)
O31B0.154 (14)0.076 (7)0.084 (12)0.052 (9)0.045 (10)0.030 (7)
O41B0.138 (14)0.132 (12)0.176 (12)0.101 (10)0.104 (11)0.099 (10)
Cl20.0732 (13)0.0543 (11)0.0632 (12)0.0104 (10)0.0236 (10)0.0012 (9)
O120.169 (7)0.134 (6)0.147 (6)0.043 (6)0.105 (6)0.017 (5)
O22A0.104 (11)0.210 (15)0.095 (7)0.046 (11)0.018 (7)0.066 (10)
O32A0.077 (6)0.124 (12)0.121 (10)0.009 (7)0.027 (6)0.020 (10)
O42A0.137 (12)0.066 (6)0.176 (13)0.012 (7)0.040 (11)0.014 (7)
O22B0.097 (12)0.154 (13)0.123 (12)0.008 (9)0.027 (9)0.074 (10)
O32B0.140 (10)0.150 (15)0.103 (10)0.098 (10)0.016 (9)0.006 (10)
O42B0.155 (12)0.098 (11)0.194 (16)0.026 (10)0.022 (11)0.049 (10)
O1W0.053 (3)0.052 (3)0.060 (3)0.007 (2)0.013 (2)0.012 (2)
O2W0.107 (5)0.115 (6)0.143 (6)0.046 (4)0.057 (5)0.064 (5)
Geometric parameters (Å, º) top
Ni1—N12.120 (5)C6—H6B0.9700
Ni1—N22.071 (5)C7—H7A0.9700
Ni1—N32.068 (5)C7—H7B0.9700
Ni1—N42.073 (5)C8—C91.505 (10)
Ni1—N52.083 (5)C8—H8A0.9700
Ni1—O1W2.268 (4)C8—H8B0.9700
N1—C141.490 (8)C9—C101.508 (9)
N1—C11.494 (8)C9—H9A0.9700
N1—C101.505 (7)C9—H9B0.9700
N2—C21.447 (8)C10—H10A0.9700
N2—C31.474 (8)C10—H10B0.9700
N2—H20.9100C11—C141.490 (8)
N3—C61.468 (8)C12—C131.351 (10)
N3—C51.491 (8)C12—H120.9300
N3—H30.9100C13—H130.9300
N4—C71.472 (8)C14—H14A0.9700
N4—C81.500 (8)C14—H14B0.9700
N4—H40.9100C15—H15A0.9600
N5—C111.323 (8)C15—H15B0.9600
N5—C131.400 (8)C15—H15C0.9600
N6—C121.348 (8)Cl1—O111.368 (5)
N6—C111.350 (7)Cl1—O41A1.382 (8)
N6—C151.461 (9)Cl1—O31B1.386 (7)
C1—C21.532 (9)Cl1—O31A1.389 (7)
C1—H1A0.9700Cl1—O41B1.390 (8)
C1—H1B0.9700Cl1—O21B1.390 (8)
C2—H2A0.9700Cl1—O21A1.396 (8)
C2—H2B0.9700Cl2—O22A1.383 (7)
C3—C41.517 (10)Cl2—O121.390 (5)
C3—H3A0.9700Cl2—O32B1.392 (7)
C3—H3B0.9700Cl2—O42B1.404 (7)
C4—C51.537 (10)Cl2—O42A1.417 (7)
C4—H4A0.9700Cl2—O22B1.428 (7)
C4—H4B0.9700Cl2—O32A1.431 (7)
C5—H5A0.9700O1W—H1WA0.8490
C5—H5B0.9700O1W—H1WB0.8489
C6—C71.520 (9)O2W—H2WA0.8500
C6—H6A0.9700O2W—H2WB0.8500
N1—Ni1—N285.7 (2)N3—C6—H6B110.0
N1—Ni1—N3178.4 (2)C7—C6—H6B110.0
N1—Ni1—N495.0 (2)H6A—C6—H6B108.4
N1—Ni1—N581.2 (2)N4—C7—C6109.0 (6)
N1—Ni1—O1W90.92 (18)N4—C7—H7A109.9
N2—Ni1—N394.4 (2)C6—C7—H7A109.9
N2—Ni1—N4175.0 (2)N4—C7—H7B109.9
N2—Ni1—N592.4 (2)C6—C7—H7B109.9
N2—Ni1—O1W84.89 (18)H7A—C7—H7B108.3
N3—Ni1—N484.8 (2)N4—C8—C9112.2 (6)
N3—Ni1—N5100.3 (2)N4—C8—H8A109.2
N3—Ni1—O1W87.54 (18)C9—C8—H8A109.2
N4—Ni1—N592.5 (2)N4—C8—H8B109.2
N4—Ni1—O1W90.17 (19)C9—C8—H8B109.2
N5—Ni1—O1W171.89 (19)H8A—C8—H8B107.9
C14—N1—C1109.9 (5)C8—C9—C10118.4 (6)
C14—N1—C10109.9 (5)C8—C9—H9A107.7
C1—N1—C10110.6 (5)C10—C9—H9A107.7
C14—N1—Ni1112.3 (4)C8—C9—H9B107.7
C1—N1—Ni1102.8 (4)C10—C9—H9B107.7
C10—N1—Ni1111.2 (4)H9A—C9—H9B107.1
C2—N2—C3114.4 (5)N1—C10—C9113.8 (5)
C2—N2—Ni1106.8 (4)N1—C10—H10A108.8
C3—N2—Ni1115.0 (4)C9—C10—H10A108.8
C2—N2—H2106.7N1—C10—H10B108.8
C3—N2—H2106.7C9—C10—H10B108.8
Ni1—N2—H2106.7H10A—C10—H10B107.7
C6—N3—C5113.7 (5)N5—C11—N6110.9 (5)
C6—N3—Ni1106.0 (4)N5—C11—C14123.4 (5)
C5—N3—Ni1117.5 (4)N6—C11—C14125.7 (6)
C6—N3—H3106.3N6—C12—C13107.0 (6)
C5—N3—H3106.3N6—C12—H12126.5
Ni1—N3—H3106.3C13—C12—H12126.5
C7—N4—C8112.9 (5)C12—C13—N5109.0 (7)
C7—N4—Ni1106.7 (4)C12—C13—H13125.5
C8—N4—Ni1117.4 (4)N5—C13—H13125.5
C7—N4—H4106.4C11—C14—N1109.4 (5)
C8—N4—H4106.4C11—C14—H14A109.8
Ni1—N4—H4106.4N1—C14—H14A109.8
C11—N5—C13105.0 (5)C11—C14—H14B109.8
C11—N5—Ni1112.5 (4)N1—C14—H14B109.8
C13—N5—Ni1142.4 (5)H14A—C14—H14B108.2
C12—N6—C11108.0 (6)N6—C15—H15A109.5
C12—N6—C15125.6 (6)N6—C15—H15B109.5
C11—N6—C15126.4 (6)H15A—C15—H15B109.5
N1—C1—C2109.7 (5)N6—C15—H15C109.5
N1—C1—H1A109.7H15A—C15—H15C109.5
C2—C1—H1A109.7H15B—C15—H15C109.5
N1—C1—H1B109.7O11—Cl1—O41A111.4 (7)
C2—C1—H1B109.7O11—Cl1—O31B111.3 (7)
H1A—C1—H1B108.2O11—Cl1—O31A110.6 (7)
N2—C2—C1108.7 (5)O41A—Cl1—O31A109.8 (7)
N2—C2—H2A109.9O11—Cl1—O41B109.4 (7)
C1—C2—H2A109.9O31B—Cl1—O41B109.1 (7)
N2—C2—H2B109.9O11—Cl1—O21B108.7 (7)
C1—C2—H2B109.9O31B—Cl1—O21B109.9 (7)
H2A—C2—H2B108.3O41B—Cl1—O21B108.3 (7)
N2—C3—C4112.5 (6)O11—Cl1—O21A107.3 (7)
N2—C3—H3A109.1O41A—Cl1—O21A108.4 (7)
C4—C3—H3A109.1O31A—Cl1—O21A109.2 (7)
N2—C3—H3B109.1O41B—Cl1—O21A125.4 (13)
C4—C3—H3B109.1O22A—Cl2—O12114.1 (6)
H3A—C3—H3B107.8O12—Cl2—O32B112.8 (6)
C3—C4—C5116.6 (6)O12—Cl2—O42B111.6 (6)
C3—C4—H4A108.2O32B—Cl2—O42B110.4 (7)
C5—C4—H4A108.2O22A—Cl2—O42A110.7 (7)
C3—C4—H4B108.2O12—Cl2—O42A107.4 (6)
C5—C4—H4B108.2O12—Cl2—O22B106.4 (6)
H4A—C4—H4B107.3O32B—Cl2—O22B109.1 (7)
N3—C5—C4111.0 (6)O42B—Cl2—O22B106.2 (6)
N3—C5—H5A109.4O22A—Cl2—O32A109.3 (6)
C4—C5—H5A109.4O12—Cl2—O32A109.1 (6)
N3—C5—H5B109.4O42A—Cl2—O32A105.9 (6)
C4—C5—H5B109.4Ni1—O1W—H1WA115.4
H5A—C5—H5B108.0Ni1—O1W—H1WB128.3
N3—C6—C7108.4 (5)H1WA—O1W—H1WB105.2
N3—C6—H6A110.0H2WA—O2W—H2WB106.4
C7—C6—H6A110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O32Ai0.912.373.198 (13)151
N3—H3···O120.912.173.053 (8)162
O1W—H1WA···O2W0.851.992.790 (7)156
O1W—H1WB···O22B0.852.193.041 (15)176
O1W—H1WB···O22A0.852.383.163 (15)153
O2W—H2WA···O11ii0.852.183.034 (11)179
O2W—H2WB···O21B0.852.263.107 (19)175
O2W—H2WB···O21A0.852.012.855 (18)174
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2.
(2) cis-aqua{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11- tetraazacyclotetradecane}nickel(II) bis(perchlorate) top
Crystal data top
[Ni(C15H30N6)(H2O)](ClO4)2F(000) = 1192
Mr = 570.08Dx = 1.558 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ac 2abCell parameters from 2876 reflections
a = 9.428 (5) Åθ = 3.9–25.9°
b = 16.047 (5) ŵ = 1.08 mm1
c = 16.060 (5) ÅT = 294 K
V = 2429.7 (17) Å3Prism, light pink
Z = 40.32 × 0.30 × 0.20 mm
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4312 independent reflections
Radiation source: fine-focus sealed tube3342 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.049
ω scans, thick slicesθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 611
Tmin = 0.98, Tmax = 0.99k = 1519
8056 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0553P)2 + 0.3459P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
4312 reflectionsΔρmax = 0.58 e Å3
362 parametersΔρmin = 0.37 e Å3
720 restraintsAbsolute structure: Flack (1983), 1601 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.14 (3)
Crystal data top
[Ni(C15H30N6)(H2O)](ClO4)2V = 2429.7 (17) Å3
Mr = 570.08Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.428 (5) ŵ = 1.08 mm1
b = 16.047 (5) ÅT = 294 K
c = 16.060 (5) Å0.32 × 0.30 × 0.20 mm
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4312 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3342 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.049
8056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.153Δρmax = 0.58 e Å3
S = 1.07Δρmin = 0.37 e Å3
4312 reflectionsAbsolute structure: Flack (1983), 1601 Friedel pairs
362 parametersAbsolute structure parameter: 0.14 (3)
720 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.68547 (9)0.66055 (5)0.76693 (5)0.0407 (2)
N10.5582 (6)0.6181 (4)0.6647 (4)0.0470 (14)
N20.5941 (6)0.5756 (4)0.8492 (4)0.0506 (15)
H20.63830.52570.84200.061*
N30.8152 (7)0.6887 (4)0.8689 (3)0.0523 (14)
H30.78380.73850.88870.063*
N40.8399 (6)0.5814 (4)0.7174 (4)0.0471 (13)
H40.83650.53280.74650.057*
N50.7380 (7)0.7519 (4)0.6831 (4)0.0525 (15)
N60.6821 (7)0.8174 (4)0.5685 (4)0.0552 (15)
C10.4102 (8)0.5915 (5)0.6859 (5)0.0535 (18)
H1A0.35560.64060.70050.064*
H1B0.36730.56730.63660.064*
C20.3987 (8)0.5302 (5)0.7554 (5)0.0579 (18)
H2A0.45810.48260.74220.069*
H2B0.30150.51050.75790.069*
C30.4394 (8)0.5615 (6)0.8402 (5)0.060 (2)
H3A0.38990.61340.85080.072*
H3B0.40890.52140.88170.072*
C40.6284 (9)0.6053 (6)0.9319 (5)0.068 (2)
H4A0.60730.56240.97270.081*
H4B0.57190.65410.94500.081*
C50.7850 (8)0.6272 (6)0.9351 (5)0.064 (2)
H5A0.80860.65040.98910.076*
H5B0.84180.57750.92660.076*
C60.9689 (9)0.6995 (6)0.8540 (6)0.068 (2)
H6A1.01620.70720.90700.081*
H6B0.98330.74970.82140.081*
C71.0370 (8)0.6269 (6)0.8091 (5)0.068 (2)
H7A1.13870.63590.80780.082*
H7B1.01970.57670.84110.082*
C80.9865 (7)0.6125 (5)0.7213 (5)0.0565 (18)
H8A0.99260.66440.69060.068*
H8B1.04870.57260.69450.068*
C90.7969 (8)0.5632 (5)0.6317 (4)0.0557 (18)
H9A0.84850.51500.61130.067*
H9B0.81930.61020.59620.067*
C100.6392 (8)0.5460 (5)0.6290 (5)0.0576 (19)
H10A0.60990.53680.57180.069*
H10B0.61830.49600.66050.069*
C110.6574 (8)0.7511 (5)0.6174 (4)0.0514 (17)
C120.7873 (9)0.8628 (5)0.6059 (5)0.067 (2)
H120.82770.91180.58580.080*
C130.8211 (9)0.8234 (5)0.6769 (5)0.0614 (19)
H130.88850.84090.71540.074*
C140.5481 (8)0.6857 (5)0.6018 (5)0.0589 (19)
H14A0.45440.71060.60400.071*
H14B0.56150.66260.54650.071*
C150.6046 (11)0.8407 (7)0.4931 (5)0.087 (3)
H15A0.64610.81330.44590.130*
H15B0.60970.90000.48550.130*
H15C0.50720.82410.49840.130*
Cl10.7249 (3)0.90397 (13)0.95182 (13)0.0704 (7)
O110.7669 (8)0.8339 (4)0.9969 (4)0.099 (2)
O21A0.6385 (17)0.9556 (7)1.0003 (8)0.091 (4)0.62 (3)
O31A0.658 (2)0.8828 (7)0.8776 (9)0.125 (6)0.62 (3)
O41A0.8476 (10)0.9523 (9)0.9323 (12)0.121 (6)0.62 (3)
O21B0.708 (3)0.9732 (9)1.0021 (11)0.109 (8)0.38 (3)
O31B0.5895 (17)0.8848 (11)0.9173 (18)0.115 (8)0.38 (3)
O41B0.818 (2)0.9185 (17)0.8861 (14)0.142 (9)0.38 (3)
Cl20.7552 (2)0.35686 (12)0.83908 (16)0.0696 (6)
O120.6139 (6)0.3710 (5)0.8176 (6)0.143 (4)
O22A0.7515 (16)0.3401 (15)0.9268 (5)0.146 (7)0.61 (3)
O32A0.8042 (14)0.2840 (7)0.8017 (12)0.111 (5)0.61 (3)
O42A0.8421 (13)0.4246 (7)0.8267 (15)0.130 (6)0.61 (3)
O22B0.784 (2)0.396 (2)0.9149 (13)0.165 (10)0.39 (3)
O32B0.7892 (19)0.2733 (6)0.8404 (19)0.113 (8)0.39 (3)
O42B0.8383 (17)0.3964 (18)0.7768 (17)0.146 (9)0.39 (3)
O1W0.5193 (7)0.7489 (3)0.8098 (4)0.0646 (15)
H1WA0.474 (8)0.772 (4)0.770 (3)0.077*
H1WB0.527 (10)0.785 (3)0.848 (3)0.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0442 (4)0.0377 (4)0.0401 (4)0.0005 (4)0.0002 (4)0.0020 (4)
N10.050 (3)0.044 (3)0.048 (3)0.001 (3)0.002 (3)0.002 (2)
N20.049 (3)0.055 (4)0.048 (3)0.006 (3)0.003 (3)0.005 (3)
N30.056 (3)0.050 (3)0.050 (3)0.005 (3)0.008 (3)0.004 (2)
N40.044 (3)0.048 (3)0.050 (3)0.003 (3)0.007 (3)0.002 (2)
N50.055 (3)0.046 (3)0.057 (3)0.011 (3)0.003 (3)0.010 (3)
N60.057 (3)0.051 (3)0.057 (3)0.008 (3)0.006 (3)0.019 (3)
C10.046 (4)0.053 (4)0.062 (4)0.007 (3)0.005 (4)0.003 (4)
C20.041 (3)0.058 (4)0.075 (5)0.007 (3)0.007 (4)0.004 (4)
C30.052 (4)0.064 (5)0.065 (4)0.008 (4)0.013 (4)0.010 (4)
C40.069 (4)0.088 (6)0.047 (4)0.006 (5)0.000 (4)0.016 (4)
C50.070 (5)0.083 (6)0.038 (4)0.002 (4)0.011 (4)0.007 (3)
C60.057 (4)0.076 (5)0.070 (5)0.002 (4)0.010 (4)0.004 (4)
C70.044 (4)0.086 (6)0.074 (5)0.006 (4)0.006 (4)0.003 (5)
C80.039 (3)0.067 (5)0.064 (4)0.004 (3)0.009 (4)0.001 (4)
C90.058 (4)0.061 (5)0.049 (4)0.007 (4)0.009 (4)0.005 (3)
C100.065 (4)0.050 (4)0.058 (4)0.004 (4)0.006 (4)0.010 (3)
C110.061 (4)0.049 (4)0.044 (4)0.002 (3)0.002 (4)0.009 (3)
C120.073 (5)0.048 (4)0.079 (5)0.011 (4)0.012 (4)0.017 (4)
C130.060 (4)0.047 (4)0.078 (5)0.007 (4)0.003 (4)0.002 (4)
C140.060 (4)0.064 (5)0.053 (4)0.005 (3)0.020 (4)0.008 (3)
C150.110 (7)0.090 (7)0.060 (5)0.015 (7)0.010 (5)0.027 (5)
Cl10.1020 (18)0.0539 (11)0.0553 (11)0.0088 (12)0.0177 (12)0.0061 (9)
O110.141 (6)0.068 (4)0.087 (4)0.021 (4)0.018 (4)0.005 (3)
O21A0.113 (10)0.057 (7)0.103 (8)0.002 (7)0.010 (7)0.026 (6)
O31A0.209 (15)0.083 (8)0.081 (8)0.012 (10)0.066 (10)0.028 (6)
O41A0.108 (9)0.150 (12)0.105 (12)0.021 (8)0.002 (8)0.036 (10)
O21B0.16 (2)0.052 (9)0.115 (14)0.009 (12)0.036 (13)0.034 (9)
O31B0.107 (11)0.127 (16)0.112 (17)0.031 (11)0.047 (10)0.070 (14)
O41B0.153 (15)0.20 (2)0.076 (13)0.026 (16)0.010 (12)0.042 (12)
Cl20.0651 (11)0.0457 (11)0.0979 (16)0.0063 (10)0.0117 (12)0.0042 (10)
O120.086 (4)0.137 (8)0.204 (9)0.025 (5)0.048 (5)0.007 (7)
O22A0.184 (13)0.173 (18)0.082 (6)0.039 (13)0.022 (8)0.004 (8)
O32A0.126 (10)0.060 (6)0.147 (12)0.006 (7)0.052 (10)0.005 (7)
O42A0.120 (9)0.063 (7)0.207 (17)0.021 (7)0.005 (11)0.008 (9)
O22B0.194 (19)0.149 (19)0.154 (13)0.034 (19)0.061 (13)0.050 (14)
O32B0.134 (15)0.052 (7)0.154 (18)0.029 (10)0.069 (15)0.047 (9)
O42B0.152 (13)0.083 (15)0.204 (18)0.018 (14)0.044 (16)0.072 (15)
O1W0.072 (4)0.059 (3)0.063 (3)0.015 (3)0.011 (3)0.006 (3)
Geometric parameters (Å, º) top
Ni1—N12.144 (6)C6—H6A0.9700
Ni1—N22.085 (6)C6—H6B0.9700
Ni1—N32.094 (6)C7—C81.506 (11)
Ni1—N42.088 (6)C7—H7A0.9700
Ni1—N52.051 (6)C7—H7B0.9700
Ni1—O1W2.222 (6)C8—H8A0.9700
N1—C141.486 (9)C8—H8B0.9700
N1—C11.499 (9)C9—C101.514 (11)
N1—C101.500 (9)C9—H9A0.9700
N2—C41.447 (10)C9—H9B0.9700
N2—C31.483 (10)C10—H10A0.9700
N2—H20.9100C10—H10B0.9700
N3—C51.479 (9)C11—C141.492 (10)
N3—C61.479 (10)C12—C131.342 (11)
N3—H30.9100C12—H120.9300
N4—C91.464 (9)C13—H130.9300
N4—C81.471 (9)C14—H14A0.9700
N4—H40.9100C14—H14B0.9700
N5—C111.300 (9)C15—H15A0.9600
N5—C131.393 (9)C15—H15B0.9600
N6—C111.343 (9)C15—H15C0.9600
N6—C121.369 (10)Cl1—O21B1.382 (8)
N6—C151.463 (9)Cl1—O31A1.391 (7)
C1—C21.492 (10)Cl1—O41B1.393 (8)
C1—H1A0.9700Cl1—O111.395 (5)
C1—H1B0.9700Cl1—O21A1.399 (7)
C2—C31.501 (11)Cl1—O31B1.426 (8)
C2—H2A0.9700Cl1—O41A1.427 (7)
C2—H2B0.9700Cl2—O42A1.375 (7)
C3—H3A0.9700Cl2—O32B1.379 (7)
C3—H3B0.9700Cl2—O32A1.393 (7)
C4—C51.519 (12)Cl2—O22B1.394 (8)
C4—H4A0.9700Cl2—O121.395 (5)
C4—H4B0.9700Cl2—O42B1.420 (8)
C5—H5A0.9700Cl2—O22A1.435 (7)
C5—H5B0.9700O1W—H1WA0.846 (12)
C6—C71.512 (11)O1W—H1WB0.846 (12)
N1—Ni1—N292.7 (2)C7—C6—H6A108.8
N1—Ni1—N3173.9 (2)N3—C6—H6B108.8
N1—Ni1—N484.6 (2)C7—C6—H6B108.8
N1—Ni1—N581.9 (2)H6A—C6—H6B107.7
N1—Ni1—O1W92.6 (2)C8—C7—C6115.5 (7)
N2—Ni1—N383.5 (2)C8—C7—H7A108.4
N2—Ni1—N497.6 (2)C6—C7—H7A108.4
N2—Ni1—N5169.5 (3)C8—C7—H7B108.4
N2—Ni1—O1W85.9 (2)C6—C7—H7B108.4
N3—Ni1—N491.2 (2)H7A—C7—H7B107.5
N3—Ni1—N5102.6 (2)N4—C8—C7112.9 (6)
N3—Ni1—O1W91.8 (2)N4—C8—H8A109.0
N4—Ni1—N590.9 (3)C7—C8—H8A109.0
N4—Ni1—O1W175.6 (2)N4—C8—H8B109.0
N5—Ni1—O1W85.3 (2)C7—C8—H8B109.0
C14—N1—C1107.6 (6)H8A—C8—H8B107.8
C14—N1—C10109.6 (6)N4—C9—C10109.6 (6)
C1—N1—C10109.9 (6)N4—C9—H9A109.7
C14—N1—Ni1109.0 (4)C10—C9—H9A109.7
C1—N1—Ni1116.0 (5)N4—C9—H9B109.7
C10—N1—Ni1104.7 (4)C10—C9—H9B109.7
C4—N2—C3111.1 (7)H9A—C9—H9B108.2
C4—N2—Ni1105.9 (5)N1—C10—C9110.4 (6)
C3—N2—Ni1116.3 (5)N1—C10—H10A109.6
C4—N2—H2107.7C9—C10—H10A109.6
C3—N2—H2107.7N1—C10—H10B109.6
Ni1—N2—H2107.7C9—C10—H10B109.6
C5—N3—C6112.5 (6)H10A—C10—H10B108.1
C5—N3—Ni1107.8 (5)N5—C11—N6111.4 (6)
C6—N3—Ni1118.1 (5)N5—C11—C14123.2 (6)
C5—N3—H3105.8N6—C11—C14125.3 (7)
C6—N3—H3105.8C13—C12—N6107.0 (7)
Ni1—N3—H3105.8C13—C12—H12126.5
C9—N4—C8111.5 (6)N6—C12—H12126.5
C9—N4—Ni1106.7 (4)C12—C13—N5108.4 (7)
C8—N4—Ni1115.6 (5)C12—C13—H13125.8
C9—N4—H4107.6N5—C13—H13125.8
C8—N4—H4107.6N1—C14—C11110.8 (6)
Ni1—N4—H4107.6N1—C14—H14A109.5
C11—N5—C13106.2 (6)C11—C14—H14A109.5
C11—N5—Ni1112.6 (5)N1—C14—H14B109.5
C13—N5—Ni1140.5 (5)C11—C14—H14B109.5
C11—N6—C12107.0 (6)H14A—C14—H14B108.1
C11—N6—C15126.9 (7)N6—C15—H15A109.5
C12—N6—C15126.0 (7)N6—C15—H15B109.5
C2—C1—N1115.2 (6)H15A—C15—H15B109.5
C2—C1—H1A108.5N6—C15—H15C109.5
N1—C1—H1A108.5H15A—C15—H15C109.5
C2—C1—H1B108.5H15B—C15—H15C109.5
N1—C1—H1B108.5O21B—Cl1—O41B112.4 (8)
H1A—C1—H1B107.5O21B—Cl1—O11112.2 (8)
C1—C2—C3116.0 (7)O31A—Cl1—O11112.1 (6)
C1—C2—H2A108.3O41B—Cl1—O11110.4 (8)
C3—C2—H2A108.3O31A—Cl1—O21A110.9 (7)
C1—C2—H2B108.3O11—Cl1—O21A110.7 (6)
C3—C2—H2B108.3O21B—Cl1—O31B107.3 (8)
H2A—C2—H2B107.4O41B—Cl1—O31B107.8 (8)
N2—C3—C2113.1 (7)O11—Cl1—O31B106.4 (7)
N2—C3—H3A109.0O31A—Cl1—O41A108.2 (7)
C2—C3—H3A109.0O11—Cl1—O41A108.8 (6)
N2—C3—H3B109.0O21A—Cl1—O41A105.8 (6)
C2—C3—H3B109.0O42A—Cl2—O32A113.8 (7)
H3A—C3—H3B107.8O32B—Cl2—O22B112.0 (8)
N2—C4—C5108.9 (7)O32A—Cl2—O22B133.2 (11)
N2—C4—H4A109.9O42A—Cl2—O12113.9 (7)
C5—C4—H4A109.9O32B—Cl2—O12112.6 (8)
N2—C4—H4B109.9O32A—Cl2—O12110.3 (7)
C5—C4—H4B109.9O22B—Cl2—O12109.3 (8)
H4A—C4—H4B108.3O32B—Cl2—O42B108.5 (8)
N3—C5—C4108.5 (7)O22B—Cl2—O42B108.0 (8)
N3—C5—H5A110.0O12—Cl2—O42B106.3 (8)
C4—C5—H5A110.0O42A—Cl2—O22A107.7 (7)
N3—C5—H5B110.0O32A—Cl2—O22A105.9 (7)
C4—C5—H5B110.0O12—Cl2—O22A104.5 (6)
H5A—C5—H5B108.4Ni1—O1W—H1WA113 (5)
N3—C6—C7113.8 (7)Ni1—O1W—H1WB127 (6)
N3—C6—H6A108.8H1WA—O1W—H1WB107 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O110.912.323.140 (9)150
N4—H4···O42A0.912.163.068 (15)173
N4—H4···O42B0.912.243.12 (2)161
O1W—H1WA···O12i0.85 (1)2.29 (3)3.098 (10)161 (7)
O1W—H1WB···O31B0.85 (1)2.04 (4)2.86 (2)163 (9)
O1W—H1WB···O31A0.85 (1)2.06 (7)2.740 (13)137 (8)
Symmetry code: (i) x+1, y+1/2, z+3/2.
(3) trans-{1-[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11- tetraazacyclotetradecane}(perchlorato)nickel(II) perchlorate top
Crystal data top
[Ni(ClO4)(C15H30N6)]ClO4F(000) = 1152
Mr = 552.06Dx = 1.630 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3890 reflections
a = 16.665 (5) Åθ = 3.7–25.7°
b = 9.696 (5) ŵ = 1.16 mm1
c = 13.936 (5) ÅT = 294 K
β = 92.849 (5)°Prism, light pink
V = 2249.0 (16) Å30.12 × 0.12 × 0.10 mm
Z = 4
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4403 independent reflections
Radiation source: fine-focus sealed tube2878 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω scans, thick slicesθmax = 26.0°, θmin = 3.6°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 2020
Tmin = 0.98, Tmax = 0.99k = 1111
23451 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 0.90 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
4403 reflections(Δ/σ)max < 0.001
356 parametersΔρmax = 0.92 e Å3
732 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(ClO4)(C15H30N6)]ClO4V = 2249.0 (16) Å3
Mr = 552.06Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.665 (5) ŵ = 1.16 mm1
b = 9.696 (5) ÅT = 294 K
c = 13.936 (5) Å0.12 × 0.12 × 0.10 mm
β = 92.849 (5)°
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
4403 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2878 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.051
23451 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037732 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 0.90Δρmax = 0.92 e Å3
4403 reflectionsΔρmin = 0.26 e Å3
356 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.20919 (3)0.02878 (5)0.33101 (3)0.03078 (15)
N10.27538 (17)0.1516 (3)0.23654 (18)0.0357 (7)
N20.15370 (17)0.2098 (3)0.36729 (19)0.0383 (7)
H20.10440.21080.33610.046*
N30.13867 (18)0.0884 (3)0.4178 (2)0.0435 (8)
H30.08910.09430.38760.052*
N40.24678 (19)0.1568 (3)0.2797 (2)0.0416 (7)
H40.29590.17310.30890.050*
N50.31039 (17)0.0594 (3)0.42165 (18)0.0338 (7)
N60.42811 (17)0.1615 (3)0.4420 (2)0.0382 (7)
C10.2263 (2)0.2802 (4)0.2295 (3)0.0460 (9)
H1A0.17910.26460.18730.055*
H1B0.25750.35350.20210.055*
C20.2008 (2)0.3228 (4)0.3272 (3)0.0479 (10)
H2A0.24780.34170.36910.057*
H2B0.16860.40600.32210.057*
C30.1410 (2)0.2246 (5)0.4710 (3)0.0492 (10)
H3A0.11550.31280.48220.059*
H3B0.19260.22410.50630.059*
C40.0894 (2)0.1107 (5)0.5083 (3)0.0571 (11)
H4A0.04070.10480.46730.068*
H4B0.07370.13600.57210.068*
C50.1275 (2)0.0306 (5)0.5138 (2)0.0531 (11)
H5A0.17930.02430.54860.064*
H5B0.09380.09210.54910.064*
C60.1742 (3)0.2287 (4)0.4172 (3)0.0586 (11)
H6A0.13670.29530.44130.070*
H6B0.22310.23130.45800.070*
C70.1925 (3)0.2629 (4)0.3157 (3)0.0553 (11)
H7A0.21770.35290.31320.066*
H7B0.14310.26550.27580.066*
C80.2574 (3)0.1670 (4)0.1749 (3)0.0533 (11)
H8A0.20560.15670.14060.064*
H8B0.27830.25750.16010.064*
C90.3142 (3)0.0576 (4)0.1413 (3)0.0543 (11)
H9A0.36270.05990.18280.065*
H9B0.32930.08110.07700.065*
C100.2818 (2)0.0876 (4)0.1400 (2)0.0472 (10)
H10A0.31630.14480.10260.057*
H10B0.22890.08710.10750.057*
C110.3648 (2)0.1364 (3)0.3811 (2)0.0322 (8)
C120.4131 (2)0.0971 (4)0.5269 (2)0.0429 (9)
H120.44600.09690.58280.051*
C130.3418 (2)0.0345 (4)0.5133 (2)0.0395 (8)
H130.31700.01810.55910.047*
C140.3570 (2)0.1843 (4)0.2795 (2)0.0414 (9)
H14A0.39740.13950.24250.050*
H14B0.36600.28310.27700.050*
C150.4992 (2)0.2440 (4)0.4227 (3)0.0568 (11)
H15A0.49490.27740.35780.085*
H15B0.54650.18780.43130.085*
H15C0.50290.32070.46620.085*
Cl10.02402 (6)0.00001 (14)0.19185 (8)0.0648 (4)
O110.10745 (16)0.0196 (3)0.20729 (19)0.0646 (8)
O21A0.0130 (9)0.025 (2)0.2790 (8)0.123 (6)0.424 (19)
O31A0.0175 (9)0.1461 (8)0.1727 (17)0.160 (8)0.424 (19)
O41A0.0122 (7)0.0682 (15)0.1174 (7)0.100 (5)0.424 (19)
O21B0.0110 (7)0.0303 (18)0.2777 (6)0.132 (5)0.576 (19)
O31B0.0103 (8)0.1058 (15)0.1253 (9)0.184 (6)0.576 (19)
O41B0.0041 (8)0.1245 (14)0.1523 (12)0.196 (7)0.576 (19)
Cl20.41534 (7)0.39828 (13)0.33151 (8)0.0647 (3)
O12A0.4166 (9)0.2528 (7)0.3156 (13)0.075 (4)0.42 (2)
O22A0.4934 (5)0.4324 (16)0.3697 (12)0.080 (4)0.42 (2)
O32A0.3589 (9)0.431 (2)0.3973 (12)0.109 (6)0.42 (2)
O42A0.3998 (13)0.4624 (18)0.2428 (8)0.124 (6)0.42 (2)
O12B0.4116 (9)0.2570 (7)0.3512 (12)0.129 (6)0.58 (2)
O22B0.4939 (5)0.4459 (15)0.3255 (15)0.146 (6)0.58 (2)
O32B0.3782 (8)0.4745 (15)0.4034 (7)0.088 (3)0.58 (2)
O42B0.3698 (9)0.4246 (13)0.2439 (7)0.103 (4)0.58 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0289 (2)0.0335 (2)0.0298 (2)0.0039 (2)0.00002 (17)0.0017 (2)
N10.0335 (16)0.0425 (18)0.0309 (14)0.0046 (14)0.0002 (12)0.0048 (13)
N20.0283 (16)0.0444 (19)0.0419 (16)0.0020 (14)0.0019 (13)0.0029 (14)
N30.0300 (17)0.057 (2)0.0431 (17)0.0100 (15)0.0010 (14)0.0098 (15)
N40.0372 (18)0.0371 (17)0.0501 (18)0.0008 (14)0.0030 (14)0.0029 (14)
N50.0305 (15)0.0386 (18)0.0319 (14)0.0002 (13)0.0023 (12)0.0022 (12)
N60.0278 (16)0.0396 (18)0.0466 (17)0.0022 (14)0.0038 (13)0.0006 (14)
C10.044 (2)0.042 (2)0.051 (2)0.0042 (19)0.0031 (18)0.0156 (18)
C20.042 (2)0.033 (2)0.068 (2)0.0001 (19)0.001 (2)0.0008 (19)
C30.037 (2)0.068 (3)0.043 (2)0.001 (2)0.0010 (18)0.0172 (19)
C40.039 (2)0.093 (3)0.039 (2)0.007 (2)0.0082 (18)0.007 (2)
C50.036 (2)0.088 (3)0.0357 (19)0.016 (2)0.0039 (17)0.011 (2)
C60.055 (3)0.049 (3)0.071 (3)0.016 (2)0.004 (2)0.023 (2)
C70.054 (3)0.031 (2)0.079 (3)0.011 (2)0.004 (2)0.001 (2)
C80.060 (3)0.049 (2)0.051 (2)0.004 (2)0.002 (2)0.0185 (19)
C90.053 (3)0.072 (3)0.038 (2)0.010 (2)0.0096 (19)0.0109 (19)
C100.048 (2)0.065 (3)0.0290 (18)0.006 (2)0.0048 (17)0.0076 (17)
C110.0279 (18)0.0300 (19)0.0382 (18)0.0002 (15)0.0015 (15)0.0001 (15)
C120.041 (2)0.049 (2)0.0372 (19)0.0088 (19)0.0093 (17)0.0004 (17)
C130.040 (2)0.043 (2)0.0356 (18)0.0037 (19)0.0000 (16)0.0046 (17)
C140.032 (2)0.052 (2)0.0405 (19)0.0064 (18)0.0028 (16)0.0053 (17)
C150.034 (2)0.058 (3)0.076 (3)0.011 (2)0.013 (2)0.008 (2)
Cl10.0363 (6)0.1004 (11)0.0564 (6)0.0072 (6)0.0104 (5)0.0126 (6)
O110.0389 (16)0.100 (2)0.0541 (17)0.0138 (16)0.0096 (13)0.0043 (16)
O21A0.056 (8)0.250 (17)0.064 (7)0.019 (9)0.018 (7)0.017 (8)
O31A0.135 (11)0.088 (7)0.248 (19)0.042 (7)0.078 (13)0.021 (9)
O41A0.065 (6)0.188 (12)0.045 (5)0.031 (8)0.026 (5)0.003 (6)
O21B0.051 (6)0.267 (14)0.078 (6)0.024 (7)0.006 (5)0.070 (7)
O31B0.199 (12)0.260 (12)0.090 (7)0.146 (10)0.027 (7)0.052 (8)
O41B0.165 (11)0.271 (11)0.159 (11)0.157 (11)0.071 (8)0.120 (9)
Cl20.0615 (8)0.0640 (8)0.0688 (7)0.0135 (6)0.0057 (6)0.0070 (6)
O12A0.074 (7)0.063 (6)0.085 (9)0.001 (5)0.029 (7)0.001 (4)
O22A0.058 (6)0.077 (7)0.108 (9)0.015 (5)0.031 (5)0.025 (6)
O32A0.047 (7)0.202 (16)0.081 (7)0.014 (8)0.022 (6)0.038 (9)
O42A0.263 (19)0.052 (8)0.058 (6)0.007 (11)0.012 (8)0.012 (5)
O12B0.156 (11)0.072 (5)0.145 (12)0.046 (6)0.111 (9)0.033 (5)
O22B0.064 (5)0.135 (9)0.245 (15)0.047 (6)0.079 (6)0.110 (10)
O32B0.050 (5)0.141 (8)0.073 (5)0.010 (5)0.013 (4)0.006 (5)
O42B0.167 (9)0.069 (7)0.070 (5)0.033 (6)0.018 (5)0.021 (4)
Geometric parameters (Å, º) top
Ni1—N12.124 (3)C6—H6A0.9700
Ni1—N22.059 (3)C6—H6B0.9700
Ni1—N32.068 (3)C7—H7A0.9700
Ni1—N42.046 (3)C7—H7B0.9700
Ni1—N52.077 (3)C8—C91.512 (6)
Ni1—O112.359 (3)C8—H8A0.9700
N1—C101.490 (4)C8—H8B0.9700
N1—C11.492 (5)C9—C101.508 (6)
N1—C141.493 (4)C9—H9A0.9700
N2—C21.474 (5)C9—H9B0.9700
N2—C31.478 (4)C10—H10A0.9700
N2—H20.9100C10—H10B0.9700
N3—C51.470 (5)C11—C141.490 (5)
N3—C61.484 (5)C12—C131.340 (5)
N3—H30.9100C12—H120.9300
N4—C71.474 (5)C13—H130.9300
N4—C81.484 (4)C14—H14A0.9700
N4—H40.9100C14—H14B0.9700
N5—C111.323 (4)C15—H15A0.9600
N5—C131.377 (4)C15—H15B0.9600
N6—C111.343 (4)C15—H15C0.9600
N6—C121.371 (4)Cl1—O41A1.348 (7)
N6—C151.466 (5)Cl1—O21B1.389 (6)
C1—C21.504 (5)Cl1—O31B1.394 (7)
C1—H1A0.9700Cl1—O41B1.398 (7)
C1—H1B0.9700Cl1—O21A1.409 (7)
C2—H2A0.9700Cl1—O111.409 (3)
C2—H2B0.9700Cl1—O31A1.445 (7)
C3—C41.508 (6)Cl2—O32A1.383 (7)
C3—H3A0.9700Cl2—O22B1.395 (6)
C3—H3B0.9700Cl2—O42A1.396 (7)
C4—C51.511 (6)Cl2—O12B1.399 (6)
C4—H4A0.9700Cl2—O32B1.413 (6)
C4—H4B0.9700Cl2—O22A1.420 (7)
C5—H5A0.9700Cl2—O42B1.428 (6)
C5—H5B0.9700Cl2—O12A1.428 (7)
C6—C71.499 (5)
N1—Ni1—N285.85 (11)N3—C6—H6A110.1
N1—Ni1—N3176.57 (12)C7—C6—H6A110.1
N1—Ni1—N495.69 (12)N3—C6—H6B110.1
N1—Ni1—N582.30 (11)C7—C6—H6B110.1
N1—Ni1—O1186.83 (10)H6A—C6—H6B108.4
N2—Ni1—N392.83 (12)N4—C7—C6108.9 (3)
N2—Ni1—N4169.98 (12)N4—C7—H7A109.9
N2—Ni1—N595.16 (11)C6—C7—H7A109.9
N2—Ni1—O1184.06 (11)N4—C7—H7B109.9
N3—Ni1—N485.07 (13)C6—C7—H7B109.9
N3—Ni1—N5100.98 (11)H7A—C7—H7B108.3
N3—Ni1—O1189.89 (11)N4—C8—C9111.4 (3)
N4—Ni1—N594.86 (11)N4—C8—H8A109.4
N4—Ni1—O1186.15 (12)C9—C8—H8A109.4
N5—Ni1—O11169.13 (10)N4—C8—H8B109.4
C10—N1—C1110.6 (3)C9—C8—H8B109.4
C10—N1—C14110.2 (3)H8A—C8—H8B108.0
C1—N1—C14109.6 (3)C10—C9—C8115.4 (3)
C10—N1—Ni1112.9 (2)C10—C9—H9A108.4
C1—N1—Ni1102.1 (2)C8—C9—H9A108.4
C14—N1—Ni1111.21 (19)C10—C9—H9B108.4
C2—N2—C3113.8 (3)C8—C9—H9B108.4
C2—N2—Ni1106.6 (2)H9A—C9—H9B107.5
C3—N2—Ni1114.3 (2)N1—C10—C9114.8 (3)
C2—N2—H2107.3N1—C10—H10A108.6
C3—N2—H2107.3C9—C10—H10A108.6
Ni1—N2—H2107.3N1—C10—H10B108.6
C5—N3—C6115.0 (3)C9—C10—H10B108.6
C5—N3—Ni1115.1 (2)H10A—C10—H10B107.5
C6—N3—Ni1105.2 (2)N5—C11—N6111.4 (3)
C5—N3—H3107.0N5—C11—C14123.6 (3)
C6—N3—H3107.0N6—C11—C14125.0 (3)
Ni1—N3—H3107.0C13—C12—N6106.4 (3)
C7—N4—C8113.1 (3)C13—C12—H12126.8
C7—N4—Ni1106.9 (2)N6—C12—H12126.8
C8—N4—Ni1117.1 (2)C12—C13—N5110.2 (3)
C7—N4—H4106.3C12—C13—H13124.9
C8—N4—H4106.3N5—C13—H13124.9
Ni1—N4—H4106.3C11—C14—N1110.4 (3)
C11—N5—C13104.9 (3)C11—C14—H14A109.6
C11—N5—Ni1112.0 (2)N1—C14—H14A109.6
C13—N5—Ni1143.0 (2)C11—C14—H14B109.6
C11—N6—C12107.0 (3)N1—C14—H14B109.6
C11—N6—C15126.8 (3)H14A—C14—H14B108.1
C12—N6—C15126.2 (3)N6—C15—H15A109.5
N1—C1—C2110.4 (3)N6—C15—H15B109.5
N1—C1—H1A109.6H15A—C15—H15B109.5
C2—C1—H1A109.6N6—C15—H15C109.5
N1—C1—H1B109.6H15A—C15—H15C109.5
C2—C1—H1B109.6H15B—C15—H15C109.5
H1A—C1—H1B108.1O21B—Cl1—O31B110.9 (7)
N2—C2—C1108.6 (3)O21B—Cl1—O41B112.1 (7)
N2—C2—H2A110.0O31B—Cl1—O41B109.4 (6)
C1—C2—H2A110.0O41A—Cl1—O21A112.5 (7)
N2—C2—H2B110.0O41A—Cl1—O11116.8 (6)
C1—C2—H2B110.0O21B—Cl1—O11110.5 (5)
H2A—C2—H2B108.4O31B—Cl1—O11109.2 (6)
N2—C3—C4112.2 (3)O41B—Cl1—O11104.6 (6)
N2—C3—H3A109.2O21A—Cl1—O11108.4 (7)
C4—C3—H3A109.2O41A—Cl1—O31A108.2 (7)
N2—C3—H3B109.2O21A—Cl1—O31A107.1 (8)
C4—C3—H3B109.2O11—Cl1—O31A103.0 (6)
H3A—C3—H3B107.9Cl1—O11—Ni1141.68 (18)
C3—C4—C5115.8 (3)O32A—Cl2—O42A112.5 (8)
C3—C4—H4A108.3O22B—Cl2—O12B112.8 (8)
C5—C4—H4A108.3O22B—Cl2—O32B108.4 (6)
C3—C4—H4B108.3O42A—Cl2—O32B109.1 (11)
C5—C4—H4B108.3O12B—Cl2—O32B110.4 (6)
H4A—C4—H4B107.4O32A—Cl2—O22A109.8 (7)
N3—C5—C4111.8 (3)O42A—Cl2—O22A110.7 (7)
N3—C5—H5A109.3O22B—Cl2—O42B110.5 (7)
C4—C5—H5A109.3O12B—Cl2—O42B108.4 (6)
N3—C5—H5B109.3O32B—Cl2—O42B106.3 (6)
C4—C5—H5B109.3O32A—Cl2—O12A110.2 (8)
H5A—C5—H5B107.9O42A—Cl2—O12A107.8 (7)
N3—C6—C7108.0 (3)O22A—Cl2—O12A105.5 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O21B0.912.293.140 (13)155
N4—H4···O12B0.912.153.035 (14)165
N4—H4···O12A0.912.152.997 (15)154
(4) cis-{1,8-bis[(1-methyl-1H-imidazol-2-yl)methyl]-1,4,8,11- tetraazacyclotetradecane}nickel(II) bis(perchlorate) 0.24-hydrate top
Crystal data top
[Ni(C20H36N6)](ClO4)2·0.24H2OF(000) = 2723
Mr = 650.50Dx = 1.546 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4665 reflections
a = 13.7285 (12) Åθ = 2.0–26.0°
b = 19.2330 (18) ŵ = 0.95 mm1
c = 21.171 (2) ÅT = 294 K
V = 5589.9 (9) Å3Prism, light pink
Z = 80.22 × 0.16 × 0.16 mm
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
5489 independent reflections
Radiation source: fine-focus sealed tube3936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.053
ω scans, thick slicesθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1616
Tmin = 0.98, Tmax = 0.99k = 2323
40257 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.064Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.151H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.067P)2 + 4.2236P]
where P = (Fo2 + 2Fc2)/3
5489 reflections(Δ/σ)max = 0.001
479 parametersΔρmax = 0.49 e Å3
934 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Ni(C20H36N6)](ClO4)2·0.24H2OV = 5589.9 (9) Å3
Mr = 650.50Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.7285 (12) ŵ = 0.95 mm1
b = 19.2330 (18) ÅT = 294 K
c = 21.171 (2) Å0.22 × 0.16 × 0.16 mm
Data collection top
Oxford Gemini CCD S Ultra
diffractometer
5489 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
3936 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.053
40257 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.064934 restraints
wR(F2) = 0.151H-atom parameters constrained
S = 1.08Δρmax = 0.49 e Å3
5489 reflectionsΔρmin = 0.27 e Å3
479 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.80637 (4)0.39709 (3)0.63909 (3)0.0441 (2)
N10.7798 (3)0.50674 (19)0.64544 (18)0.0528 (9)
N20.6580 (3)0.3891 (2)0.6618 (2)0.0608 (10)
H2C0.62430.38460.62490.073*
N30.8206 (3)0.2869 (2)0.6274 (2)0.0677 (12)
N40.7871 (3)0.3970 (2)0.54068 (19)0.0665 (11)
H4C0.72190.39700.53290.080*
N50.9556 (3)0.3930 (2)0.62644 (18)0.0534 (9)
N60.8348 (3)0.4100 (2)0.73468 (18)0.0513 (9)
N70.8633 (3)0.4843 (3)0.8104 (2)0.0768 (13)
N81.0857 (3)0.3270 (3)0.6268 (2)0.0721 (12)
C10.6734 (4)0.5128 (3)0.6508 (3)0.0674 (14)
H1A0.64480.51120.60890.081*
H1B0.65720.55740.66940.081*
C20.6314 (4)0.4567 (3)0.6897 (3)0.0669 (14)
H2A0.65620.45960.73250.080*
H2B0.56100.46130.69120.080*
C30.6306 (4)0.3315 (3)0.7025 (3)0.0833 (17)
H3A0.56140.33410.71130.100*
H3B0.66510.33560.74230.100*
C40.6535 (5)0.2613 (3)0.6733 (4)0.098 (2)
H4A0.62000.22560.69720.118*
H4B0.62770.26050.63060.118*
C50.7599 (5)0.2436 (3)0.6708 (3)0.0899 (18)
H5A0.78640.24760.71310.108*
H5B0.76620.19530.65810.108*
C60.7901 (5)0.2735 (3)0.5613 (3)0.0868 (18)
H6A0.71960.27140.55910.104*
H6B0.81560.22900.54760.104*
C70.8264 (5)0.3296 (3)0.5186 (3)0.0813 (16)
H7A0.89700.33060.51920.098*
H7B0.80520.32070.47570.098*
C80.8300 (5)0.4564 (3)0.5065 (3)0.0840 (17)
H8A0.82020.45000.46150.101*
H8B0.89960.45770.51430.101*
C90.7853 (5)0.5247 (3)0.5266 (3)0.0876 (18)
H9A0.80250.55990.49570.105*
H9B0.71500.51990.52620.105*
C100.8164 (4)0.5494 (3)0.5910 (3)0.0742 (15)
H10A0.88700.55000.59250.089*
H10B0.79410.59690.59650.089*
C110.9880 (4)0.3284 (3)0.6289 (2)0.0598 (12)
C121.1158 (4)0.3940 (4)0.6238 (3)0.0806 (16)
H121.18000.40930.62190.097*
C131.0365 (4)0.4341 (3)0.6240 (2)0.0631 (13)
H131.03630.48250.62280.076*
C140.9235 (4)0.2680 (3)0.6376 (3)0.0777 (16)
H14A0.93150.25000.68010.093*
H14B0.94190.23170.60810.093*
C151.1463 (5)0.2649 (4)0.6279 (4)0.114 (3)
H15A1.17960.26200.66770.171*
H15B1.19320.26720.59430.171*
H15C1.10620.22450.62240.171*
C160.8408 (3)0.4756 (3)0.7496 (2)0.0560 (11)
C170.8728 (4)0.4186 (4)0.8354 (3)0.0847 (17)
H170.88860.40780.87690.102*
C180.8554 (4)0.3738 (3)0.7896 (3)0.0715 (14)
H180.85670.32570.79360.086*
C190.8282 (4)0.5325 (3)0.7036 (3)0.0668 (13)
H19A0.89130.55180.69290.080*
H19B0.78920.56910.72230.080*
C200.8791 (5)0.5500 (4)0.8440 (3)0.115 (3)
H20A0.91150.58230.81650.173*
H20B0.91870.54180.88060.173*
H20C0.81750.56890.85680.173*
Cl10.40599 (10)0.14067 (7)0.68572 (7)0.0686 (4)
O110.4649 (4)0.1256 (3)0.6332 (2)0.139 (2)
O21A0.3626 (14)0.2038 (6)0.6724 (7)0.115 (4)0.400 (10)
O31A0.4666 (10)0.1456 (9)0.7385 (6)0.101 (4)0.400 (10)
O41A0.3449 (11)0.0786 (7)0.6843 (8)0.114 (4)0.400 (10)
O21B0.4169 (14)0.2176 (5)0.6881 (9)0.108 (4)0.286 (7)
O31B0.4480 (15)0.1156 (10)0.7416 (7)0.110 (4)0.286 (7)
O41B0.3105 (8)0.1314 (12)0.6883 (10)0.119 (4)0.286 (7)
O21C0.4622 (13)0.1784 (11)0.7304 (8)0.107 (4)0.314 (10)
O31C0.3848 (14)0.0738 (6)0.7120 (9)0.112 (4)0.314 (10)
O41C0.3196 (10)0.1751 (10)0.6747 (10)0.113 (4)0.314 (10)
Cl20.50416 (12)0.36811 (9)0.50315 (7)0.0799 (4)
O120.5374 (5)0.4218 (3)0.5403 (3)0.157 (2)
O22A0.4123 (10)0.3437 (8)0.5351 (7)0.119 (4)0.405 (8)
O32A0.5604 (11)0.3073 (7)0.4996 (8)0.142 (4)0.405 (8)
O42A0.4708 (12)0.3828 (9)0.4423 (5)0.086 (3)0.405 (8)
O22B0.4833 (13)0.3154 (7)0.5418 (6)0.142 (4)0.405 (8)
O32B0.5943 (8)0.3546 (7)0.4714 (6)0.119 (4)0.405 (8)
O42B0.4360 (9)0.3884 (9)0.4608 (6)0.091 (4)0.405 (8)
O22C0.526 (3)0.3023 (8)0.5252 (12)0.140 (5)0.190 (8)
O32C0.535 (2)0.3743 (12)0.4401 (7)0.097 (4)0.190 (8)
O42C0.3995 (10)0.3773 (15)0.5015 (14)0.104 (4)0.190 (8)
O1W0.5630 (18)0.1815 (13)0.5318 (12)0.147 (13)0.248 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0426 (3)0.0390 (3)0.0507 (3)0.0001 (2)0.0019 (3)0.0000 (2)
N10.053 (2)0.046 (2)0.060 (2)0.0075 (17)0.0023 (18)0.0018 (17)
N20.048 (2)0.067 (3)0.068 (3)0.002 (2)0.009 (2)0.008 (2)
N30.068 (3)0.040 (2)0.096 (3)0.0013 (19)0.012 (2)0.007 (2)
N40.071 (3)0.075 (3)0.053 (2)0.001 (2)0.005 (2)0.008 (2)
N50.045 (2)0.055 (2)0.060 (2)0.0025 (18)0.0018 (18)0.0039 (19)
N60.040 (2)0.063 (2)0.051 (2)0.0014 (17)0.0034 (17)0.0063 (18)
N70.045 (2)0.123 (4)0.062 (3)0.002 (3)0.004 (2)0.020 (3)
N80.058 (3)0.092 (3)0.067 (3)0.019 (2)0.015 (2)0.020 (2)
C10.064 (3)0.063 (3)0.075 (3)0.022 (3)0.009 (3)0.002 (3)
C20.035 (3)0.086 (4)0.079 (4)0.011 (2)0.000 (2)0.001 (3)
C30.051 (3)0.095 (4)0.105 (5)0.016 (3)0.006 (3)0.025 (3)
C40.085 (4)0.073 (4)0.137 (6)0.035 (3)0.008 (4)0.023 (4)
C50.094 (4)0.042 (3)0.133 (5)0.019 (3)0.016 (4)0.013 (3)
C60.095 (4)0.060 (3)0.105 (4)0.001 (3)0.018 (3)0.038 (3)
C70.087 (4)0.089 (4)0.068 (3)0.007 (3)0.002 (3)0.034 (3)
C80.101 (5)0.099 (4)0.052 (3)0.003 (4)0.003 (3)0.011 (3)
C90.116 (5)0.076 (4)0.071 (3)0.010 (3)0.007 (3)0.034 (3)
C100.092 (4)0.045 (3)0.086 (4)0.002 (3)0.007 (3)0.016 (3)
C110.055 (3)0.057 (3)0.068 (3)0.011 (2)0.004 (2)0.019 (2)
C120.052 (3)0.113 (4)0.076 (4)0.007 (3)0.004 (3)0.006 (4)
C130.054 (3)0.072 (3)0.063 (3)0.005 (3)0.004 (2)0.000 (3)
C140.074 (3)0.046 (3)0.114 (5)0.014 (2)0.012 (3)0.007 (3)
C150.079 (4)0.124 (5)0.139 (6)0.052 (4)0.036 (4)0.053 (5)
C160.033 (2)0.078 (3)0.057 (3)0.005 (2)0.004 (2)0.009 (2)
C170.043 (3)0.156 (5)0.055 (3)0.004 (4)0.001 (3)0.012 (4)
C180.039 (3)0.103 (4)0.073 (4)0.001 (3)0.004 (3)0.024 (3)
C190.065 (3)0.058 (3)0.078 (3)0.001 (2)0.002 (3)0.013 (2)
C200.089 (5)0.159 (6)0.097 (5)0.010 (5)0.018 (4)0.065 (5)
Cl10.0573 (8)0.0659 (8)0.0826 (9)0.0019 (6)0.0055 (7)0.0019 (7)
O110.147 (5)0.160 (5)0.111 (4)0.027 (4)0.040 (3)0.021 (3)
O21A0.109 (9)0.067 (5)0.169 (9)0.011 (5)0.040 (7)0.010 (6)
O31A0.110 (7)0.095 (9)0.099 (6)0.004 (7)0.019 (5)0.001 (7)
O41A0.110 (8)0.082 (5)0.150 (10)0.021 (5)0.033 (6)0.023 (7)
O21B0.089 (9)0.064 (4)0.169 (10)0.000 (6)0.010 (8)0.007 (6)
O31B0.105 (9)0.117 (9)0.107 (7)0.012 (8)0.018 (6)0.027 (7)
O41B0.068 (4)0.107 (7)0.183 (10)0.010 (5)0.009 (5)0.025 (9)
O21C0.099 (8)0.098 (8)0.124 (8)0.002 (7)0.022 (6)0.023 (7)
O31C0.107 (9)0.089 (5)0.140 (10)0.014 (5)0.019 (7)0.035 (6)
O41C0.080 (6)0.069 (7)0.189 (10)0.015 (5)0.030 (7)0.020 (8)
Cl20.0833 (10)0.1003 (11)0.0561 (8)0.0090 (9)0.0121 (7)0.0091 (7)
O120.168 (5)0.175 (5)0.128 (4)0.045 (4)0.034 (4)0.053 (4)
O22A0.116 (6)0.148 (10)0.094 (7)0.011 (6)0.019 (6)0.002 (6)
O32A0.159 (9)0.145 (7)0.123 (9)0.069 (6)0.015 (6)0.031 (6)
O42A0.085 (7)0.108 (7)0.066 (5)0.001 (7)0.017 (5)0.000 (5)
O22B0.149 (9)0.146 (7)0.131 (8)0.015 (7)0.017 (6)0.059 (6)
O32B0.098 (6)0.164 (9)0.095 (8)0.048 (7)0.009 (5)0.024 (6)
O42B0.077 (7)0.105 (7)0.093 (7)0.006 (6)0.018 (5)0.006 (7)
O22C0.146 (11)0.139 (7)0.135 (11)0.031 (8)0.007 (8)0.054 (7)
O32C0.097 (8)0.119 (10)0.074 (5)0.020 (10)0.004 (6)0.004 (6)
O42C0.082 (5)0.134 (11)0.096 (10)0.004 (7)0.003 (6)0.003 (9)
O1W0.13 (2)0.15 (2)0.17 (2)0.002 (16)0.001 (16)0.023 (17)
Geometric parameters (Å, º) top
Ni1—N52.068 (4)C10—H10B0.9700
Ni1—N62.076 (4)C11—C141.471 (7)
Ni1—N22.099 (4)C12—C131.334 (8)
Ni1—N42.100 (4)C12—H120.9300
Ni1—N32.143 (4)C13—H130.9300
Ni1—N12.144 (4)C14—H14A0.9700
N1—C11.469 (6)C14—H14B0.9700
N1—C191.484 (6)C15—H15A0.9600
N1—C101.502 (6)C15—H15B0.9600
N2—C31.454 (7)C15—H15C0.9600
N2—C21.473 (6)C16—C191.475 (7)
N2—H2C0.9100C17—C181.318 (9)
N3—C141.475 (7)C17—H170.9300
N3—C61.483 (7)C18—H180.9300
N3—C51.493 (7)C19—H19A0.9700
N4—C81.476 (7)C19—H19B0.9700
N4—C71.479 (7)C20—H20A0.9600
N4—H4C0.9100C20—H20B0.9600
N5—C111.320 (6)C20—H20C0.9600
N5—C131.364 (6)Cl1—O41B1.324 (11)
N6—C161.303 (6)Cl1—O41C1.378 (10)
N6—C181.384 (6)Cl1—O21A1.382 (9)
N7—C161.334 (6)Cl1—O31A1.396 (9)
N7—C171.377 (8)Cl1—O31B1.402 (11)
N7—C201.466 (8)Cl1—O111.405 (5)
N8—C111.342 (6)Cl1—O21C1.421 (10)
N8—C121.356 (7)Cl1—O31C1.430 (10)
N8—C151.456 (7)Cl1—O41A1.459 (9)
C1—C21.477 (7)Cl1—O21B1.487 (10)
C1—H1A0.9700O21A—O41C0.809 (18)
C1—H1B0.9700O21A—O21B0.859 (19)
C2—H2A0.9700O21A—O41B1.60 (2)
C2—H2B0.9700O31A—O31B0.63 (2)
C3—C41.518 (9)O31A—O21C0.66 (2)
C3—H3A0.9700O41A—O31C0.808 (17)
C3—H3B0.9700O41A—O41B1.12 (2)
C4—C51.501 (9)O21B—O21C1.33 (2)
C4—H4A0.9700O21B—O41C1.59 (2)
C4—H4B0.9700O31B—O21C1.25 (2)
C5—H5A0.9700O31B—O31C1.34 (2)
C5—H5B0.9700O41B—O41C0.90 (2)
C6—C71.492 (9)O41B—O31C1.59 (2)
C6—H6A0.9700Cl2—O22B1.334 (9)
C6—H6B0.9700Cl2—O42B1.353 (10)
C7—H7A0.9700Cl2—O121.376 (5)
C7—H7B0.9700Cl2—O22C1.381 (13)
C8—C91.511 (8)Cl2—O42A1.396 (9)
C8—H8A0.9700Cl2—O32A1.403 (9)
C8—H8B0.9700Cl2—O32C1.404 (12)
C9—C101.506 (8)Cl2—O32B1.432 (9)
C9—H9A0.9700Cl2—O42C1.448 (13)
C9—H9B0.9700Cl2—O22A1.506 (9)
C10—H10A0.9700
N5—Ni1—N686.82 (15)C9—C8—H8A109.2
N5—Ni1—N2171.38 (16)N4—C8—H8B109.2
N6—Ni1—N288.18 (16)C9—C8—H8B109.2
N5—Ni1—N489.78 (16)H8A—C8—H8B107.9
N6—Ni1—N4172.27 (16)C10—C9—C8114.5 (5)
N2—Ni1—N496.01 (18)C10—C9—H9A108.6
N5—Ni1—N381.78 (16)C8—C9—H9A108.6
N6—Ni1—N3102.33 (17)C10—C9—H9B108.6
N2—Ni1—N392.44 (16)C8—C9—H9B108.6
N4—Ni1—N384.01 (17)H9A—C9—H9B107.6
N5—Ni1—N1102.38 (15)N1—C10—C9115.3 (4)
N6—Ni1—N181.57 (15)N1—C10—H10A108.4
N2—Ni1—N183.80 (15)C9—C10—H10A108.4
N4—Ni1—N192.40 (15)N1—C10—H10B108.4
N3—Ni1—N1174.53 (16)C9—C10—H10B108.4
C1—N1—C19110.8 (4)H10A—C10—H10B107.5
C1—N1—C10110.4 (4)N5—C11—N8110.7 (5)
C19—N1—C10107.7 (4)N5—C11—C14123.0 (4)
C1—N1—Ni1104.6 (3)N8—C11—C14126.1 (5)
C19—N1—Ni1107.7 (3)C13—C12—N8107.5 (5)
C10—N1—Ni1115.6 (3)C13—C12—H12126.2
C3—N2—C2111.7 (5)N8—C12—H12126.2
C3—N2—Ni1116.2 (3)C12—C13—N5109.2 (5)
C2—N2—Ni1105.6 (3)C12—C13—H13125.4
C3—N2—H2C107.7N5—C13—H13125.4
C2—N2—H2C107.7C11—C14—N3111.3 (4)
Ni1—N2—H2C107.7C11—C14—H14A109.4
C14—N3—C6111.5 (5)N3—C14—H14A109.4
C14—N3—C5107.9 (4)C11—C14—H14B109.4
C6—N3—C5109.0 (4)N3—C14—H14B109.4
C14—N3—Ni1108.3 (3)H14A—C14—H14B108.0
C6—N3—Ni1104.7 (3)N8—C15—H15A109.5
C5—N3—Ni1115.5 (4)N8—C15—H15B109.5
C8—N4—C7112.2 (5)H15A—C15—H15B109.5
C8—N4—Ni1115.8 (3)N8—C15—H15C109.5
C7—N4—Ni1105.6 (3)H15A—C15—H15C109.5
C8—N4—H4C107.6H15B—C15—H15C109.5
C7—N4—H4C107.6N6—C16—N7111.7 (5)
Ni1—N4—H4C107.6N6—C16—C19123.4 (4)
C11—N5—C13105.9 (4)N7—C16—C19124.8 (5)
C11—N5—Ni1111.4 (3)C18—C17—N7107.5 (5)
C13—N5—Ni1142.1 (4)C18—C17—H17126.3
C16—N6—C18105.7 (5)N7—C17—H17126.3
C16—N6—Ni1111.3 (3)C17—C18—N6109.1 (6)
C18—N6—Ni1142.9 (4)C17—C18—H18125.5
C16—N7—C17106.1 (5)N6—C18—H18125.5
C16—N7—C20127.7 (6)C16—C19—N1110.7 (4)
C17—N7—C20126.2 (6)C16—C19—H19A109.5
C11—N8—C12106.7 (5)N1—C19—H19A109.5
C11—N8—C15126.0 (6)C16—C19—H19B109.5
C12—N8—C15127.3 (6)N1—C19—H19B109.5
N1—C1—C2111.9 (4)H19A—C19—H19B108.1
N1—C1—H1A109.2N7—C20—H20A109.5
C2—C1—H1A109.2N7—C20—H20B109.5
N1—C1—H1B109.2H20A—C20—H20B109.5
C2—C1—H1B109.2N7—C20—H20C109.5
H1A—C1—H1B107.9H20A—C20—H20C109.5
N2—C2—C1108.8 (4)H20B—C20—H20C109.5
N2—C2—H2A109.9O21A—Cl1—O31A111.2 (7)
C1—C2—H2A109.9O41B—Cl1—O31B109.1 (11)
N2—C2—H2B109.9O41B—Cl1—O11125.1 (10)
C1—C2—H2B109.9O41C—Cl1—O11117.4 (9)
H2A—C2—H2B108.3O21A—Cl1—O11105.5 (7)
N2—C3—C4112.5 (5)O31A—Cl1—O11107.7 (7)
N2—C3—H3A109.1O31B—Cl1—O11111.1 (9)
C4—C3—H3A109.1O41C—Cl1—O21C109.6 (10)
N2—C3—H3B109.1O11—Cl1—O21C108.6 (8)
C4—C3—H3B109.1O41C—Cl1—O31C108.8 (10)
H3A—C3—H3B107.8O11—Cl1—O31C103.8 (7)
C5—C4—C3114.7 (5)O21C—Cl1—O31C108.1 (8)
C5—C4—H4A108.6O21A—Cl1—O41A117.8 (8)
C3—C4—H4A108.6O31A—Cl1—O41A114.5 (7)
C5—C4—H4B108.6O11—Cl1—O41A98.4 (7)
C3—C4—H4B108.6O41B—Cl1—O21B103.5 (10)
H4A—C4—H4B107.6O31B—Cl1—O21B105.8 (8)
N3—C5—C4116.0 (5)O11—Cl1—O21B100.0 (7)
N3—C5—H5A108.3O22B—Cl2—O42B118.5 (9)
C4—C5—H5A108.3O22B—Cl2—O12106.9 (7)
N3—C5—H5B108.3O42B—Cl2—O12113.0 (8)
C4—C5—H5B108.3O12—Cl2—O22C115.1 (11)
H5A—C5—H5B107.4O12—Cl2—O42A119.0 (8)
N3—C6—C7110.6 (4)O12—Cl2—O32A118.2 (7)
N3—C6—H6A109.5O42A—Cl2—O32A107.5 (8)
C7—C6—H6A109.5O12—Cl2—O32C112.4 (9)
N3—C6—H6B109.5O22C—Cl2—O32C109.7 (11)
C7—C6—H6B109.5O22B—Cl2—O32B109.6 (8)
H6A—C6—H6B108.1O42B—Cl2—O32B109.8 (7)
N4—C7—C6108.7 (5)O12—Cl2—O32B96.8 (6)
N4—C7—H7A110.0O12—Cl2—O42C104.5 (10)
C6—C7—H7A110.0O22C—Cl2—O42C109.3 (15)
N4—C7—H7B110.0O32C—Cl2—O42C105.3 (13)
C6—C7—H7B110.0O12—Cl2—O22A104.7 (5)
H7A—C7—H7B108.3O42A—Cl2—O22A101.7 (8)
N4—C8—C9111.9 (5)O32A—Cl2—O22A103.0 (7)
N4—C8—H8A109.2
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O120.912.273.123 (8)156

Experimental details

(1)(2)(3)(4)
Crystal data
Chemical formula[Ni(C15H30N6)(H2O)](ClO4)2·H2O[Ni(C15H30N6)(H2O)](ClO4)2[Ni(ClO4)(C15H30N6)]ClO4[Ni(C20H36N6)](ClO4)2·0.24H2O
Mr588.09570.08552.06650.50
Crystal system, space groupMonoclinic, P21/cOrthorhombic, P212121Monoclinic, P21/cOrthorhombic, Pbca
Temperature (K)294294294294
a, b, c (Å)14.596 (3), 10.995 (2), 16.192 (3)9.428 (5), 16.047 (5), 16.060 (5)16.665 (5), 9.696 (5), 13.936 (5)13.7285 (12), 19.2330 (18), 21.171 (2)
α, β, γ (°)90, 107.96 (3), 9090, 90, 9090, 92.849 (5), 9090, 90, 90
V3)2471.9 (9)2429.7 (17)2249.0 (16)5589.9 (9)
Z4448
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.061.081.160.95
Crystal size (mm)0.18 × 0.16 × 0.120.32 × 0.30 × 0.200.12 × 0.12 × 0.100.22 × 0.16 × 0.16
Data collection
DiffractometerOxford Gemini CCD S Ultra
diffractometer
Oxford Gemini CCD S Ultra
diffractometer
Oxford Gemini CCD S Ultra
diffractometer
Oxford Gemini CCD S Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.98, 0.990.98, 0.990.98, 0.990.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
8284, 4852, 2770 8056, 4312, 3342 23451, 4403, 2878 40257, 5489, 3936
Rint0.0770.0490.0510.053
(sin θ/λ)max1)0.6170.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.136, 1.23 0.059, 0.153, 1.07 0.037, 0.092, 0.90 0.064, 0.151, 1.08
No. of reflections4852431244035489
No. of parameters362362356479
No. of restraints452720732934
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.910.58, 0.370.92, 0.260.49, 0.27
Absolute structure?Flack (1983), 1601 Friedel pairs??
Absolute structure parameter?0.14 (3)??

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (1) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O32Ai0.912.373.198 (13)151.0
N3—H3···O120.912.173.053 (8)162.4
O1W—H1WA···O2W0.851.992.790 (7)155.7
O1W—H1WB···O22B0.852.193.041 (15)176.1
O1W—H1WB···O22A0.852.383.163 (15)153.4
O2W—H2WA···O11ii0.852.183.034 (11)179.0
O2W—H2WB···O21B0.852.263.107 (19)174.9
O2W—H2WB···O21A0.852.012.855 (18)174.0
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (2) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O110.912.323.140 (9)149.7
N4—H4···O42A0.912.163.068 (15)173.4
N4—H4···O42B0.912.243.12 (2)161.4
O1W—H1WA···O12i0.846 (12)2.29 (3)3.098 (10)161 (7)
O1W—H1WB···O31B0.846 (12)2.04 (4)2.86 (2)163 (9)
O1W—H1WB···O31A0.846 (12)2.06 (7)2.740 (13)137 (8)
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) for (3) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O21B0.912.293.140 (13)154.9
N4—H4···O12B0.912.153.035 (14)164.6
N4—H4···O12A0.912.152.997 (15)154.1
Hydrogen-bond geometry (Å, º) for (4) top
D—H···AD—HH···AD···AD—H···A
N2—H2C···O120.912.273.123 (8)156
Selected geometric parameters (Å, °) for (1), (2), (3) and (4) top
(1)(2)(3)(4)
Ni1—N12.120 (5)2.144 (6)2.124 (3)2.144 (3)
Ni1—N22.071 (5)2.085 (6)2.059 (3)2.098 (3)
Ni1—N32.068 (5)2.094 (6)2.068 (3)2.144 (3)
Ni1—N42.073 (5)2.088 (6)2.046 (3)2.099 (3)
Ni1—N52.083 (5)2.051 (6)2.077 (3)2.068 (3)
Ni1—X2.268 (4)2.222 (6)2.359 (3)2.073 (3)
N1—Ni1—N285.7 (2)92.7 (2)85.85 (11)83.84 (12)
N1—Ni1—N3178.4 (2)173.9 (2)176.57 (12)174.60 (12)
N1—Ni1—N495.0 (2)84.6 (2)95.69 (12)92.39 (12)
N1—Ni1—N581.2 (2)81.9 (2)82.30 (11)102.34 (11)
N1—Ni1—X90.92 (18)92.6 (2)86.83 (10)81.60 (11)
N2—Ni1—N394.4 (2)83.5 (2)92.83 (12)92.52 (12)
N2—Ni1—N4175.0 (2)97.6 (2)169.98 (12)96.10 (13)
N2—Ni1—N592.4 (2)169.5 (3)95.16 (11)171.31 (12)
N2—Ni1—X84.89 (18)85.9 (2)84.06 (11)88.20 (12)
N3—Ni1—N484.8 (2)91.2 (2)85.07 (13)84.01 (13)
N3—Ni1—N5100.3 (2)102.6 (2)100.98 (11)81.72 (12)
N3—Ni1—X87.54 (18)91.8 (2)89.89 (11)102.32 (13)
N4—Ni1—N592.5 (2)90.9 (3)94.86 (11)89.80 (12)
N4—Ni1—X90.17 (19)175.6 (2)86.15 (12)172.22 (13)
N5—Ni1—X171.89 (19)85.3 (2)169.13 (10)86.69 (11)
(*) Atom X is O1W for (1) and (2), O11 for (3) and N6 for (4).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds