Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compounds, (3R,5S,5'R,8R,9S,10S,13S,14S)-10,13-dimethyl-5'-(2-methyl­prop­yl)tetra­deca­hydro-6'H-spiro­[cyclo­penta­[a]phenanthrene-3,2'-[1,4]oxazinane]-6',17(2H)-dione, C26H41NO3, (I), and methyl (2R)-2-[(3R,5S,8R,9S,10S,13S,14S)-10,13-dimethyl-2',17-dioxohexa­deca­hydro-3'H-spiro­[cyclo­penta­[a]phenanthrene-3,5'-[1,3]oxazolidin-3'-yl]]-4-methyl­penta­noate, C28H43NO5, (II), possess the typical steroid shape (A-D rings), but they differ in their extra E ring. The aza­lactone E ring in (I) shows a half-chair conformation, while the carbamate E ring of (II) is planar. The orientation of the E-ring substituent is clearly established and allows a rationalization of the biological results obtained with such androsterone derivatives.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112021099/fa3273sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112021099/fa3273Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112021099/fa3273IIsup3.hkl
Contains datablock II

CCDC references: 889383; 889384

Comment top

17β-Hydroxysteroid dehydrogenase type 3 (17β-HSD3) is an enzyme that catalyses the reduction of 4-androstene-3,17-dione into androgen testosterone (Poirier, 2010; Mohler et al., 2007; Maltais et al., 2011). This latter steroid hormone, as well as its natural metabolite dehydrotestosterone, is known to stimulate the proliferation of prostate cancer cells; the Scheme shows the biosynthesis of the androgenic hormone testosterone and a representation of azalactones (I) and (III) and carbamates (II) and (IV) tested as inhibitors of 17β-HSD3 (Inh = inhibition) (Poirier, 2008). Since 17β-HSD3 contributes to the production of androgens in men, inhibiting this enzyme is an interesting strategy to block androgen biosynthesis and to treat prostate cancer. Androsterone (ADT) derivatives substituted at position C-3 [C3?] were previously reported as inhibitors of 17β-HSD3 and it was established that a hydrophobic group is required to obtain good inhibition of 17β-HSD3 (Maltais et al., 2002), a β-oriented group producing a better inhibition than the α-oriented group (Tchedam-Ngatcha et al., 2005).

In our synthetic search for inhibitors of 17β-HSD3, we recently focused on the preparation of new ADT derivatives having an extra azalactone or carbamate E ring. For a better understanding of the structure–activity relationship (SAR) of these new inhibitors, especially the side-chain orientation, we analyzed the structures of the representative compounds (I) and (II) (see Scheme and Fig. 1).

The two compounds show fixed conformations of their extended side chains; no disorder is apparent in the structure analyses. Packing diagrams with van der Waals radii give the impression that these structures are not very tightly packed, in agreement with the low densities [1.162 Mg m-3 in (I) and 1.200 Mg m-3 in (II)]. The packing appears to be efficient enough, however, to be linked to the appearance of just one conformation of the side chain in each case.

The correct enantiomers, already known from the starting materials, were checked against the absolute structure parameters (Flack, 1983). For compound (I), the absolute structure parameter was found to be 0.12 (18) for 1747 Friedel pairs (83% Friedel coverage). For compound (II), it was 0.06 (18) for 2090 (100%) Friedel pairs. These two values are better than might have been expected considering that the highest anomalous contribution comes from oxygen atoms (Flack & Bernardinelli, 2008). A Bayesian statistics analysis on Bijvoet differences was also performed using the program PLATON (Spek, 2009). The Hooft parameters obtained (Hooft et al., 2008), -0.04 (7) and -0.05 (6) for compounds (I) and (II), respectively, are also in very good agreement with the known molecular absolute configurations, and were perhaps influenced positively by the use of copper radiation. Probability levels of having a false attribution, P3(false), are essentially zero for both compounds.

The steroid six-membered A, B and C rings appear as the well known fused-ring system, all in chair conformation, while the five-membered D ring is in a slightly twisted envelope conformation in both azalactone (I) and carbamate (II) (Yan et al., 2009) (Fig. 2). The heterocyclic ring of (I) is a half-chair perpendicular to the steroid backbone, while the heterocyclic ring of carbamate (II) is almost planar [maximum deviation?] and is perpendicular to the steroidal plane (Fig. 3). These extra heterocyclic E rings provide a restricted orientation to the isobutyl group in the azalactones (I) and (III) (see Scheme). In carbamates (II) and (IV), the methyl pentanoate group has a higher degree of liberty due to the free rotation around the exocyclic bond to the BN atom. In azalactone (I), the hydrophobic side chain has a distal orientation with respect to the longitudinal axis of the four-ring steroid system (to the right in Fig. 4a). Consequently, the isobutyl group of the other isomer, the azalactone (III), would be oriented to the left in a similar drawing, or in other words in a proximal disposition to the centerline of the four-ring system. Since the present compound (I) is a less potent inhibitor than its stereoisomer (III), it appears that the side chain must be proximal (on the left side in Fig. 4a) for better enzyme inhibition. The isobutyl group would thus point toward a hypothetical hydrophobic pocket of 17β-HSD3, which was previously deduced from SAR studies (Tchedam-Ngatcha et al., 2005; Maltais et al., 2011) but not confirmed because this membrane enzyme was never crystallized. In the case of carbamates (II) (Fig. 4b) and (IV), the inhibitory activity is the same (55 and 58% of inhibition at 0.1 µM) for both compounds due to the free rotation of the methyl pentanoate group, which promotes interaction with a hydrophobic pocket of the enzyme.

Related literature top

For related literature, see: Flack (1983); Flack & Bernardinelli (2008); Hooft et al. (2008); Maltais et al. (2002, 2011); Mohler et al. (2007); Poirier (2008, 2010); Rouillard et al. (2008); Spek (2009); Tchedam-Ngatcha, Luu-The, Labrie & Poirier (2005); Yan et al. (2009).

Experimental top

Compounds (I) and (III) were synthesized by modification of an approach developed in our laboratory (Rouillard et al., 2008). Briefly, aminolysis of the oxirane at C-3 of androsterone with L and D-isoleucine methyl esters provided the corresponding amino alcohols, which were treated with sodium methoxide to afford azalactones (I) and (III). Compounds (II) and (IV) were prepared according to the method of Maltais et al. (2002) by treatment of each amino alcohol with triphosgene. X-ray-quality crystals of (I) and (II) were obtained by slow diffusion of hexane into a methylene chloride solution of the compound (hexane–methylene chloride 1:1 v/v) followed by slow evaporation.

Refinement top

H atoms were treated as riding, with C—H = 1.00 (methyl), 0.99 (methylene) and 0.98 Å (remainding H atoms), and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) otherwise. The N-bound H atom of (I) was located by difference Fourier synthesis; its coordinates were refined and its Uiso(H) value was constrained to 1.2Ueq(N).

Computing details top

Data collection: APEX2 [or SMART?] (Bruker, 2011) for (I); APEX2 (Bruker, 2011) for (II). For both compounds, cell refinement: SAINT (Bruker, 2011); data reduction: XPREP (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: UdMX (Maris, 2004).

Figures top
[Figure 1] Fig. 1. The molecular structures of (a) azalactone (I) and (b) carbamate (II) with non-H atoms represented by their 50% probability ellipsoids.
[Figure 2] Fig. 2. The structures of (a) (I) and (b) (II), showing the conformations of the steroid A, B, C and D rings.
[Figure 3] Fig. 3. The E-ring conformations in (a) (I) and (b) (II).
[Figure 4] Fig. 4. The E-ring substituent conformation in (a) azalactone (I) and (b) carbamate (II). The isobutyl group of (I) is oriented away from the longitudinal axis of the steroid ring system, while the methyl pentanoate group of (II) has free rotation.
(I) (3R,5S,5'R,8R,9S,10S,13S, 14S)-10,13-dimethyl-5'-(2-methylpropyl)tetradecahydro-6'H- spiro[cyclopenta[a]phenanthrene-3,2'-[1,4]oxazinane]-6',17(2H)- dione top
Crystal data top
C26H41NO3F(000) = 456
Mr = 415.60Dx = 1.162 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ybCell parameters from 9878 reflections
a = 13.07929 (17) Åθ = 2.8–72.3°
b = 5.82873 (8) ŵ = 0.58 mm1
c = 16.3140 (2) ÅT = 150 K
β = 107.3095 (6)°Plate, colorless
V = 1187.37 (3) Å30.25 × 0.11 × 0.05 mm
Z = 2
Data collection top
Bruker SMART 6000
diffractometer
4334 independent reflections
Radiation source: Rotating Anode4159 reflections with I > 2σ(I)
Helios optics monochromatorRint = 0.038
Detector resolution: 5.5 pixels mm-1θmax = 72.5°, θmin = 2.8°
ω scansh = 1616
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 67
Tmin = 0.810, Tmax = 0.971l = 2020
36176 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.040 w = 1/[σ2(Fo2) + (0.0735P)2 + 0.0832P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.107(Δ/σ)max = 0.001
S = 1.07Δρmax = 0.18 e Å3
4334 reflectionsΔρmin = 0.22 e Å3
279 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraintExtinction coefficient: 0.0046 (6)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1733 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.12 (18)
Crystal data top
C26H41NO3V = 1187.37 (3) Å3
Mr = 415.60Z = 2
Monoclinic, P21Cu Kα radiation
a = 13.07929 (17) ŵ = 0.58 mm1
b = 5.82873 (8) ÅT = 150 K
c = 16.3140 (2) Å0.25 × 0.11 × 0.05 mm
β = 107.3095 (6)°
Data collection top
Bruker SMART 6000
diffractometer
4334 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4159 reflections with I > 2σ(I)
Tmin = 0.810, Tmax = 0.971Rint = 0.038
36176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.107Δρmax = 0.18 e Å3
S = 1.07Δρmin = 0.22 e Å3
4334 reflectionsAbsolute structure: Flack (1983), 1733 Friedel pairs
279 parametersAbsolute structure parameter: 0.12 (18)
1 restraint
Special details top

Experimental. X-ray crystallographic data for II were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker Platform diffractometer, equipped with a Bruker SMART 4 K Charged-Coupled Device (CCD) Area Detector using the program APEX2 and a Nonius FR591 rotating anode equiped with a Helios optics The crystal-to-detector distance was 5.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over four different parts of the reciprocal space (132 frames total). One complete sphere of data was collected, to better than 0.80 Å resolution.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.52314 (8)0.07663 (19)0.32235 (6)0.0379 (2)
O170.06829 (11)0.1106 (3)0.25496 (8)0.0586 (3)
O220.66845 (9)0.1271 (2)0.37364 (8)0.0487 (3)
N200.59879 (10)0.4242 (2)0.44884 (8)0.0398 (3)
H200.6198 (15)0.526 (4)0.4163 (12)0.048*
C10.29683 (11)0.0893 (3)0.21029 (9)0.0339 (3)
H1A0.22210.03670.20020.041*
H1B0.33960.04380.20180.041*
C20.34086 (11)0.1731 (3)0.30308 (9)0.0373 (3)
H2A0.29200.29150.31360.045*
H2B0.34150.04300.34220.045*
C30.45313 (11)0.2730 (3)0.32467 (8)0.0329 (3)
C40.46339 (11)0.4434 (3)0.25645 (8)0.0321 (3)
H4A0.54010.48050.26680.039*
H4B0.42600.58710.26270.039*
C50.41735 (10)0.3551 (2)0.16430 (8)0.0281 (3)
H50.46000.21640.15910.034*
C60.43276 (11)0.5300 (3)0.09925 (8)0.0339 (3)
H6A0.50940.57190.11380.041*
H6B0.39170.67070.10240.041*
C70.39531 (10)0.4339 (3)0.00793 (8)0.0337 (3)
H7A0.44330.30680.00290.040*
H7B0.40060.55560.03300.040*
C80.27975 (10)0.3456 (2)0.01628 (8)0.0279 (3)
H80.23100.47930.01870.033*
C90.26458 (10)0.1737 (2)0.05167 (8)0.0274 (3)
H90.31430.04290.05240.033*
C100.29910 (10)0.2763 (2)0.14390 (8)0.0280 (3)
C110.15039 (11)0.0715 (3)0.02490 (9)0.0338 (3)
H11A0.14610.04840.06670.041*
H11B0.09870.19380.02700.041*
C120.11827 (11)0.0331 (3)0.06529 (9)0.0366 (3)
H12A0.16370.16850.06600.044*
H12B0.04280.08490.08080.044*
C130.13103 (10)0.1415 (3)0.13083 (9)0.0324 (3)
C140.24756 (11)0.2288 (3)0.10365 (8)0.0318 (3)
H140.29380.08930.09730.038*
C150.25711 (12)0.3548 (3)0.18407 (9)0.0426 (4)
H15A0.33280.36970.18320.051*
H15B0.22420.50920.18930.051*
C160.19432 (14)0.1950 (4)0.25711 (10)0.0562 (5)
H16A0.15130.28600.30670.067*
H16B0.24410.09570.27650.067*
C170.12173 (12)0.0507 (3)0.22022 (9)0.0424 (4)
C180.04720 (11)0.3353 (3)0.14356 (9)0.0362 (3)
H18A0.05700.44460.18630.054*
H18B0.05640.41470.08890.054*
H18C0.02490.26960.16360.054*
C190.22363 (11)0.4728 (3)0.15140 (9)0.0354 (3)
H19A0.15330.40970.14890.053*
H19B0.21590.58090.10390.053*
H19C0.25370.55280.20610.053*
C200.48529 (12)0.3760 (3)0.41440 (9)0.0389 (3)
H20A0.44500.52040.41310.047*
H20B0.46430.26870.45360.047*
C210.66213 (12)0.2164 (3)0.45255 (9)0.0391 (4)
H210.66120.13430.50620.047*
C220.61980 (11)0.0455 (3)0.37897 (9)0.0353 (3)
C230.77868 (13)0.2790 (4)0.46404 (10)0.0470 (4)
H23A0.78280.37100.41410.056*
H23B0.82030.13650.46520.056*
C240.82962 (15)0.4159 (5)0.54688 (12)0.0627 (6)
H240.77910.54280.54920.075*
C250.8442 (2)0.2714 (6)0.62589 (13)0.0866 (9)
H25A0.77400.22190.62940.130*
H25B0.88050.36160.67690.130*
H25C0.88750.13640.62280.130*
C260.9336 (3)0.5256 (9)0.5437 (2)0.1324 (16)
H26A0.96300.61980.59510.199*
H26B0.91990.62250.49240.199*
H26C0.98520.40550.54150.199*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0412 (5)0.0341 (6)0.0350 (5)0.0077 (4)0.0063 (4)0.0024 (4)
O170.0693 (8)0.0492 (8)0.0478 (6)0.0078 (7)0.0028 (6)0.0149 (6)
O220.0442 (6)0.0391 (6)0.0605 (7)0.0104 (5)0.0119 (5)0.0008 (5)
N200.0463 (7)0.0404 (8)0.0307 (6)0.0008 (6)0.0082 (5)0.0046 (5)
C10.0347 (6)0.0335 (8)0.0336 (7)0.0022 (6)0.0102 (5)0.0044 (6)
C20.0400 (7)0.0408 (9)0.0330 (7)0.0005 (7)0.0136 (6)0.0060 (6)
C30.0366 (6)0.0321 (8)0.0293 (6)0.0052 (6)0.0087 (5)0.0007 (6)
C40.0333 (6)0.0311 (8)0.0308 (6)0.0016 (6)0.0078 (5)0.0018 (6)
C50.0268 (6)0.0269 (7)0.0300 (6)0.0004 (5)0.0075 (5)0.0012 (5)
C60.0340 (6)0.0344 (8)0.0331 (6)0.0081 (6)0.0094 (5)0.0009 (6)
C70.0307 (6)0.0404 (9)0.0303 (6)0.0048 (6)0.0094 (5)0.0019 (6)
C80.0272 (6)0.0269 (7)0.0297 (6)0.0005 (5)0.0086 (5)0.0016 (5)
C90.0262 (6)0.0231 (6)0.0316 (6)0.0017 (5)0.0066 (5)0.0016 (5)
C100.0278 (6)0.0261 (7)0.0305 (6)0.0006 (5)0.0094 (5)0.0020 (5)
C110.0315 (6)0.0306 (8)0.0376 (7)0.0054 (5)0.0076 (5)0.0047 (6)
C120.0338 (6)0.0280 (7)0.0422 (7)0.0048 (6)0.0025 (5)0.0012 (6)
C130.0309 (6)0.0294 (8)0.0335 (7)0.0005 (6)0.0042 (5)0.0019 (6)
C140.0307 (6)0.0315 (8)0.0319 (7)0.0013 (5)0.0075 (5)0.0024 (5)
C150.0399 (7)0.0570 (10)0.0314 (7)0.0076 (7)0.0110 (6)0.0003 (7)
C160.0538 (9)0.0806 (14)0.0337 (8)0.0127 (10)0.0121 (7)0.0110 (8)
C170.0408 (7)0.0434 (9)0.0365 (7)0.0029 (7)0.0014 (6)0.0075 (7)
C180.0300 (6)0.0350 (8)0.0392 (7)0.0012 (6)0.0035 (5)0.0032 (6)
C190.0352 (7)0.0354 (8)0.0354 (7)0.0052 (6)0.0102 (5)0.0031 (6)
C200.0452 (7)0.0421 (9)0.0297 (6)0.0068 (7)0.0115 (5)0.0022 (6)
C210.0405 (7)0.0468 (10)0.0294 (6)0.0025 (6)0.0093 (5)0.0040 (6)
C220.0370 (6)0.0343 (8)0.0355 (6)0.0023 (6)0.0119 (5)0.0071 (6)
C230.0427 (8)0.0602 (11)0.0390 (7)0.0065 (8)0.0133 (6)0.0016 (8)
C240.0487 (9)0.0815 (16)0.0499 (9)0.0030 (10)0.0022 (7)0.0153 (10)
C250.0881 (16)0.114 (2)0.0406 (10)0.0264 (16)0.0076 (10)0.0063 (12)
C260.093 (2)0.179 (4)0.126 (3)0.074 (3)0.0335 (18)0.075 (3)
Geometric parameters (Å, º) top
O3—C221.3378 (17)C12—C131.5210 (19)
O3—C31.4732 (17)C12—H12a0.9900
O17—C171.207 (2)C12—H12b0.9900
O22—C221.2070 (19)C13—C171.5219 (19)
N20—C201.4499 (19)C13—C141.5415 (18)
N20—C211.459 (2)C13—C181.544 (2)
N20—H200.89 (2)C14—C151.541 (2)
C1—C21.5306 (19)C14—H141.0000
C1—C101.5430 (18)C15—C161.543 (2)
C1—H1a0.9900C15—H15a0.9900
C1—H1b0.9900C15—H15b0.9900
C2—C31.5205 (19)C16—C171.520 (3)
C2—H2a0.9900C16—H16a0.9900
C2—H2b0.9900C16—H16b0.9900
C3—C201.5214 (18)C18—H18a0.9800
C3—C41.5271 (19)C18—H18b0.9800
C4—C51.5325 (17)C18—H18c0.9800
C4—H4a0.9900C19—H19a0.9800
C4—H4b0.9900C19—H19b0.9800
C5—C61.5274 (18)C19—H19c0.9800
C5—C101.5516 (16)C20—H20a0.9900
C5—H51.0000C20—H20b0.9900
C6—C71.5292 (18)C21—C231.524 (2)
C6—H6a0.9900C21—C221.531 (2)
C6—H6b0.9900C21—H211.0000
C7—C81.5330 (17)C23—C241.540 (2)
C7—H7a0.9900C23—H23a0.9900
C7—H7b0.9900C23—H23b0.9900
C8—C141.5216 (17)C24—C251.504 (3)
C8—C91.5502 (17)C24—C261.518 (3)
C8—H81.0000C24—H241.0000
C9—C111.5452 (17)C25—H25a0.9800
C9—C101.5560 (17)C25—H25b0.9800
C9—H91.0000C25—H25c0.9800
C10—C191.5405 (19)C26—H26a0.9800
C11—C121.5317 (19)C26—H26b0.9800
C11—H11a0.9900C26—H26c0.9800
C11—H11b0.9900
C22—O3—C3123.68 (12)C12—C13—C14108.94 (11)
C20—N20—C21111.01 (13)C17—C13—C14100.41 (10)
C20—N20—H20111.1 (13)C12—C13—C18111.23 (11)
C21—N20—H20107.7 (13)C17—C13—C18105.93 (12)
C2—C1—C10112.87 (12)C14—C13—C18113.51 (12)
C2—C1—H1A109.0C8—C14—C15120.96 (12)
C10—C1—H1A109.0C8—C14—C13113.04 (11)
C2—C1—H1B109.0C15—C14—C13103.66 (10)
C10—C1—H1B109.0C8—C14—H14106.1
H1A—C1—H1B107.8C15—C14—H14106.1
C3—C2—C1113.86 (11)C13—C14—H14106.1
C3—C2—H2A108.8C14—C15—C16102.14 (13)
C1—C2—H2A108.8C14—C15—H15A111.3
C3—C2—H2B108.8C16—C15—H15A111.3
C1—C2—H2B108.8C14—C15—H15B111.3
H2A—C2—H2B107.7C16—C15—H15B111.3
O3—C3—C2105.15 (12)H15A—C15—H15B109.2
O3—C3—C20109.60 (11)C17—C16—C15106.27 (12)
C2—C3—C20110.21 (11)C17—C16—H16A110.5
O3—C3—C4107.25 (10)C15—C16—H16A110.5
C2—C3—C4111.62 (11)C17—C16—H16B110.5
C20—C3—C4112.67 (13)C15—C16—H16B110.5
C3—C4—C5113.72 (12)H16A—C16—H16B108.7
C3—C4—H4A108.8O17—C17—C16125.98 (15)
C5—C4—H4A108.8O17—C17—C13126.21 (16)
C3—C4—H4B108.8C16—C17—C13107.79 (13)
C5—C4—H4B108.8C13—C18—H18A109.5
H4A—C4—H4B107.7C13—C18—H18B109.5
C6—C5—C4111.27 (11)H18A—C18—H18B109.5
C6—C5—C10112.19 (10)C13—C18—H18C109.5
C4—C5—C10112.68 (10)H18A—C18—H18C109.5
C6—C5—H5106.8H18B—C18—H18C109.5
C4—C5—H5106.8C10—C19—H19A109.5
C10—C5—H5106.8C10—C19—H19B109.5
C5—C6—C7111.24 (12)H19A—C19—H19B109.5
C5—C6—H6A109.4C10—C19—H19C109.5
C7—C6—H6A109.4H19A—C19—H19C109.5
C5—C6—H6B109.4H19B—C19—H19C109.5
C7—C6—H6B109.4N20—C20—C3114.04 (11)
H6A—C6—H6B108.0N20—C20—H20A108.7
C6—C7—C8112.30 (10)C3—C20—H20A108.7
C6—C7—H7A109.1N20—C20—H20B108.7
C8—C7—H7A109.1C3—C20—H20B108.7
C6—C7—H7B109.1H20A—C20—H20B107.6
C8—C7—H7B109.1N20—C21—C23109.94 (14)
H7A—C7—H7B107.9N20—C21—C22116.07 (12)
C14—C8—C7111.62 (10)C23—C21—C22111.55 (13)
C14—C8—C9108.79 (11)N20—C21—H21106.2
C7—C8—C9111.03 (10)C23—C21—H21106.2
C14—C8—H8108.4C22—C21—H21106.2
C7—C8—H8108.4O22—C22—O3118.25 (15)
C9—C8—H8108.4O22—C22—C21121.55 (13)
C11—C9—C8111.45 (10)O3—C22—C21120.00 (13)
C11—C9—C10113.54 (10)C21—C23—C24112.82 (13)
C8—C9—C10112.40 (11)C21—C23—H23A109.0
C11—C9—H9106.3C24—C23—H23A109.0
C8—C9—H9106.3C21—C23—H23B109.0
C10—C9—H9106.3C24—C23—H23B109.0
C19—C10—C1108.83 (10)H23A—C23—H23B107.8
C19—C10—C5112.60 (11)C25—C24—C26112.3 (2)
C1—C10—C5106.54 (10)C25—C24—C23111.9 (2)
C19—C10—C9110.74 (10)C26—C24—C23110.27 (17)
C1—C10—C9110.29 (11)C25—C24—H24107.4
C5—C10—C9107.77 (9)C26—C24—H24107.4
C12—C11—C9113.00 (11)C23—C24—H24107.4
C12—C11—H11A109.0C24—C25—H25A109.5
C9—C11—H11A109.0C24—C25—H25B109.5
C12—C11—H11B109.0H25A—C25—H25B109.5
C9—C11—H11B109.0C24—C25—H25C109.5
H11A—C11—H11B107.8H25A—C25—H25C109.5
C13—C12—C11110.65 (12)H25B—C25—H25C109.5
C13—C12—H12A109.5C24—C26—H26A109.5
C11—C12—H12A109.5C24—C26—H26B109.5
C13—C12—H12B109.5H26A—C26—H26B109.5
C11—C12—H12B109.5C24—C26—H26C109.5
H12A—C12—H12B108.1H26A—C26—H26C109.5
C12—C13—C17116.52 (13)H26B—C26—H26C109.5
C10—C1—C2—C354.94 (16)C11—C12—C13—C1456.60 (15)
C22—O3—C3—C2139.66 (13)C11—C12—C13—C1869.26 (14)
C22—O3—C3—C2021.20 (18)C7—C8—C14—C1555.32 (17)
C22—O3—C3—C4101.41 (14)C9—C8—C14—C15178.18 (11)
C1—C2—C3—O368.38 (15)C7—C8—C14—C13178.98 (12)
C1—C2—C3—C20173.58 (13)C9—C8—C14—C1358.16 (14)
C1—C2—C3—C447.58 (17)C12—C13—C14—C860.52 (15)
O3—C3—C4—C567.14 (14)C17—C13—C14—C8176.60 (12)
C2—C3—C4—C547.53 (16)C18—C13—C14—C864.00 (15)
C20—C3—C4—C5172.16 (11)C12—C13—C14—C15166.75 (12)
C3—C4—C5—C6178.40 (11)C17—C13—C14—C1543.86 (15)
C3—C4—C5—C1054.59 (15)C18—C13—C14—C1568.73 (14)
C4—C5—C6—C7175.26 (11)C8—C14—C15—C16168.26 (13)
C10—C5—C6—C757.47 (15)C13—C14—C15—C1640.28 (16)
C5—C6—C7—C854.05 (16)C14—C15—C16—C1720.65 (18)
C6—C7—C8—C14174.20 (12)C15—C16—C17—O17171.87 (17)
C6—C7—C8—C952.63 (16)C15—C16—C17—C136.53 (19)
C14—C8—C9—C1153.05 (14)C12—C13—C17—O1730.2 (2)
C7—C8—C9—C11176.26 (11)C14—C13—C17—O17147.59 (16)
C14—C8—C9—C10178.20 (10)C18—C13—C17—O1794.10 (19)
C7—C8—C9—C1054.99 (14)C12—C13—C17—C16148.22 (14)
C2—C1—C10—C1964.18 (14)C14—C13—C17—C1630.80 (16)
C2—C1—C10—C557.47 (14)C18—C13—C17—C1687.51 (15)
C2—C1—C10—C9174.16 (10)C21—N20—C20—C358.68 (17)
C6—C5—C10—C1964.65 (14)O3—C3—C20—N2050.36 (17)
C4—C5—C10—C1961.86 (14)C2—C3—C20—N20165.63 (13)
C6—C5—C10—C1176.12 (11)C4—C3—C20—N2068.97 (17)
C4—C5—C10—C157.36 (14)C20—N20—C21—C23163.93 (11)
C6—C5—C10—C957.76 (14)C20—N20—C21—C2236.15 (16)
C4—C5—C10—C9175.72 (11)C3—O3—C22—O22176.53 (12)
C11—C9—C10—C1960.62 (14)C3—O3—C22—C211.5 (2)
C8—C9—C10—C1967.04 (13)N20—C21—C22—O22176.62 (14)
C11—C9—C10—C159.91 (14)C23—C21—C22—O2249.6 (2)
C8—C9—C10—C1172.44 (10)N20—C21—C22—O38.46 (19)
C11—C9—C10—C5175.83 (11)C23—C21—C22—O3135.45 (15)
C8—C9—C10—C556.52 (13)N20—C21—C23—C2459.92 (19)
C8—C9—C11—C1253.00 (16)C22—C21—C23—C24169.84 (16)
C10—C9—C11—C12178.85 (11)C21—C23—C24—C2569.0 (2)
C9—C11—C12—C1354.84 (15)C21—C23—C24—C26165.3 (3)
C11—C12—C13—C17169.22 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N20—H20···O22i0.89 (2)2.29 (2)3.1369 (19)158.5 (17)
Symmetry code: (i) x, y+1, z.
(II) methyl (2R)-2-[(3R,5S,8R,9S,10S, 13S,14S)-10,13-dimethyl-2',17-dioxohexadecahydro-3'H- spiro[cyclopenta[a]phenanthrene-3,5'-[1,3]oxazolidin-3'-yl]]- 4-methylpentanoate top
Crystal data top
C28H43NO5F(000) = 1032
Mr = 473.63Dx = 1.200 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 9843 reflections
a = 6.3941 (2) Åθ = 3.1–69.5°
b = 18.1440 (7) ŵ = 0.65 mm1
c = 22.6047 (9) ÅT = 150 K
V = 2622.47 (17) Å3Needle, colorless
Z = 40.12 × 0.05 × 0.05 mm
Data collection top
Bruker Microstar
diffractometer
4933 independent reflections
Radiation source: Rotating Anode4697 reflections with I > 2σ(I)
Helios optics monochromatorRint = 0.052
Detector resolution: 8.3 pixels mm-1θmax = 69.7°, θmin = 3.1°
ω scansh = 76
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
k = 2222
Tmin = 0.787, Tmax = 0.968l = 2727
43157 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0555P)2 + 0.4002P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.001
4933 reflectionsΔρmax = 0.23 e Å3
312 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), 2087 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (18)
Crystal data top
C28H43NO5V = 2622.47 (17) Å3
Mr = 473.63Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 6.3941 (2) ŵ = 0.65 mm1
b = 18.1440 (7) ÅT = 150 K
c = 22.6047 (9) Å0.12 × 0.05 × 0.05 mm
Data collection top
Bruker Microstar
diffractometer
4933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008)
4697 reflections with I > 2σ(I)
Tmin = 0.787, Tmax = 0.968Rint = 0.052
43157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.23 e Å3
S = 1.06Δρmin = 0.14 e Å3
4933 reflectionsAbsolute structure: Flack (1983), 2087 Friedel pairs
312 parametersAbsolute structure parameter: 0.06 (18)
0 restraints
Special details top

Experimental. X-ray crystallographic data for I were collected from a single-crystal sample, which was mounted on a loop fiber. Data were collected using a Bruker microstar diffractometer equiped with a Platinum 135 CCD Detector, a Helios optics and a Kappa goniometer. The crystal-to-detector distance was 4.0 cm, and the data collection was carried out in 512 x 512 pixel mode. The initial unit-cell parameters were determined by a least-squares fit of the angular setting of strong reflections, collected by a 10.0 degree scan in 33 frames over three different parts of the reciprocal space (99 frames total).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.89616 (15)0.90363 (6)0.94546 (5)0.0391 (2)
O170.8538 (3)0.41672 (8)0.80521 (7)0.0773 (5)
O211.16688 (18)0.98214 (7)0.93853 (7)0.0554 (3)
O230.6895 (2)1.09194 (8)0.84905 (6)0.0587 (3)
O240.8294 (2)1.19946 (7)0.87641 (6)0.0503 (3)
N200.82854 (19)1.02289 (7)0.94985 (7)0.0407 (3)
C10.6224 (2)0.77298 (8)0.95171 (7)0.0384 (3)
H1A0.54450.73590.97510.046*
H1B0.77350.76450.95840.046*
C20.5659 (3)0.84999 (9)0.97449 (7)0.0395 (3)
H2A0.41210.85610.97350.047*
H2B0.61200.85481.01610.047*
C30.6666 (2)0.91022 (8)0.93794 (7)0.0358 (3)
C40.6195 (2)0.89995 (9)0.87252 (7)0.0374 (3)
H4A0.69560.93780.84950.045*
H4B0.46790.90710.86570.045*
C50.6832 (2)0.82361 (8)0.85086 (7)0.0362 (3)
H50.83600.81890.85960.043*
C60.6611 (3)0.81504 (9)0.78390 (7)0.0436 (4)
H6A0.51150.81700.77280.052*
H6B0.73410.85610.76370.052*
C70.7545 (3)0.74192 (9)0.76422 (7)0.0431 (4)
H7A0.90750.74300.77100.052*
H7B0.73060.73570.72120.052*
C80.6612 (2)0.67605 (9)0.79700 (7)0.0386 (3)
H80.51080.67120.78560.046*
C90.6744 (2)0.68692 (9)0.86494 (7)0.0371 (3)
H90.82680.69130.87420.044*
C100.5744 (2)0.76076 (9)0.88555 (7)0.0353 (3)
C110.5978 (3)0.61848 (9)0.89893 (8)0.0452 (4)
H11A0.62330.62590.94170.054*
H11B0.44500.61320.89310.054*
C120.7063 (3)0.54724 (9)0.87903 (8)0.0494 (4)
H12A0.85650.54940.88950.059*
H12B0.64360.50470.89990.059*
C130.6833 (3)0.53688 (9)0.81254 (8)0.0443 (4)
C140.7736 (2)0.60495 (9)0.78105 (7)0.0398 (3)
H140.91960.61060.79620.048*
C150.7951 (3)0.58031 (10)0.71633 (8)0.0469 (4)
H15A0.65840.58120.69580.056*
H15B0.89520.61190.69460.056*
C160.8780 (3)0.50133 (10)0.72248 (8)0.0510 (4)
H16A0.81710.46910.69160.061*
H16B1.03220.50040.71880.061*
C170.8113 (3)0.47586 (10)0.78369 (9)0.0529 (4)
C180.4553 (3)0.51990 (11)0.79537 (9)0.0525 (4)
H18A0.40820.47560.81630.079*
H18B0.44650.51170.75260.079*
H18C0.36600.56160.80630.079*
C190.3361 (2)0.76058 (10)0.87603 (8)0.0434 (4)
H19A0.27230.72250.90090.065*
H19B0.30540.75030.83440.065*
H19C0.27890.80890.88670.065*
C200.6240 (2)0.98918 (9)0.95876 (8)0.0393 (3)
H20A0.51521.01330.93440.047*
H20B0.58160.99061.00090.047*
C210.9800 (2)0.97169 (9)0.94408 (8)0.0416 (4)
C220.8665 (2)1.10123 (9)0.94325 (8)0.0422 (3)
H221.02151.10870.94300.051*
C230.7827 (3)1.12879 (9)0.88457 (8)0.0428 (4)
C240.7549 (3)1.23225 (11)0.82245 (8)0.0569 (5)
H24A0.80321.20300.78860.085*
H24B0.80911.28260.81910.085*
H24C0.60171.23340.82280.085*
C250.7780 (3)1.14530 (10)0.99506 (8)0.0488 (4)
H25A0.62501.13740.99670.059*
H25B0.80211.19840.98750.059*
C260.8715 (3)1.12570 (10)1.05524 (9)0.0543 (4)
H260.84801.07191.06230.065*
C270.7581 (5)1.16812 (15)1.10331 (11)0.0830 (8)
H27A0.81761.15541.14190.125*
H27B0.60931.15521.10270.125*
H27C0.77411.22111.09640.125*
C281.1076 (4)1.13994 (12)1.05650 (11)0.0695 (6)
H28A1.13531.19121.04520.104*
H28B1.17741.10671.02860.104*
H28C1.16121.13101.09650.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0219 (5)0.0418 (6)0.0535 (6)0.0018 (4)0.0026 (4)0.0037 (5)
O170.1024 (13)0.0486 (8)0.0809 (10)0.0158 (8)0.0149 (10)0.0053 (7)
O210.0230 (5)0.0551 (7)0.0881 (9)0.0030 (5)0.0003 (6)0.0076 (7)
O230.0612 (8)0.0610 (8)0.0539 (7)0.0118 (7)0.0124 (6)0.0026 (6)
O240.0504 (7)0.0462 (6)0.0543 (7)0.0016 (5)0.0060 (6)0.0030 (5)
N200.0248 (6)0.0399 (7)0.0573 (8)0.0012 (5)0.0004 (6)0.0066 (6)
C10.0325 (7)0.0433 (8)0.0393 (8)0.0026 (6)0.0019 (6)0.0035 (6)
C20.0309 (7)0.0476 (9)0.0401 (8)0.0017 (7)0.0034 (6)0.0003 (7)
C30.0210 (6)0.0410 (8)0.0452 (8)0.0005 (6)0.0004 (6)0.0014 (6)
C40.0294 (7)0.0388 (8)0.0440 (8)0.0018 (6)0.0033 (6)0.0030 (6)
C50.0290 (7)0.0403 (8)0.0393 (7)0.0028 (6)0.0004 (6)0.0034 (6)
C60.0490 (9)0.0422 (8)0.0395 (8)0.0020 (7)0.0000 (7)0.0047 (6)
C70.0441 (9)0.0459 (9)0.0393 (8)0.0032 (7)0.0022 (7)0.0030 (7)
C80.0333 (7)0.0414 (8)0.0410 (8)0.0030 (6)0.0009 (6)0.0005 (6)
C90.0306 (7)0.0401 (8)0.0406 (8)0.0014 (6)0.0019 (6)0.0027 (6)
C100.0257 (7)0.0400 (8)0.0403 (7)0.0023 (6)0.0015 (6)0.0024 (6)
C110.0479 (9)0.0430 (8)0.0447 (8)0.0041 (7)0.0016 (7)0.0036 (7)
C120.0573 (11)0.0406 (9)0.0503 (9)0.0003 (8)0.0017 (8)0.0057 (7)
C130.0427 (9)0.0399 (8)0.0503 (9)0.0026 (7)0.0006 (7)0.0005 (7)
C140.0312 (7)0.0430 (8)0.0453 (8)0.0029 (6)0.0012 (6)0.0011 (7)
C150.0442 (9)0.0496 (9)0.0468 (9)0.0017 (8)0.0036 (7)0.0037 (7)
C160.0473 (10)0.0504 (10)0.0554 (10)0.0020 (8)0.0021 (8)0.0095 (8)
C170.0520 (10)0.0426 (9)0.0640 (11)0.0032 (8)0.0004 (9)0.0035 (8)
C180.0457 (10)0.0514 (10)0.0603 (10)0.0123 (8)0.0032 (8)0.0049 (8)
C190.0276 (7)0.0485 (9)0.0540 (9)0.0036 (7)0.0015 (6)0.0008 (7)
C200.0228 (7)0.0429 (8)0.0520 (9)0.0011 (6)0.0035 (6)0.0040 (7)
C210.0259 (7)0.0468 (9)0.0520 (9)0.0002 (6)0.0022 (7)0.0074 (7)
C220.0306 (7)0.0435 (8)0.0525 (9)0.0025 (6)0.0035 (7)0.0026 (7)
C230.0315 (8)0.0475 (9)0.0495 (9)0.0006 (7)0.0007 (7)0.0040 (7)
C240.0576 (11)0.0597 (11)0.0535 (10)0.0057 (9)0.0030 (9)0.0061 (8)
C250.0461 (9)0.0437 (9)0.0565 (10)0.0039 (8)0.0033 (8)0.0050 (8)
C260.0638 (11)0.0467 (9)0.0524 (10)0.0017 (8)0.0087 (9)0.0007 (8)
C270.111 (2)0.0780 (16)0.0599 (13)0.0130 (15)0.0044 (14)0.0092 (11)
C280.0747 (15)0.0624 (12)0.0713 (13)0.0173 (11)0.0277 (12)0.0102 (10)
Geometric parameters (Å, º) top
O3—C211.347 (2)C12—C131.522 (2)
O3—C31.4826 (16)C12—H12a0.9900
O17—C171.209 (2)C12—H12b0.9900
O21—C211.216 (2)C13—C171.523 (2)
O23—C231.203 (2)C13—C141.538 (2)
O24—C231.330 (2)C13—C181.540 (3)
O24—C241.438 (2)C14—C151.536 (2)
N20—C211.349 (2)C14—H141.0000
N20—C221.450 (2)C15—C161.534 (3)
N20—C201.4579 (19)C15—H15a0.9900
C1—C21.532 (2)C15—H15b0.9900
C1—C101.543 (2)C16—C171.520 (3)
C1—H1a0.9900C16—H16a0.9900
C1—H1b0.9900C16—H16b0.9900
C2—C31.514 (2)C18—H18a0.9800
C2—H2a0.9900C18—H18b0.9800
C2—H2b0.9900C18—H18c0.9800
C3—C41.520 (2)C19—H19a0.9800
C3—C201.532 (2)C19—H19b0.9800
C4—C51.525 (2)C19—H19c0.9800
C4—H4a0.9900C20—H20a0.9900
C4—H4b0.9900C20—H20b0.9900
C5—C61.528 (2)C22—C231.515 (2)
C5—C101.549 (2)C22—C251.527 (2)
C5—H51.0000C22—H221.0000
C6—C71.521 (2)C24—H24a0.9800
C6—H6a0.9900C24—H24b0.9800
C6—H6b0.9900C24—H24c0.9800
C7—C81.528 (2)C25—C261.528 (3)
C7—H7a0.9900C25—H25a0.9900
C7—H7b0.9900C25—H25b0.9900
C8—C141.520 (2)C26—C271.516 (3)
C8—C91.551 (2)C26—C281.532 (3)
C8—H81.0000C26—H261.0000
C9—C111.540 (2)C27—H27a0.9800
C9—C101.556 (2)C27—H27b0.9800
C9—H91.0000C27—H27c0.9800
C10—C191.539 (2)C28—H28a0.9800
C11—C121.534 (2)C28—H28b0.9800
C11—H11a0.9900C28—H28c0.9800
C11—H11b0.9900
C21—O3—C3108.52 (11)C14—C13—C18113.55 (15)
C23—O24—C24116.25 (15)C8—C14—C15121.02 (14)
C21—N20—C22123.03 (13)C8—C14—C13113.21 (13)
C21—N20—C20111.65 (13)C15—C14—C13103.93 (13)
C22—N20—C20125.16 (13)C8—C14—H14105.9
C2—C1—C10114.20 (13)C15—C14—H14105.9
C2—C1—H1A108.7C13—C14—H14105.9
C10—C1—H1A108.7C16—C15—C14102.50 (14)
C2—C1—H1B108.7C16—C15—H15A111.3
C10—C1—H1B108.7C14—C15—H15A111.3
H1A—C1—H1B107.6C16—C15—H15B111.3
C3—C2—C1112.00 (13)C14—C15—H15B111.3
C3—C2—H2A109.2H15A—C15—H15B109.2
C1—C2—H2A109.2C17—C16—C15105.65 (14)
C3—C2—H2B109.2C17—C16—H16A110.6
C1—C2—H2B109.2C15—C16—H16A110.6
H2A—C2—H2B107.9C17—C16—H16B110.6
O3—C3—C2107.47 (12)C15—C16—H16B110.6
O3—C3—C4107.31 (12)H16A—C16—H16B108.7
C2—C3—C4110.99 (13)O17—C17—C16124.96 (18)
O3—C3—C20102.49 (11)O17—C17—C13126.41 (18)
C2—C3—C20115.57 (13)C16—C17—C13108.63 (15)
C4—C3—C20112.22 (13)C13—C18—H18A109.5
C3—C4—C5111.77 (12)C13—C18—H18B109.5
C3—C4—H4A109.3H18A—C18—H18B109.5
C5—C4—H4A109.3C13—C18—H18C109.5
C3—C4—H4B109.3H18A—C18—H18C109.5
C5—C4—H4B109.3H18B—C18—H18C109.5
H4A—C4—H4B107.9C10—C19—H19A109.5
C4—C5—C6112.70 (12)C10—C19—H19B109.5
C4—C5—C10112.72 (13)H19A—C19—H19B109.5
C6—C5—C10112.64 (13)C10—C19—H19C109.5
C4—C5—H5106.0H19A—C19—H19C109.5
C6—C5—H5106.0H19B—C19—H19C109.5
C10—C5—H5106.0N20—C20—C3100.96 (12)
C7—C6—C5110.01 (13)N20—C20—H20A111.6
C7—C6—H6A109.7C3—C20—H20A111.6
C5—C6—H6A109.7N20—C20—H20B111.6
C7—C6—H6B109.7C3—C20—H20B111.6
C5—C6—H6B109.7H20A—C20—H20B109.4
H6A—C6—H6B108.2O21—C21—O3122.46 (15)
C6—C7—C8112.79 (14)O21—C21—N20127.47 (16)
C6—C7—H7A109.0O3—C21—N20110.08 (13)
C8—C7—H7A109.0N20—C22—C23110.76 (13)
C6—C7—H7B109.0N20—C22—C25111.86 (14)
C8—C7—H7B109.0C23—C22—C25111.56 (14)
H7A—C7—H7B107.8N20—C22—H22107.5
C14—C8—C7111.37 (13)C23—C22—H22107.5
C14—C8—C9108.50 (13)C25—C22—H22107.5
C7—C8—C9111.09 (13)O23—C23—O24123.69 (16)
C14—C8—H8108.6O23—C23—C22125.17 (16)
C7—C8—H8108.6O24—C23—C22111.12 (14)
C9—C8—H8108.6O24—C24—H24A109.5
C11—C9—C8111.98 (13)O24—C24—H24B109.5
C11—C9—C10114.46 (13)H24A—C24—H24B109.5
C8—C9—C10112.56 (12)O24—C24—H24C109.5
C11—C9—H9105.7H24A—C24—H24C109.5
C8—C9—H9105.7H24B—C24—H24C109.5
C10—C9—H9105.7C22—C25—C26114.59 (15)
C19—C10—C1109.45 (13)C22—C25—H25A108.6
C19—C10—C5112.06 (13)C26—C25—H25A108.6
C1—C10—C5107.18 (12)C22—C25—H25B108.6
C19—C10—C9111.30 (13)C26—C25—H25B108.6
C1—C10—C9109.40 (12)H25A—C25—H25B107.6
C5—C10—C9107.32 (12)C27—C26—C25109.43 (18)
C12—C11—C9112.89 (14)C27—C26—C28111.9 (2)
C12—C11—H11A109.0C25—C26—C28111.28 (18)
C9—C11—H11A109.0C27—C26—H26108.0
C12—C11—H11B109.0C25—C26—H26108.0
C9—C11—H11B109.0C28—C26—H26108.0
H11A—C11—H11B107.8C26—C27—H27A109.5
C13—C12—C11110.49 (15)C26—C27—H27B109.5
C13—C12—H12A109.6H27A—C27—H27B109.5
C11—C12—H12A109.6C26—C27—H27C109.5
C13—C12—H12B109.6H27A—C27—H27C109.5
C11—C12—H12B109.6H27B—C27—H27C109.5
H12A—C12—H12B108.1C26—C28—H28A109.5
C12—C13—C17117.43 (16)C26—C28—H28B109.5
C12—C13—C14108.76 (14)H28A—C28—H28B109.5
C17—C13—C14100.59 (14)C26—C28—H28C109.5
C12—C13—C18111.41 (15)H28A—C28—H28C109.5
C17—C13—C18104.79 (14)H28B—C28—H28C109.5
C10—C1—C2—C354.23 (18)C7—C8—C14—C13179.36 (13)
C21—O3—C3—C2145.87 (13)C9—C8—C14—C1358.08 (17)
C21—O3—C3—C494.70 (14)C12—C13—C14—C861.12 (18)
C21—O3—C3—C2023.64 (17)C17—C13—C14—C8174.92 (14)
C1—C2—C3—O364.49 (16)C18—C13—C14—C863.54 (18)
C1—C2—C3—C452.57 (17)C12—C13—C14—C15165.72 (14)
C1—C2—C3—C20178.19 (13)C17—C13—C14—C1541.77 (16)
O3—C3—C4—C562.36 (15)C18—C13—C14—C1569.62 (17)
C2—C3—C4—C554.80 (16)C8—C14—C15—C16169.60 (14)
C20—C3—C4—C5174.20 (12)C13—C14—C15—C1641.07 (16)
C3—C4—C5—C6173.32 (13)C14—C15—C16—C1723.51 (18)
C3—C4—C5—C1057.81 (16)C15—C16—C17—O17177.7 (2)
C4—C5—C6—C7172.30 (13)C15—C16—C17—C132.4 (2)
C10—C5—C6—C758.79 (18)C12—C13—C17—O1735.3 (3)
C5—C6—C7—C854.96 (19)C14—C13—C17—O17153.1 (2)
C6—C7—C8—C14173.99 (14)C18—C13—C17—O1788.9 (2)
C6—C7—C8—C952.93 (19)C12—C13—C17—C16144.80 (17)
C14—C8—C9—C1152.60 (17)C14—C13—C17—C1627.05 (18)
C7—C8—C9—C11175.34 (14)C18—C13—C17—C1690.97 (17)
C14—C8—C9—C10176.77 (12)C21—N20—C20—C317.20 (17)
C7—C8—C9—C1054.03 (17)C22—N20—C20—C3158.28 (15)
C2—C1—C10—C1968.09 (17)O3—C3—C20—N2023.38 (15)
C2—C1—C10—C553.66 (17)C2—C3—C20—N20139.93 (13)
C2—C1—C10—C9169.71 (12)C4—C3—C20—N2091.43 (15)
C4—C5—C10—C1964.89 (17)C3—O3—C21—O21166.44 (17)
C6—C5—C10—C1964.01 (18)C3—O3—C21—N2013.80 (18)
C4—C5—C10—C155.21 (16)C22—N20—C21—O217.6 (3)
C6—C5—C10—C1175.90 (13)C20—N20—C21—O21176.85 (19)
C4—C5—C10—C9172.63 (12)C22—N20—C21—O3172.70 (14)
C6—C5—C10—C958.47 (16)C20—N20—C21—O32.90 (19)
C11—C9—C10—C1962.06 (17)C21—N20—C22—C23105.04 (17)
C8—C9—C10—C1967.30 (16)C20—N20—C22—C2370.0 (2)
C11—C9—C10—C159.02 (17)C21—N20—C22—C25129.83 (17)
C8—C9—C10—C1171.62 (12)C20—N20—C22—C2555.2 (2)
C11—C9—C10—C5174.99 (13)C24—O24—C23—O232.3 (3)
C8—C9—C10—C555.65 (15)C24—O24—C23—C22179.04 (14)
C8—C9—C11—C1252.63 (19)N20—C22—C23—O232.9 (2)
C10—C9—C11—C12177.72 (13)C25—C22—C23—O23122.44 (19)
C9—C11—C12—C1354.7 (2)N20—C22—C23—O24175.77 (13)
C11—C12—C13—C17170.24 (15)C25—C22—C23—O2458.92 (18)
C11—C12—C13—C1456.97 (19)N20—C22—C25—C2661.0 (2)
C11—C12—C13—C1868.93 (19)C23—C22—C25—C26174.31 (15)
C7—C8—C14—C1555.1 (2)C22—C25—C26—C27175.07 (19)
C9—C8—C14—C15177.63 (13)C22—C25—C26—C2860.8 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC26H41NO3C28H43NO5
Mr415.60473.63
Crystal system, space groupMonoclinic, P21Orthorhombic, P212121
Temperature (K)150150
a, b, c (Å)13.07929 (17), 5.82873 (8), 16.3140 (2)6.3941 (2), 18.1440 (7), 22.6047 (9)
α, β, γ (°)90, 107.3095 (6), 9090, 90, 90
V3)1187.37 (3)2622.47 (17)
Z24
Radiation typeCu KαCu Kα
µ (mm1)0.580.65
Crystal size (mm)0.25 × 0.11 × 0.050.12 × 0.05 × 0.05
Data collection
DiffractometerBruker SMART 6000
diffractometer
Bruker Microstar
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008)
Multi-scan
(SADABS; Sheldrick, 2008)
Tmin, Tmax0.810, 0.9710.787, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
36176, 4334, 4159 43157, 4933, 4697
Rint0.0380.052
(sin θ/λ)max1)0.6190.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.107, 1.07 0.037, 0.101, 1.06
No. of reflections43344933
No. of parameters279312
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.220.23, 0.14
Absolute structureFlack (1983), 1733 Friedel pairsFlack (1983), 2087 Friedel pairs
Absolute structure parameter0.12 (18)0.06 (18)

Computer programs: APEX2 [or SMART?] (Bruker, 2011), APEX2 (Bruker, 2011), SAINT (Bruker, 2011), XPREP (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), UdMX (Maris, 2004).

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds