Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Ag(C10H9N2)2]CF3SO3 or [Ag(dpa)2]OTf (dpa is di-2-pyridyl­amine and OTf is the trifluoro­methane­sulfonate anion), contains two [Ag(dpa)2]+ coordination cations and two OTf anions. The coordination geometry of the AgI atom is inter­mediate between square-planar and tetra­hedral, with similar deformations at the two symmetry-independent metal centres. The dpa ligands coordinate in a bidentate chelating mode. The OTf anions are in the outer coordination sphere and bridge the coordination cations via N—H...O inter­actions to form two symmetry-independent hydrogen-bonded chains. The [Ag(dpa)2]+ cations are arranged via inter­actions involving the aromatic groups into a pseudo-centrosymmetric three-dimensional framework with two types of channels, each confining congeners of one of the symmetry-independent anions. The most inter­esting feature of this structure is its bulk polarity resulting from an approximately parallel alignment of the anions in the channels.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110044070/fa3242sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110044070/fa3242Isup2.hkl
Contains datablock I

CCDC reference: 804118

Comment top

The interest of coordination and supramolecular chemists in AgI is mainly related to the coordination flexibility of this d10 ion and its tendency to form strong complexes with nitrogen-donor ligands. It has been shown that di-2-pyridylamine (dpa) can coordinate to AgI both in its deprotonated and neutral forms. In the former case, a charge-neutral one-dimensional coordination polymer is formed with all three N donors involved in the coordination to Ag centres (Liao et al., 2001). In turn, neutral dpa can act as a bidentate ligand, in chelating or bridging mode, with a secondary amine group available as a donor for hydrogen bonding. It has been shown by Burgos et al. (2003) that in the reaction of silver(I) trifluoromethanesulfonate [Ag(OTf)] with neutral dpa, depending on the synthetic conditions employed, a discrete molecular complex [Ag(dpa)2]OTf, (I), and a coordination polymer [Ag(OTf)(dpa)]n, (II), can be formed. No crystal data were reported in the original paper, but the structure of (II) was published later on (Jones et al., 2006), revealing a one-dimensional polymeric structure with a bridging dpa ligand and a four-coordinate silver centre. An interesting feature of this structure was that one of the coordination bonds was formed to a pyridine C atom. Recently, in the course of our work on silver complexes with N-donor ligands, the synthesis of (I) was repeated using acetonitrile as a solvent; and good-quality single crystals were obtained. In this paper we report the crystal structure of (I), where the coordination cations form a virtually centrosymmetric pattern; however, the OTf- anions show polar packing, resulting in an overall non-centrosymmetric structure.

The asymmetric unit of (I) consists of two [Ag(dpa)2]+ coordination cations and two OTf- anions (Fig. 1). In accord with spectroscopic studies (Burgos et al., 2003), the dpa units act as bidentate chelating ligands, coordinating to Ag through both pyridyl N atoms to form six-membered rings. The coordination geometry at Ag1 and Ag2 is intermediate between square-planar and tetrahedral, with similar deformations at the two metal centres (Table 1). The dpa ligands form one shorter and one longer Ag—N bond, with the former ranging from 2.269 (3) to 2.305 (3) Å [mean 2.283 (16) Å] and the longer bonds in the range 2.337 (3)–2.373 (3) Å [mean 2.357 (15) Å]. The structure of the two coordination cations is similar, as shown by their superposition in Fig. 2. They interact via two types of contacts involving the aromatic groups: (a) offset ππ stacking interactions between the pyridine rings N12/C62 and N14/C64 of the two symmetry-independent cations [centroid-to-centroid distance 3.662 (7) Å; dihedral angle between the best planes 1.72 (13)°; distance between the N12—C62 ring centroid and the plane of the N14—C64 ring 3.389 (1) Å]; (b) through edge-to-face contacts (C—H···π and C–H···C) between the pyridine rings belonging to the cations of the same type (Table 2). These interactions assemble the [Ag(dpa)2]+ units into a virtually centrosymmetric three-dimensional framework, not deviating much from P21/c symmetry, with the pseudo-inversion centre at 1/2,1/4,1/2 relating the two symmetry-independent [Ag(dpa)2]+ units (Fig. 3a).

There are two symmetry-independent channels formed in the cationic framework that extend along the c axis and are related by a pseudo-inversion centre. These channels, confining OTf- anions, have their long axes situated on glide planes at y = (0, 1/2). One can see from Fig. 3(b), showing the arrangement of the anions in the two channels, that all polar OTf anions have their C—S axes oriented in nearly the same direction, viz. in the crystal studied, in the positive direction of the c axis, and that this packing of the anions renders the crystal structure non-centrosymmetric. This is an unusual behaviour for the OTf- anion, which generally does not induce bulk polarity in the absence of chiral molecules. The OTf- anions confined in the channels bridge the coordination cations via two N—H···O hydrogen bonds involving the N—H groups of dpa ligands from two cations. Two symmetry-independent hydrogen-bonded chains extended in the [2 0 1] direction which is inclined to the c axis by 72.5°.

Related literature top

For related literature, see: Burgos et al. (2003); Jones et al. (2006); Liao et al. (2001).

Experimental top

AgOTf and dpa were purchased from Aldrich and used as received. AgOTf (0.030 g, 0.117 mmol) was added to an acetonitrile solution (5 ml) of dpa (0.040 g, 0.234 mmol). The solution was stirred for 10 min and left for slow evaporation. Colourless needle-shaped crystals formed within 2 weeks.

Refinement top

The absolute structure of (I) was determined from anomalous dispersion effects. H atoms of the N—H groups were located in difference electron-density maps and N—H bond lengths standardized to 0.90 Å. Uiso(H) was constrained to 1.2Ueq(N). All other H atoms were identified in difference maps but they were placed at calculated positions, with C—H = 0.95 Å, and were refined as riding on their carrier atoms with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2007); cell refinement: CrysAlis CCD (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I) with displacement ellipsoids shown at the 50% probability level. H atoms have been omitted for clarity.
[Figure 2] Fig. 2. Superposition of the two symmetry-independent coordination cations. The coordination cation with Ag1 is shown with larger spheres and full lines. All atoms, excluding H atoms, were fitted; r.m.s. deviation of the fitted atoms is 0.097 Å.
[Figure 3] Fig. 3. (a) Pseudo-centrosymmetric three-dimensional framework of the coordination cations with anions removed from the channels, viewed along the c axis, and (b) polar arrangement of the anions in the two symmetry-independent channels, viewed along the b axis, [001] vertical.
Bis(di-2-pyridylamine-κ2N2,N2')silver(I) trifluoromethanesulfonate top
Crystal data top
[Ag(C10H9N2)2]CF3SO3F(000) = 1200
Mr = 599.34Dx = 1.753 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 12067 reflections
a = 15.1215 (4) Åθ = 1.9–27.8°
b = 13.2206 (3) ŵ = 1.04 mm1
c = 11.9113 (3) ÅT = 130 K
β = 107.527 (3)°Plate, colourless
V = 2270.70 (10) Å30.30 × 0.10 × 0.10 mm
Z = 4
Data collection top
Kuma KM-4-CCD (κ geometry)
diffractometer
8833 independent reflections
Radiation source: fine-focus sealed tube7362 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.1929 pixels mm-1θmax = 27.8°, θmin = 4.1°
ω scansh = 1918
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
k = 1616
Tmin = 0.735, Tmax = 0.913l = 1514
18407 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0283P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
8833 reflectionsΔρmax = 0.57 e Å3
631 parametersΔρmin = 0.64 e Å3
2 restraintsAbsolute structure: Flack (1983), Friedel pairs 3456
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (12)
Crystal data top
[Ag(C10H9N2)2]CF3SO3V = 2270.70 (10) Å3
Mr = 599.34Z = 4
Monoclinic, PcMo Kα radiation
a = 15.1215 (4) ŵ = 1.04 mm1
b = 13.2206 (3) ÅT = 130 K
c = 11.9113 (3) Å0.30 × 0.10 × 0.10 mm
β = 107.527 (3)°
Data collection top
Kuma KM-4-CCD (κ geometry)
diffractometer
8833 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
7362 reflections with I > 2σ(I)
Tmin = 0.735, Tmax = 0.913Rint = 0.021
18407 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.054Δρmax = 0.57 e Å3
S = 1.03Δρmin = 0.64 e Å3
8833 reflectionsAbsolute structure: Flack (1983), Friedel pairs 3456
631 parametersAbsolute structure parameter: 0.009 (12)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.258551 (14)0.119011 (17)0.254218 (16)0.02624 (7)
N110.16471 (18)0.0114 (2)0.1418 (2)0.0223 (6)
C210.0791 (2)0.0008 (3)0.0659 (3)0.0200 (8)
C310.0394 (2)0.0735 (3)0.0203 (3)0.0265 (8)
H310.02060.06340.07420.032*
C410.0891 (3)0.1599 (3)0.0256 (3)0.0312 (9)
H410.06360.21010.08330.037*
C510.1764 (2)0.1729 (3)0.0543 (4)0.0316 (9)
H510.21170.23220.05340.038*
C610.2101 (3)0.0980 (2)0.1341 (4)0.0302 (9)
H610.27000.10730.18850.036*
N710.02371 (19)0.0811 (2)0.0719 (2)0.0197 (6)
H710.03550.07610.02600.024*
C810.0359 (2)0.1721 (2)0.1331 (3)0.0170 (7)
N910.1214 (2)0.2051 (2)0.1934 (2)0.0189 (6)
C1010.1276 (2)0.2974 (3)0.2439 (3)0.0244 (8)
H1010.18740.32330.28380.029*
C1110.0516 (3)0.3558 (3)0.2405 (3)0.0259 (9)
H1110.05900.41980.27850.031*
C1210.0356 (2)0.3200 (3)0.1808 (3)0.0261 (8)
H1210.08930.35840.17790.031*
C1310.0432 (2)0.2280 (2)0.1259 (3)0.0235 (8)
H1310.10250.20260.08310.028*
N120.3978 (2)0.2045 (2)0.3078 (2)0.0218 (7)
C220.4793 (2)0.1638 (2)0.3610 (3)0.0204 (8)
C320.5630 (2)0.2184 (3)0.3852 (3)0.0235 (8)
H320.62090.18660.42150.028*
C420.5586 (2)0.3200 (3)0.3544 (3)0.0275 (8)
H420.61360.35920.36970.033*
C520.4723 (3)0.3636 (3)0.3008 (3)0.0296 (9)
H520.46730.43310.27950.035*
C620.3953 (2)0.3042 (3)0.2796 (3)0.0253 (8)
H620.33660.33430.24300.030*
N720.4884 (2)0.0616 (2)0.3913 (3)0.0256 (7)
H720.54820.04220.41480.031*
C820.4334 (2)0.0028 (2)0.4329 (3)0.0199 (8)
N920.34291 (19)0.0156 (2)0.4112 (3)0.0253 (7)
C1020.2932 (2)0.0509 (3)0.4538 (3)0.0288 (8)
H1020.22900.03740.43920.035*
C1120.3283 (3)0.1363 (3)0.5163 (3)0.0338 (9)
H1120.29000.18150.54280.041*
C1220.4234 (3)0.1539 (3)0.5393 (3)0.0343 (9)
H1220.45190.21170.58270.041*
C1320.4743 (3)0.0863 (3)0.4983 (3)0.0331 (9)
H1320.53920.09670.51480.040*
Ag20.761250 (14)0.388508 (17)0.726177 (17)0.02918 (8)
N130.86617 (19)0.5019 (2)0.8471 (2)0.0214 (6)
C230.9508 (2)0.4820 (3)0.9184 (3)0.0187 (7)
C330.9997 (2)0.5486 (2)1.0078 (3)0.0257 (8)
H331.06010.53221.05700.031*
C430.9576 (3)0.6382 (3)1.0222 (3)0.0273 (9)
H430.98810.68361.08340.033*
C530.8706 (3)0.6616 (3)0.9472 (3)0.0322 (9)
H530.84170.72410.95390.039*
C630.8270 (3)0.5919 (3)0.8622 (3)0.0265 (8)
H630.76670.60730.81190.032*
N730.9981 (2)0.39408 (19)0.9060 (3)0.0202 (7)
H731.05720.39510.95290.024*
C830.9754 (2)0.3064 (2)0.8416 (3)0.0169 (7)
N930.8899 (2)0.2894 (2)0.7699 (2)0.0195 (6)
C1030.8755 (2)0.2001 (2)0.7095 (3)0.0195 (7)
H1030.81470.18680.65930.023*
C1130.9420 (2)0.1286 (2)0.7158 (3)0.0230 (8)
H1130.92840.06810.67070.028*
C1231.0301 (2)0.1478 (2)0.7905 (3)0.0235 (8)
H1231.07800.09950.79800.028*
C1331.0487 (2)0.2351 (2)0.8533 (3)0.0211 (8)
H1331.10920.24850.90410.025*
N140.61745 (19)0.3191 (2)0.6773 (2)0.0234 (7)
C240.5367 (2)0.3671 (3)0.6221 (3)0.0200 (8)
C340.4512 (2)0.3183 (3)0.5988 (3)0.0275 (8)
H340.39510.35380.56320.033*
C440.4499 (2)0.2184 (3)0.6282 (3)0.0302 (9)
H440.39220.18380.61040.036*
C540.5318 (2)0.1666 (3)0.6839 (3)0.0283 (8)
H540.53160.09750.70580.034*
C640.6130 (2)0.2212 (3)0.7054 (3)0.0269 (8)
H640.66960.18720.74260.032*
N740.5352 (2)0.4683 (2)0.5909 (3)0.0243 (7)
H740.47730.49390.56730.029*
C840.5980 (2)0.5290 (2)0.5574 (3)0.0219 (7)
N940.68384 (18)0.4979 (2)0.5710 (2)0.0211 (6)
C1040.7409 (3)0.5611 (3)0.5343 (3)0.0265 (8)
H1040.80230.53930.54260.032*
C1140.7141 (3)0.6544 (3)0.4862 (3)0.0345 (9)
H1140.75620.69640.46240.041*
C1240.6250 (3)0.6859 (3)0.4733 (3)0.0385 (10)
H1240.60520.75080.44120.046*
C1340.5640 (3)0.6233 (3)0.5069 (4)0.0348 (10)
H1340.50170.64300.49630.042*
S150.75611 (5)0.01349 (6)0.39994 (6)0.01981 (16)
C150.7433 (2)0.0582 (2)0.2512 (3)0.0255 (7)
O150.78134 (16)0.10401 (16)0.46901 (19)0.0311 (5)
O250.66493 (13)0.02614 (16)0.39086 (17)0.0245 (5)
O350.82802 (14)0.06302 (17)0.42036 (19)0.0297 (5)
F150.82461 (16)0.09384 (18)0.24306 (19)0.0461 (6)
F250.71515 (15)0.01391 (15)0.17099 (15)0.0414 (5)
F350.68361 (14)0.13431 (15)0.22196 (16)0.0406 (5)
S160.26209 (5)0.54551 (6)0.47816 (7)0.02433 (17)
C160.2496 (2)0.5901 (2)0.3289 (3)0.0296 (8)
O160.23579 (17)0.44104 (18)0.4629 (2)0.0387 (6)
O260.35897 (14)0.56368 (17)0.53840 (19)0.0315 (5)
O360.19998 (14)0.61062 (15)0.51715 (19)0.0277 (5)
F160.16206 (15)0.58282 (17)0.26083 (17)0.0456 (6)
F260.27499 (15)0.68592 (15)0.32833 (18)0.0481 (6)
F360.30125 (17)0.53449 (18)0.2797 (2)0.0563 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.01513 (12)0.02689 (13)0.03138 (17)0.00027 (12)0.00103 (12)0.00142 (12)
N110.0171 (14)0.0235 (15)0.0274 (16)0.0002 (12)0.0084 (12)0.0037 (13)
C210.0214 (18)0.025 (2)0.0170 (16)0.0063 (15)0.0114 (14)0.0005 (13)
C310.0201 (18)0.031 (2)0.0263 (18)0.0050 (16)0.0035 (14)0.0031 (16)
C410.038 (2)0.024 (2)0.037 (2)0.0149 (18)0.0192 (18)0.0139 (17)
C510.029 (2)0.0210 (19)0.049 (2)0.0011 (15)0.0182 (18)0.0069 (16)
C610.0267 (19)0.027 (2)0.038 (2)0.0038 (15)0.0110 (16)0.0006 (16)
N710.0109 (14)0.0194 (15)0.0230 (15)0.0015 (12)0.0035 (12)0.0042 (12)
C810.0144 (16)0.0173 (18)0.0187 (16)0.0039 (14)0.0039 (13)0.0015 (13)
N910.0178 (15)0.0161 (15)0.0235 (15)0.0014 (12)0.0071 (12)0.0017 (12)
C1010.0237 (18)0.0256 (19)0.0228 (17)0.0019 (15)0.0056 (14)0.0004 (14)
C1110.035 (2)0.0208 (18)0.0271 (19)0.0019 (16)0.0170 (17)0.0040 (15)
C1210.0284 (19)0.025 (2)0.0280 (18)0.0069 (15)0.0137 (15)0.0037 (15)
C1310.0182 (17)0.026 (2)0.0255 (17)0.0027 (15)0.0055 (14)0.0018 (14)
N120.0152 (14)0.0255 (16)0.0222 (15)0.0001 (13)0.0019 (12)0.0027 (12)
C220.0237 (19)0.0188 (19)0.0213 (17)0.0070 (15)0.0107 (14)0.0020 (14)
C320.0137 (16)0.032 (2)0.0258 (18)0.0002 (15)0.0069 (13)0.0022 (15)
C420.0257 (18)0.028 (2)0.0318 (19)0.0142 (16)0.0136 (15)0.0081 (15)
C520.032 (2)0.030 (2)0.0273 (19)0.0024 (16)0.0108 (15)0.0013 (15)
C620.0242 (18)0.0246 (19)0.0266 (18)0.0017 (15)0.0069 (14)0.0073 (14)
N720.0141 (14)0.0248 (17)0.0383 (17)0.0032 (13)0.0085 (12)0.0005 (13)
C820.0170 (17)0.0183 (18)0.0231 (16)0.0016 (14)0.0043 (13)0.0055 (14)
N920.0200 (15)0.0261 (16)0.0283 (16)0.0017 (12)0.0048 (13)0.0013 (13)
C1020.0229 (19)0.034 (2)0.0294 (19)0.0043 (16)0.0073 (15)0.0003 (16)
C1120.050 (3)0.028 (2)0.0275 (19)0.0105 (17)0.0184 (18)0.0044 (15)
C1220.044 (2)0.029 (2)0.031 (2)0.0080 (18)0.0133 (18)0.0043 (16)
C1320.034 (2)0.035 (2)0.032 (2)0.0148 (19)0.0123 (17)0.0039 (17)
Ag20.01447 (13)0.02766 (14)0.03755 (19)0.00203 (13)0.00404 (13)0.00287 (12)
N130.0210 (15)0.0207 (15)0.0229 (15)0.0002 (12)0.0069 (12)0.0029 (12)
C230.0181 (17)0.0200 (18)0.0196 (16)0.0037 (14)0.0080 (13)0.0028 (13)
C330.0290 (19)0.0263 (19)0.0205 (16)0.0086 (15)0.0055 (14)0.0021 (14)
C430.036 (2)0.0234 (19)0.0238 (18)0.0067 (16)0.0108 (16)0.0062 (15)
C530.045 (2)0.0225 (19)0.034 (2)0.0037 (17)0.0209 (19)0.0027 (16)
C630.0245 (19)0.0269 (19)0.031 (2)0.0048 (15)0.0124 (16)0.0009 (15)
N730.0147 (15)0.0200 (15)0.0241 (15)0.0012 (11)0.0033 (12)0.0052 (12)
C830.0169 (16)0.0200 (17)0.0143 (15)0.0023 (14)0.0053 (13)0.0019 (13)
N930.0159 (14)0.0221 (16)0.0218 (14)0.0004 (12)0.0076 (12)0.0014 (12)
C1030.0165 (15)0.0230 (17)0.0197 (16)0.0001 (14)0.0061 (13)0.0044 (13)
C1130.033 (2)0.0162 (16)0.0222 (17)0.0051 (14)0.0114 (15)0.0017 (13)
C1230.0241 (19)0.0231 (18)0.0256 (17)0.0063 (15)0.0110 (15)0.0043 (14)
C1330.0169 (16)0.0267 (19)0.0183 (16)0.0016 (14)0.0033 (12)0.0014 (14)
N140.0140 (14)0.0313 (18)0.0232 (15)0.0007 (12)0.0030 (12)0.0025 (12)
C240.0166 (17)0.0205 (19)0.0212 (17)0.0065 (14)0.0031 (13)0.0021 (13)
C340.0161 (16)0.036 (2)0.0290 (18)0.0021 (15)0.0043 (14)0.0030 (15)
C440.0216 (18)0.037 (2)0.0292 (19)0.0053 (17)0.0029 (15)0.0019 (16)
C540.027 (2)0.029 (2)0.0267 (18)0.0043 (16)0.0051 (15)0.0027 (15)
C640.0232 (18)0.028 (2)0.0249 (18)0.0022 (15)0.0006 (14)0.0011 (15)
N740.0176 (15)0.0204 (16)0.0313 (15)0.0079 (12)0.0021 (12)0.0021 (12)
C840.0221 (17)0.0233 (18)0.0200 (16)0.0013 (14)0.0061 (13)0.0002 (13)
N940.0168 (14)0.0242 (15)0.0205 (14)0.0001 (12)0.0032 (11)0.0038 (12)
C1040.0276 (19)0.032 (2)0.0219 (17)0.0034 (16)0.0102 (15)0.0058 (15)
C1140.041 (2)0.034 (2)0.033 (2)0.0010 (18)0.0168 (17)0.0023 (17)
C1240.052 (3)0.029 (2)0.040 (2)0.0055 (19)0.022 (2)0.0061 (17)
C1340.042 (2)0.030 (2)0.039 (2)0.0149 (17)0.0208 (19)0.0096 (17)
S150.0161 (3)0.0232 (4)0.0182 (3)0.0009 (3)0.0023 (3)0.0001 (3)
C150.0249 (19)0.0275 (18)0.0261 (17)0.0045 (15)0.0111 (14)0.0031 (15)
O150.0359 (13)0.0294 (13)0.0243 (12)0.0095 (10)0.0033 (10)0.0061 (10)
O250.0164 (11)0.0293 (13)0.0265 (12)0.0017 (9)0.0046 (9)0.0039 (9)
O350.0183 (11)0.0364 (14)0.0327 (13)0.0063 (10)0.0052 (10)0.0091 (10)
F150.0425 (13)0.0575 (15)0.0422 (13)0.0039 (11)0.0186 (11)0.0170 (10)
F250.0590 (14)0.0416 (13)0.0214 (10)0.0038 (10)0.0086 (9)0.0041 (9)
F350.0461 (13)0.0411 (13)0.0312 (10)0.0166 (10)0.0065 (9)0.0110 (9)
S160.0178 (4)0.0243 (4)0.0257 (4)0.0035 (3)0.0013 (3)0.0040 (3)
C160.0335 (19)0.0246 (19)0.0303 (17)0.0028 (15)0.0089 (15)0.0073 (14)
O160.0447 (15)0.0247 (14)0.0375 (14)0.0035 (11)0.0012 (11)0.0038 (11)
O260.0144 (11)0.0387 (14)0.0356 (13)0.0064 (10)0.0010 (10)0.0098 (11)
O360.0166 (11)0.0353 (14)0.0290 (12)0.0086 (10)0.0034 (9)0.0016 (10)
F160.0437 (14)0.0497 (13)0.0286 (11)0.0051 (11)0.0113 (10)0.0001 (10)
F260.0609 (15)0.0357 (12)0.0468 (13)0.0132 (11)0.0148 (11)0.0008 (10)
F360.0687 (18)0.0618 (16)0.0459 (14)0.0191 (13)0.0286 (13)0.0089 (12)
Geometric parameters (Å, º) top
Ag1—N912.284 (3)C23—C331.408 (4)
Ag1—N122.305 (3)C33—C431.380 (5)
Ag1—N922.357 (3)C33—H330.9500
Ag1—N112.373 (3)C43—C531.384 (5)
N11—C211.344 (4)C43—H430.9500
N11—C611.353 (4)C53—C631.381 (5)
C21—N711.384 (4)C53—H530.9500
C21—C311.403 (5)C63—H630.9500
C31—C411.379 (5)N73—C831.375 (4)
C31—H310.9500N73—H730.8998
C41—C511.387 (5)C83—N931.336 (4)
C41—H410.9500C83—C1331.429 (4)
C51—C611.361 (5)N93—C1031.365 (4)
C51—H510.9500C103—C1131.366 (5)
C61—H610.9500C103—H1030.9500
N71—C811.390 (4)C113—C1231.385 (4)
N71—H710.8997C113—H1130.9500
C81—N911.350 (4)C123—C1331.357 (4)
C81—C1311.386 (5)C123—H1230.9500
N91—C1011.351 (4)C133—H1330.9500
C101—C1111.375 (5)N14—C641.344 (4)
C101—H1010.9500N14—C241.357 (4)
C111—C1211.379 (5)C24—N741.387 (4)
C111—H1110.9500C24—C341.396 (5)
C121—C1311.369 (5)C34—C441.368 (5)
C121—H1210.9500C34—H340.9500
C131—H1310.9500C44—C541.396 (5)
N12—C221.319 (5)C44—H440.9500
N12—C621.358 (4)C54—C641.380 (5)
C22—N721.394 (4)C54—H540.9500
C22—C321.410 (5)C64—H640.9500
C32—C421.389 (5)N74—C841.390 (4)
C32—H320.9500N74—H740.9001
C42—C521.392 (5)C84—N941.325 (4)
C42—H420.9500C84—C1341.412 (5)
C52—C621.364 (5)N94—C1041.364 (4)
C52—H520.9500C104—C1141.368 (5)
C62—H620.9500C104—H1040.9500
N72—C821.383 (4)C114—C1241.374 (5)
N72—H720.8999C114—H1140.9500
C82—N921.336 (4)C124—C1341.385 (5)
C82—C1321.385 (5)C124—H1240.9500
N92—C1021.351 (4)C134—H1340.9500
C102—C1121.369 (5)S15—O151.437 (2)
C102—H1020.9500S15—O251.448 (2)
C112—C1221.400 (5)S15—O351.451 (2)
C112—H1120.9500S15—C151.822 (3)
C122—C1321.362 (5)C15—F251.326 (4)
C122—H1220.9500C15—F351.326 (3)
C132—H1320.9500C15—F151.348 (4)
Ag2—N142.269 (3)S16—O161.434 (2)
Ag2—N932.273 (3)S16—O261.444 (2)
Ag2—N132.337 (3)S16—O361.450 (2)
Ag2—N942.361 (3)S16—C161.829 (3)
N13—C231.332 (4)C16—F261.324 (4)
N13—C631.365 (4)C16—F361.330 (4)
C23—N731.396 (4)C16—F161.331 (4)
N91—Ag1—N12120.66 (8)C43—C33—C23118.3 (3)
N91—Ag1—N92139.76 (10)C43—C33—H33120.8
N12—Ag1—N9280.44 (9)C23—C33—H33120.8
N91—Ag1—N1181.47 (10)C33—C43—C53119.7 (3)
N12—Ag1—N11148.62 (10)C33—C43—H43120.1
N92—Ag1—N1196.61 (10)C53—C43—H43120.1
C21—N11—C61116.6 (3)C63—C53—C43118.4 (3)
C21—N11—Ag1126.5 (2)C63—C53—H53120.8
C61—N11—Ag1115.1 (2)C43—C53—H53120.8
N11—C21—N71121.4 (3)N13—C63—C53123.2 (3)
N11—C21—C31122.3 (3)N13—C63—H63118.4
N71—C21—C31116.2 (3)C53—C63—H63118.4
C41—C31—C21118.8 (3)C83—N73—C23135.3 (3)
C41—C31—H31120.6C83—N73—H73113.1
C21—C31—H31120.6C23—N73—H73111.5
C31—C41—C51119.4 (3)N93—C83—N73122.0 (3)
C31—C41—H41120.3N93—C83—C133121.6 (3)
C51—C41—H41120.3N73—C83—C133116.5 (3)
C61—C51—C41117.9 (3)C83—N93—C103116.9 (3)
C61—C51—H51121.1C83—N93—Ag2130.3 (2)
C41—C51—H51121.1C103—N93—Ag2112.8 (2)
N11—C61—C51125.0 (4)N93—C103—C113124.8 (3)
N11—C61—H61117.5N93—C103—H103117.6
C51—C61—H61117.5C113—C103—H103117.6
C21—N71—C81135.9 (3)C103—C113—C123117.2 (3)
C21—N71—H71114.8C103—C113—H113121.4
C81—N71—H71109.4C123—C113—H113121.4
N91—C81—C131122.1 (3)C133—C123—C113120.7 (3)
N91—C81—N71120.9 (3)C133—C123—H123119.7
C131—C81—N71117.0 (3)C113—C123—H123119.7
C81—N91—C101117.1 (3)C123—C133—C83118.8 (3)
C81—N91—Ag1129.8 (2)C123—C133—H133120.6
C101—N91—Ag1112.0 (2)C83—C133—H133120.6
N91—C101—C111123.3 (3)C64—N14—C24117.8 (3)
N91—C101—H101118.4C64—N14—Ag2116.2 (2)
C111—C101—H101118.4C24—N14—Ag2126.0 (2)
C101—C111—C121118.9 (3)N14—C24—N74121.4 (3)
C101—C111—H111120.6N14—C24—C34121.7 (3)
C121—C111—H111120.6N74—C24—C34116.9 (3)
C131—C121—C111118.8 (3)C44—C34—C24118.6 (3)
C131—C121—H121120.6C44—C34—H34120.7
C111—C121—H121120.6C24—C34—H34120.7
C121—C131—C81119.8 (3)C34—C44—C54121.1 (3)
C121—C131—H131120.1C34—C44—H44119.5
C81—C131—H131120.1C54—C44—H44119.5
C22—N12—C62117.9 (3)C64—C54—C44116.4 (3)
C22—N12—Ag1125.2 (2)C64—C54—H54121.8
C62—N12—Ag1116.9 (2)C44—C54—H54121.8
N12—C22—N72121.7 (3)N14—C64—C54124.5 (3)
N12—C22—C32122.7 (3)N14—C64—H64117.8
N72—C22—C32115.5 (3)C54—C64—H64117.8
C42—C32—C22118.2 (3)C24—N74—C84132.5 (3)
C42—C32—H32120.9C24—N74—H74112.5
C22—C32—H32120.9C84—N74—H74112.1
C32—C42—C52119.1 (3)N94—C84—N74121.0 (3)
C32—C42—H42120.5N94—C84—C134122.9 (3)
C52—C42—H42120.5N74—C84—C134116.1 (3)
C62—C52—C42118.4 (3)C84—N94—C104117.4 (3)
C62—C52—H52120.8C84—N94—Ag2121.5 (2)
C42—C52—H52120.8C104—N94—Ag2114.5 (2)
N12—C62—C52123.7 (3)N94—C104—C114123.4 (3)
N12—C62—H62118.2N94—C104—H104118.3
C52—C62—H62118.2C114—C104—H104118.3
C82—N72—C22131.8 (3)C104—C114—C124118.5 (4)
C82—N72—H72111.7C104—C114—H114120.8
C22—N72—H72111.6C124—C114—H114120.8
N92—C82—N72120.7 (3)C114—C124—C134120.1 (4)
N92—C82—C132120.9 (3)C114—C124—H124119.9
N72—C82—C132118.5 (3)C134—C124—H124119.9
C82—N92—C102117.5 (3)C124—C134—C84117.6 (4)
C82—N92—Ag1122.5 (2)C124—C134—H134121.2
C102—N92—Ag1116.5 (2)C84—C134—H134121.2
N92—C102—C112124.9 (3)O15—S15—O25115.25 (13)
N92—C102—H102117.5O15—S15—O35115.35 (13)
C112—C102—H102117.5O25—S15—O35114.14 (13)
C102—C112—C122116.8 (3)O15—S15—C15102.63 (14)
C102—C112—H112121.6O25—S15—C15102.97 (13)
C122—C112—H112121.6O35—S15—C15104.14 (14)
C132—C122—C112118.6 (4)F25—C15—F35108.2 (3)
C132—C122—H122120.7F25—C15—F15107.5 (3)
C112—C122—H122120.7F35—C15—F15106.2 (3)
C122—C132—C82121.3 (4)F25—C15—S15112.6 (2)
C122—C132—H132119.4F35—C15—S15111.5 (2)
C82—C132—H132119.4F15—C15—S15110.5 (2)
N14—Ag2—N93120.92 (10)O16—S16—O26115.12 (14)
N14—Ag2—N13146.92 (10)O16—S16—O36115.53 (15)
N93—Ag2—N1381.55 (10)O26—S16—O36113.59 (13)
N14—Ag2—N9480.54 (10)O16—S16—C16104.11 (15)
N93—Ag2—N94136.16 (10)O26—S16—C16102.82 (15)
N13—Ag2—N94100.03 (9)O36—S16—C16103.47 (14)
C23—N13—C63117.4 (3)F26—C16—F36108.5 (3)
C23—N13—Ag2127.6 (2)F26—C16—F16107.6 (3)
C63—N13—Ag2113.5 (2)F36—C16—F16107.5 (3)
N13—C23—N73121.5 (3)F26—C16—S16111.6 (2)
N13—C23—C33122.9 (3)F36—C16—S16110.3 (2)
N73—C23—C33115.6 (3)F16—C16—S16111.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N72—H72···O250.902.082.912 (4)154
N74—H74···O260.901.952.842 (3)171
N71—H71···O35i0.902.082.976 (3)179
N73—H73···O36ii0.902.062.939 (4)164
C122—H122···Cg1iii0.952.953.622 (6)129
C41—H41···Cg2iv0.952.763.561 (6)143
C43—H43···Cg3v0.952.823.603 (6)140
C124—H124···C64vi0.952.873.373 (6)114
Symmetry codes: (i) x1, y, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2; (vi) x, y+1, z1/2.

Experimental details

Crystal data
Chemical formula[Ag(C10H9N2)2]CF3SO3
Mr599.34
Crystal system, space groupMonoclinic, Pc
Temperature (K)130
a, b, c (Å)15.1215 (4), 13.2206 (3), 11.9113 (3)
β (°) 107.527 (3)
V3)2270.70 (10)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerKuma KM-4-CCD (κ geometry)
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.735, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
18407, 8833, 7362
Rint0.021
(sin θ/λ)max1)0.656
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.054, 1.03
No. of reflections8833
No. of parameters631
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.64
Absolute structureFlack (1983), Friedel pairs 3456
Absolute structure parameter0.009 (12)

Computer programs: CrysAlis CCD (Oxford Diffraction, 2007), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006).

Selected geometric parameters (Å, º) top
Ag1—N912.284 (3)Ag2—N142.269 (3)
Ag1—N122.305 (3)Ag2—N932.273 (3)
Ag1—N922.357 (3)Ag2—N132.337 (3)
Ag1—N112.373 (3)Ag2—N942.361 (3)
N91—Ag1—N12120.66 (8)N14—Ag2—N93120.92 (10)
N91—Ag1—N92139.76 (10)N14—Ag2—N13146.92 (10)
N12—Ag1—N9280.44 (9)N93—Ag2—N1381.55 (10)
N91—Ag1—N1181.47 (10)N14—Ag2—N9480.54 (10)
N12—Ag1—N11148.62 (10)N93—Ag2—N94136.16 (10)
N92—Ag1—N1196.61 (10)N13—Ag2—N94100.03 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N72—H72···O250.902.082.912 (4)154
N74—H74···O260.901.952.842 (3)171
N71—H71···O35i0.902.082.976 (3)179
N73—H73···O36ii0.902.062.939 (4)164
C122—H122···Cg1iii0.952.953.622 (6)129
C41—H41···Cg2iv0.952.763.561 (6)143
C43—H43···Cg3v0.952.823.603 (6)140
C124—H124···C64vi0.952.873.373 (6)114
Symmetry codes: (i) x1, y, z1/2; (ii) x+1, y+1, z+1/2; (iii) x, y, z+1/2; (iv) x, y, z1/2; (v) x, y+1, z+1/2; (vi) x, y+1, z1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds